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Abstract

Multi-view clustering aims to take advantage of multiple
views information to improve the performance of cluster-
ing. Many existing methods compute the affinity matrix by
low-rank representation (LRR) and pairwise investigate the
relationship between views. However, LRR suffers from the
high computational cost in self-representation optimization.
Besides, compared with pairwise views, tensor form of all
views’ representation is more suitable for capturing the high-
order correlations among all views. Towards these two issues,
in this paper, we propose the unified graph and low-rank ten-
sor learning (UGLTL) for multi-view clustering. Specifically,
on the one hand, we learn the view-specific affinity matrix
based on projected graph learning. On the other hand, we
reorganize the affinity matrices into tensor form and learn
its intrinsic tensor based on low-rank tensor approximation.
Finally, we unify these two terms together and jointly learn
the optimal projection matrices, affinity matrices and intrin-
sic low-rank tensor. We also propose an efficient algorithm
to iteratively optimize the proposed model. To evaluate the
performance of the proposed method, we conduct extensive
experiments on multiple benchmarks across different scenar-
ios and sizes. Compared with the state-of-the-art approaches,
our method achieves much better performance.

Introduction

Along with the arrival of information age, it is easy to get a
large number of multimedia data from the Internet and so-
cial media. However, the label information is often absent.
While it costs much time and money to label the data, we can
rely on clustering techniques (Ng, Jordan, and Weiss 2002;
Liu et al. 2013; Wu et al. 2019) to investigate the correlations
among data. There are many classic clustering methods,
such as the k-means, spectral clustering, and subspace clus-
tering (Liu et al. 2013; 2015). These traditional approaches
achieve very good performance, but they mainly focus on
single view input. In practice, the data is often collected in
multiple poses and sources, such as image, text, or video.
Even for a specific sample, we can also extract various kinds
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of features to represent it in different aspect. Under this cir-
cumstance, each pose, modality, or type of feature can be re-
garded as a specific view. Multi-view clustering is proposed
to make full use of multi-view information to improve the
clustering performance.

The construction of affinity matrix is a key step for clus-
tering. In general, based on the affinity matrices of all views,
multi-view clustering hopes to learn an intrinsic matrix,
which can well capture both the consistent and comple-
mentary information among all views. With this compre-
hensive representation, we can further improve the perfor-
mance of clustering. There are already many multi-view
clustering methods. Many recent works explore the corre-
lations among views based on the subspace clustering with
self-representation. For example, (Cao et al. 2015) utilizes
the Hilbert Schmidt Independence Criterion (HSIC) as a di-
versity term, and (Wang et al. 2017) introduces a position-
aware exclusivity term to explore the complementarity. In-
stead of investigating correlations between pairwise views,
(Xie et al. 2018) stacks the subspace representation matrices
of all different views into a tensor and extract the integrated
representation based on tensor low-rank decomposition. Al-
though these subspace clustering based multi-view methods
obtain good results, the computational complexity of self-
representation optimization is O(n3), which is very high and
limits their extension to large dataset. Towards this issue,
(Wu, Lin, and Zha 2019) proposes the robust tensor prin-
ciple component analysis based on fixed affinity matrices,
which are computed by the normalized Gaussian kernel of
Markov chain based spectral clustering. But the separation
of affinity matrix computing and comprehensive representa-
tion learning makes the solution sub-optimal for clustering.

In view of the above existing limitations, in this paper,
we propose a novel unified graph and low-rank tensor learn-
ing (UGLTL) method for multi-view clustering. Specifically,
to construct the affinity matrices, we learn view-specific pro-
jection matrix so that we can accurately compute similar-
ity between samples according to their distance in the pro-
jected subspace. The computation cost is much lower than
the self-representation based methods. Second, by stacking
the multi-view affinity matrices into a tensor, we learn the
low-rank tensor by the tensor Singular Value Decomposi-
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tion (t-SVD) based tensor nuclear norm, which can thor-
oughly explore the high-order relationships among all views.
Finally, we combine these two terms into a unified model to
jointly learn the optimal affinity matrices and intrinsic low-
rank tensor for clustering.

We summarize our main contributions as follows:

(a) We propose a novel unified method to jointly learn op-
timal affinity matrices in the projected subspace as well
as its intrinsic low-rank tensor for multi-view cluster-
ing. With the t-SVD based tensor low-rank constraint,
our method is effective to learn the comprehensive in-
formation among different views for clustering.

(b) We propose an efficient algorithm to alternately solve
the proposed problem. Compared with those self-
representation based methods, the computational com-
plexity of our method is much lower.

(c) We conduct extensive experiments on multiple chal-
lenging datasets to evaluate the performance of our
method. Compared with the state-of-the-art approaches,
our method achieves significant improvement.

Related Work

According to the way to compute the affinity matrix, ex-
isting multi-view methods can be mainly divided into two
categories, including the graph based models and the self-
representation based subspace clustering methods.

The graph based methods are derived from the classic
spectral clustering (Ng, Jordan, and Weiss 2002). The early
multi-view methods mainly focus on the 2-view case. (Ku-
mar and Daumé 2011) searches for the clusterings that agree
across the views by a co-training approach. (Kumar, Rai,
and Daumé 2011) explores the complementary information
across views based on a co-regularization method. Then,
RMSC (Xia et al. 2014) aims to recover a shared low-rank
representation from multiple graphs. ETLMSC (Wu, Lin,
and Zha 2019) learns the essential low-rank tensor based on
the affinity tensor. Instead of using the Gaussian kernel to
compute the similarity, MLAN (Nie, Cai, and Li 2017) and
CLR (Nie et al. 2016) try to learn the weights of multiple
graphs based on the Euclidian distance between samples.

Due to the popularity of SSC (Elhamifar and Vidal 2013)
and LRR (Liu et al. 2013; Liu, Liu, and Li 2016; Liu
and Zhang 2019), many recent multi-view learning meth-
ods (Cao et al. 2015; Zhang et al. 2015; Xie et al. 2018;
Zhang et al. 2018) learn the affinity matrices based on self-
representation. (Zhang et al. 2017) jointly learns the un-
derlying latent representation and the low-rank decomposi-
tion. To learn the complementary information across multi-
ple views, (Cao et al. 2015) and (Wang et al. 2017) utilize the
Hilbert Schmidt Independence Criterion (HSIC) based di-
versity term and the position-aware exclusivity term, respec-
tively. Tensor form (Lu et al. 2016; Zhou and Feng 2017;
Kong, Xie, and Lin 2018) has been proved to be very ef-
fective in exploring the comprehensive information among
multiple views. For example, LTMSC (Zhang et al. 2015)
first extends the LRR into multi-view subspace clustering
with generalized tensor nuclear norm, and then (Zhang et

al. 2018) combines it with neural networks for further ex-
tension. (Xie et al. 2018) adopts the t-SVD based tensor nu-
clear norm for constraint. (Xie et al. 2019) extends the SSC
into a differentiable form and proposes a new optimization
strategy.

Notations and Preliminaries

To help understand the definition of tensor nuclear norm,
we briefly introduce some notions and related defini-
tions (Kilmer et al. 2013).

For a 3-order tensor A ∈ R
n1×n2×n3 , vector along the

i-th mode is called the mode-i fiber. A(i) denotes the matri-
cization of A along the i-th mode, which can be constructed
by arranging the mode-i fibers to be the columns of the re-
sulting matrix. By transposing each frontal slice and then
reversing the order of transposed frontal slices 2 through n3,
we get the transpose AT ∈ R

n2×n1×n3 . Af = fft(A, [ ], 3)
denotes the fast Fourier transformation (FFT) of a tensor
A along the 3rd dimension, and its inverse operation is
A = ifft(Af , [ ], 3). The block vectorizing and its inverse
operation of A are bvec(A) = [A(1);A(2); · · · ;A(n3)] ∈
R

n1n3×n2 and fold(bvec(A)) = A, respectively. The block
circulant matrix bcirc(A) ∈ R

n1n3×n2n3 is defined by:

bcirc(A) :=

⎡
⎢⎢⎢⎣

A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
. . . . . .

...
A(n3) A(n3−1) · · · A(1)

⎤
⎥⎥⎥⎦ .

Below are some related definitions.
Definition 1 (t-product). Let A be n1 × n2 × n3, and B
be n2 × n4 × n3. The t-product A ∗ B is the n1 × n4 × n3

tensor
A ∗B = fold(bcirc(A)bvec(B)). (1)

Definition 2 (f-diagonal tensor). A tensor is called f-
diagonal if each of its frontal slices is diagonal matrix.
Definition 3 (Identity tensor). For the identity tensor I ∈
R

n×n×n3 , its first frontal slice is the identity matrix with size
n× n, and all other frontal slices are zero.
Definition 4 (Orthogonal tensor). A tensor Q ∈ R

n×n×n3

is orthogonal if it satisfies

QT ∗Q = Q ∗QT = I. (2)

Definition 5 (t-SVD). For a tensor A ∈ R
n1×n2×n3 , it can

be factorized by t-SVD as

A = U ∗ S ∗ VT , (3)

where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are orthogo-
nal, and S ∈ R

n1×n2×n3 is f-diagonal.
Definition 6 (t-SVD based tensor nuclear norm). The t-
SVD based tensor nuclear norm ‖A‖� of a tensor A ∈
R

n1×n2×n3 is defined by the sum of singular values of all
the frontal slices of Af :

‖A‖� =

n3∑
k=1

‖A(k)
f ‖∗ =

min(n1,n2)∑
i=1

n3∑
k=1

|S(k)
f (i, i)|, (4)
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where S(k)
f is computed by the SVD A(k)

f = U (k)
f S(k)

f V(k)T
f

of frontal slices of Af .

Unified Graph and Low-rank Tensor Learning

Model Formulation

Let Xv = [xv
1, · · · ,xv

N ] ∈ R
dv×N denote the data matrix

of the v-th view (v = 1, · · · , V ), where dv is the dimen-
sion of feature vectors in the v-th view, N is the number of
samples, and V is the number of views. For multi-view clus-
tering, we first need to construct the view-specific affinity
matrix. Even though we can simply compute the similarity
by Gaussian kernel just like what the standard spectral clus-
tering does, we hope this process could be jointly optimized
with the later multi-view learning to get the optimal solution.
So we assign similarity for data samples according to their
distance based on graph learning (Nie, Wang, and Huang
2014).

The basic model of graph learning to learn the similarity
svi,j can be formulated as follows:

min
S

V∑
v=1

N∑
i,j=1

‖xv
i − xv

j‖22svij +
γ

2
(svij)

2,

s.t. ∀j and v, (svj )
T 1 = 1, svj ≥ 0,

(5)

where γ is a balance parameter, svj ∈ R
N×1 is a column

vector with the i-th element as svij , 1 ∈ R
N×1 is a column

vector with all elements as 1, and 0 ∈ R
N×1 is a column

vector with all elements as 0. The quadric term is used for
regularization to avoid trivial solution. In general, if the dis-
tance between two samples is small, then a large similarity
svij will be assigned.

In practice, the feature dimension dv might be very
high. The Euclidian distance in the original feature space
might not be suitable. It is challenging to deal with high-
dimensional data. For this issue, we can project the feature
into a lower dimensional subspace and then learn the affinity
matrices. Then the graph learning problem is transformed to:

min
W,S

V∑
v=1

N∑
i,j=1

‖WvTxv
i −WvTxv

j‖22svij +
γ

2
(svij)

2, (6)

s.t. ∀j and v, (svj )
T 1 = 1, svj ≥ 0, WvTXvXvTWv = I,

where I is the identical matrix, Wv ∈ R
dv×M is the view-

specific projection matrix, and M is the dimension of the
projected subspace. Similar to canonical component anal-
ysis, orthogonal subspace constraint is adopt to make the
feature embedding statistically uncorrelated in the projected
subspace and constrain learning of view-specific projection
matrix Wv .

Based on the view-specific affinity matrix, we hope to
learn an intrinsic representation which can capture both
consistent and complementary information among multiple
views. Many existing methods try to learn a shared repre-
sentation (Nie, Cai, and Li 2017) or investigate pair-wise
correlation (Wang et al. 2017), which results in the loss of
comprehensiveness and optimality in the representation. As

a comparison, tensor form (Kilmer et al. 2013) is much more
suitable to explore the high-order correlations among multi-
ple views, so we stack the affinity matrices of all views into
a tensor and rotate it into S ∈ R

N×V×N , which can better
investigate the correlations and largely reduce the computa-
tional complexity.

As multi-view features are extracted from the same ob-
jects, different Sv should contain some similar information.
Another fact is that the number of clusters is always much
smaller than the sample number. In this case, the affinity
tensor S should be low-rank. For the tensor rank, since the
CANDECOMP/PARAFAC (CP) (Carroll and Chang 1970;
Harshman 1970) rank is generally NP-hard to compute and
the Sum of Nuclear Norms (SNN) (Huang et al. 2014) for
Tucker (Tucker 1966) decomposition is not a tight convex
relaxation of the Tucker rank, so we adopt t-SVD (Kilmer et
al. 2013) based tensor nuclear norm, which has been proven
to be the tightest convex relaxation (Zhang et al. 2014) to
�1-norm of the tensor multi-rank, to constrain the intrinsic
low-rank tensor. Considering the influence of noise on S, we
learn the low-rank tensor Z to approximate original affinity
tensor by:

min
Z

‖Z‖� +
α

2
‖S −Z‖2F , (7)

where α is a constant to control the influence of noises,
and the tensor ‖ · ‖F -norm is defined by ‖A‖F =√∑

ijk |Aijk|2, which is used to penalize the noise term.
The separation of learning S and Z will make the solu-

tion sub-optimal. So we combine the affinity matrices learn-
ing in Eq. (6) and low-rank tensor learning in Eq. (7) to
jointly optimize them. We also add a constraint on each
similarity matrix Sv to make the learned graph symmetric,
which means that the similarity between two samples should
be same (Sv

ij = Sv
ji). Then the final objective function of

UGLTL can be formulated as:

min
S,Z,W

V∑
v=1

N∑
i,j=1

(
‖WvTxv

i −WvTxv
j‖22svij +

γ

2
(svij)

2
)

+
α

2
‖S −Z‖2F + β‖Z‖�, (8)

s.t. ∀j and v, (svj )
T 1 = 1, svj ≥ 0, Sv = SvT ,

WvTXvXvTWv = I, S = Φ(S1, · · · ,SV ),

where α, β and γ are balance parameters, function Φ(·)
merges affinity matrices of various views into a 3-order ten-
sor and then rotates along the z-axis.

Optimization

In this subsection, we propose an efficient algorithm to solve
the problem in Eq. (8) in an alternate way. It’s obvious that
the problem is not jointly convex to S,Z , and W, but it is
convex to each variable while other variables are fixed. We
alternately optimize each variable with other variables fixed
as follows.
Z-subproblem: When the tensor S and projection matri-

ces W are fixed, we update the tensor Z by solving:

Z∗ = argmin
Z

α

2
‖S −Z‖2F + β‖Z‖�. (9)

6390



The optimal solution can be computed by the tensor tubal-
shrinkage operator (Hu et al. 2016):

Z∗ = Cn3τ (S) = U ∗ Cn3τ (O) ∗ VT, (10)

where τ = β/α, S = U ∗O ∗ VT denotes the tensor SVD
decomposition, and Cn3τ (O) = O ∗ J , herein, J is an
n1 × n2 × n3 f-diagonal tensor whose diagonal element in
the Fourier domain is J f (i, i, j) = (1− n3τ

O(j)
f (i,i)

)+.

S-subproblem: To optimize S, we fix the tensor Z and
projection matrices W. We first solve the problem without
symmetric constraint. The Lagrangian function to optimize
S can be reformulated as follows:

L(S) =
V∑

v=1

N∑
i,j=1

(
‖WvTxv

i −WvTxv
j‖22svij +

γ

2
(svij)

2
)

+
α

2
‖S−Z‖2F +

V∑
v=1

N∑
j=1

(
ηvj

(
(svj )

T1−1
)−(λv

j )
T svj

)
,

(11)

where ηvj and λv
j are Lagrangian multipliers. ηvj is a non-

negative constant, and the column vector λv
j ≥ 0. Then each

vector of the tensor S can be updated by solving the follow-
ing subproblem to get the close-form solution:

sv∗j = argmin
sv
j

N∑
i=1

(
‖WvTxv

i −WvTxv
j ‖22svij + γ

2
(svij)

2
)

+
α

2
‖svj − zvj ‖22 − ηv

j

(
(svj )

T1− 1
)
− (λv

j )
T svj , (12)

= argmin
sv
j

γ + α

2
‖svj + gv

j ‖22 − ηv
j

(
(svj )

T1−1
)
−(λv

j )
T svj ,

where gvij =
‖WvTxv

i −WvTxv
j ‖2

2−αzv
ij

γ+α . Based on the KKT
conditions, we have:

(γ + α)(sv∗ij + gvij)− ηv∗j − λv∗
ij = 0, ∀i, j; (13)

sv∗ij λ
v∗
ij = 0, sv∗ij ≥ 0, λv∗

ij ≥ 0, ∀i, j. (14)

According to Eq. (13) and the constraint (svj )
T 1=1, we get:

ηv∗j =
(γ + α)(1 + (gv

j )
T1)− (λv

j )
T1

N
. (15)

Then according to Eq. (13) and the complementary slack-
ness condition in Eq. (14), we have:

sv∗ij = max{0, 1 + (gv
j )

T1

N
− (λv∗

j )T1

N(γ + α)
− gvij}. (16)

Based on sv∗ij , according to the Proposition 7 in (Lu et al.
2018), the symmetric constraint can be satisfied by:

s̃v∗ij =
1

2
(sv∗ij + sv∗ji ). (17)

W-subproblem: When the similarity tensor S and the
essential tensor Z are fixed, the problem for solving W is:

min
W

V∑
v=1

N∑
i,j=1

(‖WvTxv
i −WvTxv

j‖22svij
)
,

s.t. ∀v, WvTXvXvTWv = I,

(18)

Algorithm 1 Alternating Minimization Method for UGLTL

Input: Multi-view data matrix Xv , parameters α, β, γ.
Initialize svij , Wv by the Gaussian kernel and identical
matrix, respectively.

1: while not converged do
2: Compute the close-form solution for Z by Eq. (10);
3: Update the final similarity svij by Eqs. (16) and (17);
4: Update the feature embedding Yv by solving

Eq. (20);
5: end while

Based on Z , compute the affinity matrix by:
A = 1

V

∑V
v=1

(
|Z(v)|+ |Z(v)T |

)
;

Apply the spectral clustering to A to get final result;
Output: Clustering result.

which is equivalent to solving the following V subproblems:

min
Wv

Tr(WvTXvLvXvTWv),

s.t. WvTXvXvTWv = I, ∀ v = 1, 2, · · · , V,
(19)

where Lv = Dv − Sv is the Laplacian matrix for the v-
th view, and Dv is a diagonal matrix with Dv

ii =
∑

j s
v
ij .

Denote Yv = WvTXv , then the above problem in Eq. (19)
can be reformulated as:

min
Yv

Tr
(
YvLvYvT

)
, s.t.YvYvT =I, ∀ v = 1, · · · , V,

(20)
which is an eigenvalue decomposition problem. The optimal
solution of Yv can be formed by the k eigenvectors of Lv

corresponding to the k smallest eigenvalues. After we get the
optimal Yv , we do not need to compute the projection ma-
trix Wv any longer, since we can directly use the projected
features yv

j to replace WvTxv
j in the later optimization.

After we get the optimal low-rank tensor Z , we adopt
the standard way for multi-view clustering to compute the
affinity matrix as A = 1

V

∑V
v=1

(
|Z(v)|+ |Z(v)T |

)
, based

on which we apply the spectral clustering to compute the
final clustering result. The overall process is summarized in
Algorithm 1.

Convergence and Complexity

We solve the problem by alternating minimization. Al-
though the problem in Eq. (8) is non-convex and non-
smooth, the subproblem is strongly convex with other vari-
ables fixed. We can exactly obtain the closed-form solu-
tion for each subproblem. For the convergence, we provide
a proof sketch here. We first denote Y = WTX and lift
the non-linear constraints in Eq. (8) by adding two indi-
cator functions on the objective I(Y) = I{YvYvT =
I, ∀v} and I(S) = I{svj ≥ 0, ∀v, j}. Then Eq. (8)
has the form minZ,S,Y f(Z,S,Y) + β‖Z‖� + I(Y) +
I(S), s.t. A(S) = 0, where f is Lipschitz differen-
tiable, and A(·) is a linear operator. Consider the Lagrangian
function L(Z,S,Y, μ) of the above problem, where μ is
the multiplier. Denote (Z+,S+,Y+) as the variables at
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Table 1: Experimental results on the COIL-20 and the UCI-Digit datasets.

Datasets COIL-20 UCI-Digits
Methods NMI ACC AR F-score Precision Recall NMI ACC AR F-score Precision Recall
SPCbest 0.806 0.672 0.619 0.640 0.596 0.692 0.642 0.731 0.545 0.591 0.582 0.601
LRRbest 0.829 0.761 0.720 0.734 0.717 0.751 0.768 0.871 0.736 0.763 0.759 0.767

PCANbest 0.872 0.772 0.620 0.643 0.530 0.816 0.897 0.949 0.887 0.899 0.895 0.902
Co-reg 0.774 0.659 0.592 0.613 0.590 0.640 0.804 0.780 0.755 0.780 0.764 0.798
RMSC 0.800 0.685 0.637 0.656 0.620 0.698 0.822 0.915 0.789 0.811 0.797 0.826
DiMSC 0.846 0.778 0.732 0.745 0.739 0.751 0.772 0.703 0.652 0.695 0.673 0.718
LTMSC 0.860 0.804 0.748 0.760 0.741 0.479 0.775 0.803 0.725 0.753 0.739 0.767
ECMSC 0.942 0.782 0.781 0.794 0.695 0.925 0.780 0.718 0.672 0.707 0.660 0.760

t-SVD-MSC 0.884 0.830 0.786 0.800 0.785 0.808 0.932 0.955 0.924 0.932 0.930 0.934
ETLMSC 0.947 0.877 0.862 0.869 0.830 0.914 0.977 0.958 0.953 0.958 0.940 0.980
UGLTL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

the (k + 1)-th iteration and omit the superscript for the
k-th iteration. Based on the KKT condition, the strong-
convexity of problems (9) and (12), and the optimality of
Y+, we can have L(Z,S,Y, μ)−L(Z+,S+,Y+, μ+) ≥
C(‖Z+ − Z‖2F + ‖S+ − S‖2F ). The coercivity helps to
lower bound L(Z,S,Y, μ), and then we can have (‖Z+ −
Z‖2F + ‖S+ − S‖2F ) → 0 and get the boundness of
{(Z,S,Y, μ)} which implies the existence of accumula-
tion point (Z∗,S∗,Y∗, μ∗). On the other hand, (‖Z+ −
Z‖2F+‖S+−S‖2F ) also bounds the generalized subgradient
of L(Z,S,Y, μ), hence 0 ∈ ∂L(Z∗,S∗,Y∗, μ∗), which
indicates the convergence. Note that ‖Z‖�, I(Y) and I(S)
locally have Lipschitz continuous (sub)gradient, which es-
sentially ensures the convergence rather than the convexity
and separability, please see (Wang, Yin, and Zeng 2019) for
more details.

For the complexity, it takes O(V N2 log(N)) to perform
FFT and inverse FFT on a N × V × N tensor along the
third dimension. To update Z , we also need to compute the
SVD of each frontal slice with size N × V in the Fourier
domain, which takes O(V 2N2) for the whole tensor. So it
takes O(V 2N2 + V N2 log(N)) in total to update Z . To
update each vector svi , it needs O(N) by Eq. (16) as we
only need to compute (gv

i )
T1 and (λv

i )
T1 once. So we need

O(V N2) to update the tensor S. For the optimization of
subspace embedding, we only need to compute the M small-
est eigenvalues and their corresponding eigenvectors of each
Lv , which costs O(VMN2) in total. In general, the number
of views V is smaller than M . Denote K as the number of
iterations, the total complexity to optimize UGLTL in Al-
gorithm 1 is O(KVN2(M + log(N))), which is relatively
efficient.

Experiments

Experimental Settings

Datasets We adopt six challenging image datasets, which
cover various sizes and applications, including the COIL-
201, UCI-Digits (Asuncion and Newman 2007), Scene-
15 (Li and Pietro 2005), Notting-Hill (Zhang et al. 2009),

1http://www.cs.columbia.edu/CAVE/software/softlib/

Table 2: Statistics of different datasets

Dataset Images Objective Clusters
COIL-20 1440 Generic object 20
UCI-Digits 2000 Digit 10
Scene-15 4485 Scene 15
Notting-Hill 4660 Video Face 5
MITIndoor-67 5360 Scene 67
Caltech-101 8677 Generic object 101

MITIndoor-67 (Quattoni and Torralba 2009), and Caltech-
101 (Li, Rob, and Pietro 2007) datasets. In Table 2, we
summarize the statistic information of these datasets. For
all these datasets, same to (Xia et al. 2014) and (Xie et al.
2018), we extract three different kinds of features as three
views. For details and multi-view features of these datasets,
please refer to (Xia et al. 2014) and (Xie et al. 2018). We
need to mention that for the Caltech-101 dataset, we use all
8, 677 instances of 101 categories to test the performance,
which is very challenging.

Compared Methods We compare our approach with
the following state-of-the-art methods: the standard spec-
tral clustering (Ng, Jordan, and Weiss 2002) on the best
view (SPCbest), the low-rank representation (Liu et al. 2013)
on the best view (LRRbest), projected graph learning with
adaptive neighbors (Nie, Wang, and Huang 2014) on the best
view (PCANbest), RMSC (Xia et al. 2014), MLAN (Nie,
Cai, and Li 2017), DiMSC (Cao et al. 2015), LTMSC (Zhang
et al. 2015), ECMSC (Wang et al. 2017), t-SVD-MSC (Xie
et al. 2018), and ETLMSC (Wu, Lin, and Zha 2019). For
above methods, only the first three are single view based
methods, and others focus on multi-view learning.

Evaluation Metrics We adopt all six commonly used met-
rics including normalized mutual information (NMI), accu-
racy (ACC), adjusted rand index (AR), F-score, precision,
and recall to comprehensively evaluate the performance of
clustering. For details of these metrics, please refer to (Xie
et al. 2018). These six metrics favour different properties of
a clustering task. For all metrics, the higher value indicates
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Table 3: Experimental results on the Scene-15 and the Notting-Hill datasets.

Datasets Scene-15 Notting-Hill
Methods NMI ACC AR F-score Precision Recall NMI ACC AR F-score Precision Recall
SPCbest 0.421 0.437 0.270 0.321 0.314 0.329 0.723 0.816 0.712 0.775 0.780 0.776
LRRbest 0.426 0.445 0.272 0.324 0.316 0.333 0.579 0.794 0.558 0.653 0.672 0.636

PCANbest 0.545 0.527 0.264 0.336 0.238 0.575 0.100 0.355 0.010 0.364 0.228 0.902
Co-reg 0.470 0.503 0.334 0.380 0.382 0.378 0.703 0.805 0.686 0.754 0.766 0.743
RMSC 0.564 0.507 0.394 0.437 0.425 0.450 0.585 0.807 0.496 0.603 0.621 0.586
DiMSC 0.269 0.300 0.117 0.181 0.173 0.190 0.799 0.837 0.787 0.834 0.822 0.827
LTMSC 0.571 0.574 0.424 0.465 0.452 0.479 0.779 0.868 0.777 0.825 0.830 0.814
ECMSC 0.463 0.457 0.303 0.357 0.318 0.408 0.817 0.767 0.679 0.764 0.637 0.954

t-SVD-MSC 0.858 0.812 0.771 0.788 0.743 0.839 0.900 0.957 0.900 0.922 0.937 0.907
ETLMSC 0.902 0.878 0.851 0.862 0.848 0.877 0.911 0.951 0.898 0.924 0.940 0.908
UGLTL 0.960 0.976 0.952 0.955 0.961 0.950 0.921 0.950 0.903 0.924 0.939 0.910

Table 4: Experimental results on the MITIndoor-67 and the Caltech-101 datasets.

Datasets MITIndoor-67 Caltech-101
Methods NMI ACC AR F-score Precision Recall NMI ACC AR F-score Precision Recall
SPCbest 0.559 0.443 0.304 0.315 0.294 0.340 0.723 0.484 0.319 0.340 0.597 0.235
LRRbest 0.226 0.120 0.031 0.045 0.044 0.047 0.728 0.510 0.304 0.339 0.627 0.231

PCANbest 0.184 0.081 0.002 0.030 0.016 0.420 0.806 0.585 0.296 0.322 0.471 0.245
Co-reg 0.270 0.149 0.054 0.067 0.066 0.070 0.824 0.582 0.401 0.412 0.661 0.301
RMSC 0.342 0.232 0.110 0.123 0.121 0.125 0.573 0.346 0.246 0.258 0.457 0.182
DiMSC 0.383 0.246 0.128 0.141 0.138 0.144 0.589 0.351 0.226 0.253 0.362 0.191
LTMSC 0.226 0.120 0.031 0.045 0.044 0.047 0.788 0.559 0.393 0.403 0.670 0.288
ECMSC 0.590 0.469 0.323 0.333 0.314 0.355 0.662 0.419 0.312 0.326 0.465 0.251

t-SVD-MSC 0.750 0.684 0.555 0.562 0.543 0.582 0.858 0.607 0.430 0.440 0.742 0.323
ETLMSC 0.899 0.775 0.729 0.733 0.709 0.758 0.899 0.639 0.456 0.465 0.825 0.324
UGLTL 0.979 0.948 0.940 0.940 0.930 0.951 0.902 0.669 0.504 0.513 0.960 0.365

the better performance.
All experiments are implemented in Matlab on a desktop

with 3.4GHz CPU and 32G RAM.

Experimental Results and Analysis

Performance Comparison In Tables 1-4, we present the
experimental results on these six datasets. The bold values
denote the best performance. All results are measured by the
average of 20 runs. The standard deviations on all datasets
and under all metrics are smaller than 0.1, so we do not
show it due to page limit. To better compare the performance
of different methods, we divide all methods into four sub-
classes in the table, including single view methods, spectral
clustering methods, subspace learning methods, and tensor
based methods. Most results are directly copied from (Xie
et al. 2018), while other results are achieved based on their
shared code with parameter adjustment.

It is obvious that our proposed UGLTL achieves the best
performance on nearly all datasets under all metrics. There
is a clear advance over the ETLMSC and t-SVD-MSC,
which achieve the second and third best results, respec-
tively. Compared with ETLMSC, take ACC for example, our
method gains significant improvement around 12.3%, 4.2%,
9.8%, 17.3%, 3.0% on the COIL-20, UCI-Digit, Scene-15,
MITIndoor-67, and Caltech-101 datasets, respectively. Es-

pecially on COIL-20 and UCI-Digits, our method can accu-
rately cluster all instances. Even on the challenging Caltech-
101 dataset with 101 clusters, UGLTL works very well.
On the Notting-Hill dataset of video face, these three ten-
sor based methods achieve comparable results. According
to (Arpit, Nwogu, and Govindaraju 2014), facial images
have a subspace structure, so subspace learning based meth-
ods is more suitable for this task. While t-SVD-MSC is
based on subspace learning, the performance of our method
is still comparable to that achieved by t-SVD-MSC.

For different subclasses of methods, we can see that the
tensor based methods achieve much better results than all
other methods on all datasets, which can verify the effec-
tiveness of tensor low-rank minimization in exploring high-
order correlations among multiple views. In general cases,
multi-view learning methods achieves better performance
than the single view methods. However, with the incorpora-
tion of deep features on the MITIndoor-67 and the Caltech-
101 datasets, some multi-view methods, such as RMSC,
DiMSC, and ECMSC, show worse results than the best sin-
gle view methods, which can be attributed to their less repre-
sentation ability and being easier to be affected by the degen-
erated view. The improvement of our method over ETLMSC
also shows the importance of learning similarity and multi-
view embedding jointly.
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Table 5: NMI comparison of three methods on these datasets.

Methods\Datasets COIL-20 UCI-Digits Scene-15 Notting-Hill MITIndoor-67 Caltech-101
MLAN 0.937 0.934 0.471 0.679 0.442 0.813

UGLTL(no projection) 1.000 0.989 0.942 0.905 0.941 0.878
UGLTL 1.000 1.000 0.960 0.921 0.979 0.902

Table 6: Computational complexity and running time on the COIL-20 dataset of different methods. K,V,N are the number of
iterations, views, and samples, respectively. M is the dimension of projected features in the subspace.

Methods RMSC DiMSC LTMSC ECMSC t-SVD-MSC ETLMSC UGLTL (ours)
Complexity O(KN3)O(KVN3)O(KVN3)O(KVN3)O(V N3+KVN2 log(N))O(KVN2 log(N))O(KVN2(M+log(N)))

Time(seconds) 74.8s 1075.1s 396.0s 954.2s 103.4s 19.6s 16.5s
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Figure 1: Parameters tuning with respect to α, β, and λ on
the COIL-20 dataset. (a) Fix γ = 1, tune the α and β; (b)
Fix α = 10 and β = 50, tune γ. All the horizontal axises are
in log scale. (Best view in color)

Influence of Low-rank Tensor and Projection To evalu-
ate the effectiveness of low-rank tensor decomposition and
subspace projection, we compare UGLTL with MLAN and
UGLTL without projection. Please note that MLAN sim-
ply learns a low-rank matrix shared by all different views.
For simplicity, we only present the NMI results on all six
datasets in Table 5. We can easily observe that both UGLTL
and its no projection version achieve 5% higher NMI perfor-
mance than MLAN on all these datasets, especially on the
difficult Scene-15 and MITIndoor-67 datasets, which shows
the superiority of low-rank tensor decomposition. On the
other hand, there is an average 2% improvement by incorpo-
rating the subspace projection, because this projection op-
eration can benefit the learning of optimal affinity matrices
and computation efficiency.

Complexity Comparison In Table 6, we present the com-
putational complexity and running time of the state-of-the-
art methods on the COIL-20 dataset. Our method has the
shortest processing time among all related approaches on
this dataset. The dimension M of projected features in the
subspace is very small and we set it to M = 8 in our exper-
iments. So the complexity of UGLTL is in the same order
as ETLMSC and much lower than other methods. Since our
method converges very fast and K is a very small value in
our algorithm, so it has lower running time than ETLMSC.
Compared with another tensor based method, our algorithm
can finish within 20 seconds, while t-SVD-MSC needs more
than 100 seconds.

Parameters Setting and Sensitivity Analysis The param-
eters α, β, and γ are fine-tuned by searching the grid of
{0.01, 0.1, 1, 10, 100}. In Figure 1, we present the experi-
mental results on the COIL-20 dataset with respect to differ-
ent parameters. As there are 3 parameters in our model, we
first fix γ = 1 to tune α and β. According to Figure 1a, we
can see that when both α and τ = β

α range in [1, 10], the
result is very stable. Then we show the results of different γ
by fixing α = 10 and β = 50 in Figure 1b. It is obvious that
our algorithm is insensitive to parameter γ, especially when
it ranges in [0.1, 10], both its NMI and ACC are all nearly
1. In summary, when these parameters range in a relatively
large interval, our algorithm is insensitive. Besides, parame-
ters of our algorithm are insensitive to different datasets. On
five datasets, we use the same set of parameters to achieve
the performance presented in Tables 1-4.

Convergence Analysis The parameter τ = β
α plays an im-

portant role in controlling the contribution of low-rank ten-
sor minimization, which has a serious impact on the iteration
number K. With a proper τ , our objective value converges
very fast. In experiments, we set τ = 5 on all datasets, and
it needs around 2 to 5 iterations on these datasets until con-
vergence.

Conclusions

In this paper, we propose a novel unified graph and low-
rank tensor learning for multi-view clustering. View-specific
affinity matrix is learned based on projected graph learning.
By reorganizing the affinity matrices into tensor, we explore
the high-order correlations among views via tensor low-rank
approximation. Finally, we unify these two terms together
and jointly learn the optimal projection matrices, affinity
matrices and low-rank tensor. We also propose an efficient
algorithm to optimize the proposed model in an alternating
way. We conduct extensive experiments on six challenging
datasets to evaluate the performance. Our approach achieves
significant improvement over all state-of-the-art methods on
nearly all datasets and under six different metrics.
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Kumar, A., and Daumé, H. 2011. A co-training approach for multi-
view spectral clustering. In ICML, 393–400.
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