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Abstract

The lack of interpretability remains a barrier to adopting deep
neural networks across many safety-critical domains. Tree
regularization was recently proposed to encourage a deep
neural network’s decisions to resemble those of a globally
compact, axis-aligned decision tree. However, it is often un-
reasonable to expect a single tree to predict well across all
possible inputs. In practice, doing so could lead to neither in-
terpretable nor performant optima. To address this issue, we
propose regional tree regularization – a method that encour-
ages a deep model to be well-approximated by several sepa-
rate decision trees specific to predefined regions of the input
space. Across many datasets, including two healthcare appli-
cations, we show our approach delivers simpler explanations
than other regularization schemes without compromising ac-
curacy. Specifically, our regional regularizer finds many more
“desirable” optima compared to global analogues.

Introduction

Deep neural networks have become state-of-the-art in many
applications, and are poised to advance prediction in real-
world domains such as healthcare (Miotto et al., 2016; Gul-
shan et al., 2016). However, understanding when a model’s
outputs can be trusted and how the model might be im-
proved remains a challenge in safety-critical domains. Chen,
Asch, and others (2017) discuss how these challenges inhibit
the adoption of deep models in clinical healthcare. Without
interpretability, humans are unable to incorporate domain
knowledge and effectively audit predictions.

Prior work for explaining deep models has focused on two
types of explanation: global and local. A global explanation
(e.g. Wu et al. (2018); Che et al. (2015)) returns a single
explanation for the entire model. However, if the explanation
is simple enough to understand, it is unlikely to be faithful
to the model across all inputs. In contrast, local explanation
(e.g. Ribeiro, Singh, and Guestrin (2016); Selvaraju et al.
(2016)) explain predictions for an isolated input, which may
miss larger patterns. Local approaches also leave ambiguous
whether the logic for an input x applies to a nearby input x′,
which can lead to poor assumptions about generalizability.
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Our work marks a major departure from this previous lit-
erature. We introduce a middle-ground between global and
local approaches: regional explanations. Given a predefined
set of human-intuitive regions of input space, we require the
explanation for each region to be simple. This idea of re-
gions is consistent with context-dependent human reason-
ing (Miller, 2018). For example, physicians in the intensive
care unit do not expect treatment rules to be the same across
patients of different risk levels. By requiring all regional ex-
planations to be simple, we prevent the model from being
simple in one region to make up for complexity in another
(something global explanation methods cannot do).

Our operational definition of interpretability is to make
the explanation for each region easily human-simulable.
Simulable explanations allows humans to, “in reasonable
time, combine inputs and explanation to produce outputs,
forming a foundation for auditing and correcting predic-
tions” (Lipton, 2016). Like Wu et al. (2018), we select deci-
sion trees as a simulable surrogate prediction model and de-
velop a joint optimization objective that balances prediction
error with a penalty on the size of a deep model’s surrogate
tree. However, our training objective requires a separate tree
for each region, rather than the entire input space. Decom-
posing into regions provides for a more flexible deep model
while still revealing prediction logic that can be understood
by humans. However, inference for regionally simulable ex-
planations is more challenging than the global case.

Our technical contributions are twofold. First, we intro-
duce a new regularization penalty term that ensures sim-
plicity across all regions while being tractable for gradient-
based optimization. Second, we develop concrete innova-
tions to improve the stability of optimization, which are es-
sential to making our new regularization term effective in
practice. These last innovations would lead to improvements
to global tree regularization (e.g. Wu et al. (2018)) as well.
We achieve comparable performance to complex models
while learning a much simpler decision function. Through
exposition and careful experiments, we emphasize that our
regional penalization is distinct from and better than simply
using a global tree regularization constraint (Wu et al., 2018)
where the root of the tree divides examples by region.
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Related Work

Global Interpretability Many approaches exist to sum-
marize a trained black box model. Works such as (Mordv-
intsev, Olah, and Tyka, 2015) expose the features a repre-
sentation encodes but not the logic. Amir and Amir (2018)
and Kim, Rudin, and Shah (2014) provide an informative set
of examples that represent what the system has learned. Re-
cently, Activation maximisation of neural networks (Mon-
tavon, Samek, and Müller, 2018) tries to find input pat-
terns that produce the maximum response for a quantity of
interest. Similarly, model distillation compresses a source
network into a smaller target neural network (Frosst and
Hinton, 2017). Likewise, Layerwise-Relevance Propagation
(LRP) (Binder et al., 2016; Bach et al., 2015) produces a
heatmap of relevant information for prediction based on ag-
gregating the weights of a neural network. Guan et al. (2019)
improve on LRP with a similar measure for NLP models
that better capture coherency and generality. However, these
summaries have no guarantees of being simulable since an
expert cannot necessarily step through any calculation that
produces a decision.

Local Interpretability In contrast, local approaches pro-
vide explanation for a specific input. Ribeiro, Singh, and
Guestrin (2016) show that using the weights of a sparse
linear model, one can explain the decisions of a black box
model in a small area near a fixed data point. Similarly,
Singh, Ribeiro, and Guestrin (2016) and Koh and Liang
(2017) output a simple program or an influence function,
respectively. Other approaches have used input gradients
(which can be thought of as infinitesimal perturbations) to
characterize local logic (Maaten and Hinton, 2008; Selvaraju
et al., 2016). However, such local explanations do not match
with human notions of contexts (Miller, 2018): a user may
have difficulty knowing if and when explanations generated
locally for input x translate to a new input x′.

Optimizing for Interpretability Few works include inter-
pretability as an optimization objective during model train-
ing, rather than attempt explanation on an already trained
model. Ross, Hughes, and Doshi-Velez (2017); Wu et al.
(2018) include regularizers that capture explanation prop-
erties (which are input gradients and decision trees, respec-
tively). Krening et al. (2017) jointly train an image classifier
alongside a captioning model to provide a verbal explana-
tion for any prediction; although not simulable, the gener-
ated text influences the weights for the image network dur-
ing training. In this work, we optimize for “regional” sim-
ulability, which we show to find more interpretable optima
than optimizing for many measures of global simulability.

Background and Notation

We consider supervised learning tasks given a dataset of N
labeled examples, D = {(xn,yn)}Nn=1, with continuous in-
puts x ∈ XP and binary outputs y ∈ {0, 1}Q. Define a
predictor ŷn = f(xn; θ) as a multilayer perceptron (MLP),

Algorithm 1 APL (Wu et al., 2018)

Require:
f(·, θ): prediction function, with parameters θ
{xi}Ni=1: a set of N input examples

1: function APL({xi}Ni=1, f, h)
2: ŷi = f(xi, θ), ∀i ∈ {1, 2, . . . N}
3: T = TRAINTREE({xi, ŷi}Ni=1)
4: return mean({GETDEPTH(T,xi)}Ni=1)

denoted by f(·; θ). The parameters θ are trained to minimize

argmin
θ∈Θ

N∑

n=1

L(yn, f(xn; θ)) + λΩ(θ) (1)

where Ω(θ) represents a regularization penalty with scalar
strength λ ∈ R

+. Common regularizers include the L1 or
L2 norm of θ, or our new regional regularizer. We shall refer
to f(·; θ) as a target neural model.

Global Tree Regularization Wu et al. (2018) introduce a
regularizer that penalizes models for being hard to simulate,
where simulability is the complexity of a single, global de-
cision tree that approximates the target neural model. They
define tree complexity as the average decision path length
(APL), or the expected number of binary decisions (each
one corresponding to a node within the tree) that must be
stepped through to produce a prediction. We compute the
APL of a predictor f given a dataset of size N as:

Ωglobal(θ) � APL({xn}Nn=1, f(·, θ)) (2)

The APL procedure is defined in Alg. 1, where the sub-
routine TRAINTREE fits a decision tree (e.g. CART). The
GETDEPTH subroutine returns the depth of the leaf node
predicted by the tree given an input example xn.

Importantly, TRAINTREE is not differentiable, making
optimization of Eq. (2) challenging using gradient descent
methods. To overcome this challenge, Wu et al. (2018) intro-
duce a surrogate regularizer Ω̂global(θ), which is a differen-
tiable function that estimates the target neural model’s APL
for a specific parameter vector θ. In practice, Ω̂global(θ) is
a small multi-layer perceptron with weight and bias param-
eters φ, which we refer to as the surrogate model.

Training the surrogate model to produce accurate APL
estimates is a supervised learning problem. First, collect a
dataset of J parameter values and associated APL values:
Dθ = {θj ,Ωglobal(θj)}Jj=1. Parameter examples, θj , can
be gathered from every update step of training the target neu-
ral model. Next, train the surrogate MLP by minimizing the
sum of squared errors:

argmin
φ

∑J
j=1(Ω

global(θj)− Ω̂global(θj ;φ))
2 (3)

Optimizing even a single surrogate can be challenging; for
our case, we need to train and maintain multiple surrogates.
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(a) True (b) Global (c) Local (d) Regional

Figure 1: Decision boundaries learned by global (b), local
(c), and regional (d) tree regularization. (a) shows the true
decision boundary. Red and green points represent the train-
ing dataset. Lightly colored areas represent regions.

Regionally Faithful Explanations

Global summaries such as Wu et al. (2018) face a tough
trade-off between simulability and accuracy. A strong
penalty on simulability will force the target network to be
too simple and lose accuracy. However, ignoring simulabil-
ity may produce an accurate target network that is incom-
prehensible to humans (note that the optimization procedure
forces the decision tree explanation to be faithful to the net-
work). But do we need a single explanation for the whole
model? The cognitive science literature tells us that people
build context-dependent models of the world; they do not
expect the same rule to apply in all circumstances (Miller,
2018). For instance, doctors may use different models for
treating patients depending on their predicted level of risk or
whether the subject has just come out of surgery or not.

Building on this notion, we consider the problem in which
we are given a collection of R regions that cover the entire
input space: X1, . . .XR, where ∪R

r=1Xr ⊆ XP . We do not
require these regions to be disjoint nor tile the full space.
We emphasize that it is essential that these regions corre-
spond to human-understandable categories (e.g. surgery vs.
non-surgery patients) to avoid confusion about when each
explanation applies. For now, we assume that the regions
are fully specified in advance, likely by domain experts. We
could also use interactive, interpretable clustering methods
(e.g. Chuang and Hsu (2014); Kim (2015)) to group the in-
put space in a data-driven way.

Given the regions, our goal is to find a high-performing
target network that is simple in every region. Fig. 1 high-
lights the distinctions between global, local, and regional
tree regularization on a 2D toy dataset with binary labels.
The true decision boundary abruptly changes at one specific
value of the first input dimension (shown on the x-axis). We
intend there to be two “regions”, representing input values
below and above this threshold. The key question is what in-
ductive biases do different regularization strategies impose.
Global regularization (b) commonly imposes “simplicity” at
the cost of accuracy under strong regularization. Local reg-
ularization (c) produces simple boundaries around each data
point but a complex global boundary. Our regional regular-
ization (d) over two regions recovers the expected boundary.

(a) True (b) L1 run A (c) L1 run B (d) L0 run A (e) L0 run B

Figure 2: Comparison of L1 and L0 penalties on per-region
APL for blue-vs-green binary classification (each with two
runs). Yellow and red patches represent regions. Empty re-
gions denote “trivial” decision functions.

L1 Regional Tree Regularization: A Failed Attempt

A naive way to generalize global tree regularization to re-
gions is to penalize the sum of the APLs in each region:

Ωregional-L1(θ) �
R∑

r=1

APL(Xr, f(·, θ)) (4)

where APL(·) is as defined in Alg. 1, f is the target neural
model, and Xr = {xn : xn ∈ Xr} denotes training data in
region r. If the regions form a set partition of XP and all
regions contain equal amounts of input data, this regularizer
is essentially equivalent to global tree regularization (Wu et
al., 2018) where the root decision node is constrained to split
by region. We refer to this as L1 regional tree regularization.

The trouble with this naive solution is that smaller or
simpler regions may be over-regularized (possibly to trivial
functions) in order to minimize the sum while other regions
stay complex. Fig. 2(a,b,c) shows this effect: the two regions
have different complexities of boundaries, but the naive met-
ric (b,c) over-simplifies to minimize Eq. (4).

L0 Regional Tree Regularization: Our Proposal

To prevent regularization of simpler regions while other re-
gions stay complex, we instead choose to penalize only the
average decision path length of the most complex region:

Ωregional-L0(θ) � max
r∈{1,2,...R}

APL(Xr, f(·, θ)) (5)

which corresponds to an L0 norm over the path lengths,
{APL(Xr, ·)}Rr=1. We will refer to this as L0 regional tree
regularization. In Fig. 2(d,e), we see this has signficant, de-
sirable effects: L0 regional tree regularization results in a
more “balanced” penalty between regions, leaving both re-
gions with simple but nontrivial boundaries (d,e).

Eq. 5 is differentiable as the gradient through a max op-
erator masks all indexes but one. In practice, when training
deep neural networks with the L0 regional penalty in Eq. (5),
we face two technical difficulties: first, the APL subproce-
dure is not differentiable; second, regularizing only one re-
gion at a time significantly slows down convergence. Both
represent key challenges we overcome with technical con-
tributions detailed in the next two subsections.

Innovation: Use SparseMax Penalty across Regions

While it solves the over-regularization problem we faced
with the L1 regional penalty, the max in the L0 regional
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penalty forces us to regularize only one region at a time.
In our experiments we found this to cause L0 regularized
models to train for a much longer time before converging
to a minima. For example, on the UCI datasets, holding all
hyperparameters and architectures fixed, an L0 regularized
deep network took around 900 epochs to converge, 9 times
longer than other regularizations (convergence is measured
by APL and accuracy on a validation set that does not change
for at least 10 epochs). We believe this to be due to oscilla-
tory behavior where two regions take turns (1) growing more
complex in order to improve accuracy and (2) growing less
complex to in order to reduce the regularization cost. Be-
cause Eq. (5) only ever regularizes a single region at a time,
this oscillation can prolong training.

This is not ideal as we would like our regularizers to
not introduce computational cost over unregularized mod-
els. The oscillatory behavior of the max in Eq. (5) is a
challenge new to our region-specific approach (this is not
observed in global tree regularization). Naively, we would
solve this problem by increasing the number of regions we
regularize at once. However, common approximations to
max, like softmax, are not sparse and include non-zero
contributions from all regions. This makes it difficult to fo-
cus on the most complex regions as max does. In experi-
ments with softmax, we observed the same problematic
behavior that L1 penalties exhibited: it tended to make some
regional boundaries far too simple.

To balance two competing interests, we apply the
recently-proposed SPARSEMAX transformation (Martins
and Astudillo, 2016), which can attend solely to the
most problematic regions (setting others to zero contri-
bution) while remaining differentiable (a.e.). Intuitively,
SPARSEMAX corresponds to a Euclidean projection of an
length-R vector of reals (in our case, one APL value per re-
gion) to a length-R vector of non-negative entries that sums
to one. When the projection lands on a boundary in the sim-
plex, then the resulting probability vector will be sparse. Our
chosen SPARSEMAX approximation means that we penal-
ize only a few of the most complex regions, avoiding over-
regularization. Also, because SPARSEMAX often regularizes
more than one region at a time, it avoids oscillation and takes
a comparable number of epochs as other regularizers to con-
verge. Alg. 2 details SPARSEMAX applied to our regularizer,
named LSP regional tree regularization.

Algorithm 2 LSP REGIONAL TREE REG.

Require:

Ω̂ = {Ω̂regional
r }Rr=1: APL for each of R regions

1: function SPARSEMAX(Ω̂)
2: Sort Ω̂ such that Ω̂[i] ≥ Ω̂[j] if i ≥ j

3: k = max{r ∈ [1, R]|(1 + rΩ̂[r]) >
∑

i≤r Ω̂[i]}
4: τ = k−1(−1 +

∑
i≤k Ω̂[i])

5: return {pr}Rr=1 where pr = max{Ω̂r − τ, 0}

Table 1: Comparison of the average and max mean squared
error (MSE) between surrogate predictions and true APLs
over five runs of 500 epochs. A lower MSE is desirable.

Experiment Mean MSE Max MSE

No data augmentation 0.069± 0.008 0.987± 0.030
With data augmentation 0.015± 0.005 0.298± 0.017
Non-Deterministic Training 0.116± 0.011 1.731± 0.021
Deterministic Training 0.024± 0.006 0.371± 0.040

Innovation: Three Keys to Reliable Optimization

The non-differentiability of the APL subroutine in Eq. (5)
can be addressed by training a surrogate estimator of APL
for each region. In the Appendix, we extend the training pro-
cedure from Eq. (3) to the region-specific case.

Optimizing surrogate networks is a delicate operation.
Even when training only one surrogate for global tree reg-
ularization, as in Wu et al. (2018), we found that the surro-
gate’s ability to accurately predict the APL was very sensi-
tive to chosen hyperparameters such as learning rates. Re-
peated runs from different random initializations also often
found different minima—making tree regularization unreli-
able. These issues were only exacerbated when training mul-
tiple surrogates, where we are trying to train many estima-
tors that each focus on smaller regional datasets. We found
that sophistication is needed to keep the gradients accurate
and variances low. Below, we list several optimization inno-
vations that proved to be key to stabilizing training.

Key 1. Data augmentation Small changes in the target
model can make large changes to the APL for a specific
region. As such, regional surrogates need to be retrained
frequently. The practice from Wu et al. (2018) of comput-
ing the true APL for a dataset Dθ gathered from θ values
seen over recent gradient descent iterations did not compile
a large enough dataset to generalize well to new parame-
ters θ′. Thus, we supplement the dataset with 100-1000 ran-
domly sampled weight vectors: given the J previous vectors
{θ}Jj=1 stored in Dθ, we form a new “synthetic” parame-
ter vector θ′ as a convex combination mixing weights drawn
from a J-dimensional Dirichlet distribution with αj = 1 for
j = 1, ..., J . Each synthetic vector is paired with its true
APL value. Table 1 how this reduces noise in predictions.

(a) (b) (c) (d) (e)

Figure 3: Ablation analysis on a toy green-vs-blue classifi-
cation task. Colored patches represent regions. (a) Ground
truth labels. (b) Minima with no regularization. (c) Minima
with no data augmentation. (d) Minima with no pruning or
determinism in training trees. (e) Minima using innovations.
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Key 2. Deterministic CART. CART is a common algo-
rithm to train decision trees. In short, CART enumerates
over all unique values for every input feature and computes
the Gini impurity as a cost function; it chooses the best split
as the one with the lowest impurity. To make computation
more affordable, implementations of CART, such as the one
we use in Scikit-Learn (Pedregosa et al., 2011), randomly
sample a subset of features enumerate over (rather than all
features). As such, multiple runs will result in different trees
of different APL (see Appendix). Unexplained variance in
CART makes fitting a surrogate more difficulty – in fact,
this variance compounds over multiple surrogates. Fixing
the random seed eliminates this issue and results in better
predictions (see Table 1). Alternatively, to ensure that CART
is not choosing the same subset of features over and over
(which may be biased), one can choose a fixed set of ran-
dom seeds and compute the true APL as the average over
several CART runs, one for each of the seeds.

Key 3. Pruning decision trees Given a dataset D of fea-
ture vectors and class labels, even with a fixed seed there are
many possible decision trees that can fit D with equal ac-
curacy. One can always add additional subtrees that predict
the same label as the parent node, thereby keeping accuracy
constant but adding to the tree’s depth (and thus APL). This
again introduces difficulty in learning a surrogate.

To overcome this, we add a PRUNETREE post-processing
step to the APL computation in Alg. 1. We use reduced
error pruning (Quinlan, 1987), which removes any subtree
that does not effect performance as measured on a validation
dataset not used in TRAINTREE. See Alg. 2 in the Appendix
for an updated algorithm. We emphasize that pruning dra-
matically improves the stability of results.

Ablation analysis. Together, these innovations were cru-
cial for learning with regional tree regularization. Fig. 3
shows an ablation study on a synthetic green-vs-blue classi-
fication task with 25 regions. Without data augmentation (c),
there are not enough examples to fully train each surrogate,
so the tree regularization penalty is effectively non-existant
and the model finds similar minima to no regularization (b).
Without pruning and fixing seeds (d), the APLs vary due to
randomness in fitting a decision tree. This leads to strange
and ineffective decision boundaries. Only with all innova-
tions (f) do we converge to an accurate decision boundary
that remains simulable in each region.

Experiments

Evaluation Metrics We wish to compare models with
global and regional explanations. However, regional and
global APL are not directly comparable: subtly, the APL of a
global tree is an overestimate in a single region. To reconcile
this, for any globally regularized model, we separately com-
pute Ωregional-L1 as an evaluation criterion. In this context,
Ωregional-L1 is used only for evaluation; it does not appear
in the objective. We do the same for all baseline models.
From this point on, if we refer to APL (e.g. Test APL, aver-
age path length) outside of training, we are referring to the

evaluation metric, Ωregional-L1. For classification error, we
measure either F1 score or AUC on a held out test set.

Baselines For each dataset, we compare our proposed LSP
regional tree regularization to several alternatives. First, we
consider other tree regularization approaches for MLPs, in-
cluding global tree regularization (Wu et al., 2018) (to show
the benefit of regional decomposition), and L1 regional tree
regularization (to show why the LSP penalty in Eq. (5) is
needed). Second, we compare to L0 regional tree regular-
ization (to show that LSP finds similar minima, only faster).
Third, we consider simpler ways of training MLPs, such as
no regularization and an L2 penalty on parameters. Finally,
we need to demonstrate the benefits of regularizing neural
networks to be interpretable rather than simply training stan-
dalone decision trees directly. We thus compare to a global
decision tree classifier and an ensemble of tree classifiers
(one for each region). We call these two “Decision Tree”
and “Regional Decision Tree”.

Model Selection We train each regularizer with an ex-
haustive set of strengths: λ = 0.0001, 0.0005, 0.001, 0.005,
0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0. Three runs
with different random seeds were used to avoid local optima.

Demonstration on a Toy Example

We first investigate a toy setting with a ground-truth func-
tion composed of five rectangles where each one is either
shifted up or down (see Fig. 4(a,b)). The training dataset
is sparse (250 points) while the test dataset is much denser
(5000 points). Noise is added to the training labels to en-
courage overfitting. This is intended to model real-world
settings where regional structure is only partially observ-
able from an empirical dataset. It is exactly in these con-
texts that regularization can help. See Appendix for more
details. Fig. 4 show the learned boundary with various reg-
ularizers. As global regularization is restricted to penalizing
all data points evenly, increasing the strength causes the tar-
get neural model to collapse from a complex boundary to
a single axis-aligned boundary (e). Similarly, if we increase
the strength of L2 regularization even slightly from (d), the
model collapses to the trivial solution. Only regional tree
regularization (f,g) is able to model the up-and-down curva-
ture of the true function. With high strength, LSP regional

Table 2: Classification accuracy on a toy example. The re-
ported test APL is averaged over APLs in five regions.

Model Test Acc. Test APL

Unregularized 0.8296 17.9490
L2 (λ = 0.001) 0.8550 16.1130

Global Tree (λ = 1) 0.8454 6.3398
L1 Regional Tree (λ = 0.1) 0.9168 10.1223
L0 Regional Tree (λ = 0.1) 0.9287 8.1020
LSP Regional Tree (λ = 0.1) 0.9308 8.1962
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(a) Training set (b) Test set (c) Unregularized (d) L2 (e) Global Tree (f) L1 Reg. Tree (g) LSP Reg. Tree

Figure 4: Synthetic data with a sparse training set (a) and a dense test set (b). Due to sparsity, the division of five rectangles is
not trivial to uncover from (a). (c-g) show contours of decision functions learned with varying regularizations and strengths.

Decision TreeNo Regularization Regional Decision Tree(s) L Global Tree L   Region Tree L     Region TreeSP 01 L    Region Tree2

(a) Bank (b) Gamma (c) Adult (d) Wine

Figure 5: Prediction quality vs. simulability tradeoff curves on four UCI datasets. Each dot represents the performance of one
trained predictor at a single regularization strength in terms of APL (x-axis, lower is better) and F1 score (y-axis, higher is
better) on the heldout test set. Curves are formed by sweeping over a logarithmically-spaced range of strength values λ with
three runs each. Points closer to the top-left corner are the most simulable and performant minima.

tree regularization produces a more axis-aligned boundary
than L1, primarily because we can regularize complex re-
gions more harshly without collapsing simpler regions.

Table 2 compares classification accuracy: regional tree
regularization achieves the lowest error while remaining
simulable. While global tree regulariziation finds the min-
ima with lowest APL, this comes at the cost of accuracy.
With any regularizer, we could have chosen a high enough
penalty such that the test APL would be 0, but the result-
ing accuracy would approach chance. The results in Table 2
show that regional regularizers find a good compromise be-
tween accuracy and complexity.

UC Irvine Repository

We now apply regional tree regularization to four datasets
from the UC Irvine repository (Dheeru and Karra Taniski-
dou, 2017). We will refer to these as Bank, Gamma, Adult,
and Wine. See Appendix for a description of each. We
choose a generic method for defining regions to showcase
the wide applicability of regional regularization: we fit a k-
means clustering model with k = 5 to each dataset. Fig. 5
compares F1 scores and APL for each dataset. First, we can
see that an unregularized model (black) does poorly due to
overfitting. Second, we find that (as expected) a penalty on
the L2 norm is not a good regularizer for simulability, as it
is unable to find many minima in the low APL region (see
Gamma, Adult, and Wine under roughly 5 APL). Any in-
crease in strength quickly causes the target neural model to
degenerate to predicting a single label (an F1 score of 0).
Interestly, we see similar behavior with global tree regular-
ization, suggesting that finding low complexity minima is
challenging under strong global constraints. As an additional

benchmark, we tried global tree regularization where the re-
gion index (1 to R) for each data point is appended to the
feature vector. We did not find this change to improve per-
formance nor simulability. Third, regional tree regulariza-
tion achieves the highest test accuracy in all datasets. With
low APL, regional explanations surpasses global explana-
tions in performance. For example, in Bank, Gamma, Adult,
and Wine, we can see this at 3-6, 4-7, 5-8, 3-4 APL respec-
tively. Under very high strengths, regional tree regulariza-
tion converges in performance with regional decision trees,
which is sensible as the neural network focuses on distilla-
tion. Finally, consistent with toy examples, L0/LSP regional
tree regularization finds more performant minima with low
to mid APL than L1. We believe this to largely be due to
“evenly” regularizing regions.

Healthcare Applications

We turn to two real-world use cases: predicting interven-
tions in critical care and predicting HIV medication usage.
The critical care task, performed with the MIMIC dataset
(Johnson et al., 2016), involves taking a patient’s current
statistics and predicting whether they are undergoing 4 dif-
ferent kinds of therapies (vasopressor, sedation, ventilation,
renal therapy). Regions are constructed based on how our in-
tensivist collaborators described dividing the acuity (SOFA)
and treatment unit (surgical vs. medical) of the patient. The
HIV task, performed with the EUResist dataset (Zazzi et al.,
2011), also takes in patient statistics and now predicts 15
outcomes having to do with drug response. In consultation
with clinical experts, the regions reflect different levels of
immunosuppression. The details of the data are included in
the Appendix; below we highlight the main results.
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Figure 6: Tradeoff curves for Critical Care. Each subfigure compares APL and test AUC (higher is better) for a different
medication given in the intensive care unit. We compute APL using regions split by 3 SOFA scores (a-d) and 5 careunits (e-h).
Finally, (i-l) show distilled trees that closely approximate a regional tree regularized model with low APL and high AUC.
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Figure 7: Tradeoff curves on the HIV dataset. We split regions by the level of immunosuppression (abbreviated to immunity) at
baseline (e.g. <200 cells/mm3). Subfigures (e-g) show distilled trees (confirmed to be simulable by an expert).

LSP regional tree regularization finds a wealth of sim-
ulable solutions with high accuracy. A performant and
simulable model has high F1/AUC scores near a low APL.

Across experiments, we see regional tree regularization is
most adept at finding such minima: in each subfigure of
Fig. 6 and Fig. 7, we can point to a span of APL at which
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the pink curves are much higher than all others. Further, the
sparsity induced by L0 norm helped find even more desir-
able minima than with any “dense norm” (L1, L2, etc). As
evidence, in low APL regions, the dotted pink lines con-
tain points above all others. In constrast, global regularizers
struggled, likely due to strong constraints that made opti-
mization difficult. We can see evidence for this in Critical
Care: in Fig. 6 (a,c,e), the minima from global constraints
stay very close to unregularized minima. Even worse, in (f,
g), global regularizers settle for bad optima, reaching low ac-
curacy with high APL. We observe similar findings for HIV
in Fig 7 where global explanations lead to poor accuracies.

LSP and L0 converge to similar minima but the former is
much faster. In every experiment, the AUC/F1 and APL
of the minima found by L0 and LSP regularized deep net-
works are close to identical. While this suggests the two reg-
ularizers are comparable, using sparsema instead of max
speeds up training ten-fold (in terms of epochs).

Regional tree regularization distills decision trees for
each region. For Critical Care, Fig. 6(i,j) show region-
specific decision trees for the need-for-ventilator task se-
lected from a low APL and high AUC minima of a regional
tree regularized model. The structure of the trees are differ-
ent, indicating the decision logic changes substantially for
low- and high-risk regions. Moreover, while Fig. 6(i) mostly
predicts 0 (orange), Fig. 6(j) mostly predicts 1 (blue), which
agrees with common intuition that SOFA scores are corre-
lated with mortality. We see similar patterns from the dis-
tilled trees for HIV: Fig 7(e-g). In particular, we observe
that lower levels of immunity at baseline are associated with
higher viral loads and risk of mortality. If we were to use a
single tree, we would either lose granularity or simulability.

Distilled decision trees are clinically useful. We asked
for feedback from specialist clinicians to assess the trees
produced by regional tree regularization. For Critical Care,
an intensivist noted that the explanations allowed him to
connect the model to his cognitive categories of patients.
For example, he verified that for predicting ventilation, GCS
(mental status) was indeed a key factor. Moreover, he was
able to make useful requests: he asked if the effect of oxy-
gen could have been a higher branch in the tree to better un-
derstand its effects on ventilation choices, and, noticing the
similarities between the sedation and ventilation trees, sug-
gested defining new regions by both SOFA and ventilation
status. For HIV, a second clinician confirmed our observa-
tions about relationships between viral loads and mortality.
He also noted that when patients have lower baseline immu-
nity, the trees for mortality contain several more drugs. This
is consistent with medical knowledge, since patients with
lower immunity require more aggressive therapies to combat
drug resistance. We also showed the clinician two possible
trees for a high-risk region: the first was from regional tree
regularisation; the second was from a decision tree trained
using data from only this region. The clinician preferred the

first tree as the decision splits captured more genetic infor-
mation about the virus that could be used to reason about
resistance patterns to antiretroviral therapy.

Regional tree regularizers make faithful predictions.
Table 3 shows the fidelity of a deep model to its distilled de-
cision tree. A score of 1.0 indicates that both models learned
the same decision function, which is actually undesirable.
The “perfect” model would have high but not perfect fidelity,
disagreeing with the decision tree a small portion of the time.
With an average fidelity of 89%, the distilled tree is trustwor-
thy as an explanatory tool in most cases, but can take advan-
tage of deep nonlinearity with difficult examples. Fidelity is

Table 3: Fidelity shows the percentage of examples on which
the prediction made by a tree agrees with the deep model.

Bank Gamma Adult Wine Critical Care HIV

0.892 0.881 0.910 0.876 0.900 0.897

also controllable by the regularization strength. With a high
penalty, fidelity willl near 1 at the price of accuracy. It is up
to the user and domain to decide what fidelity is best.

Per-Epoch Computational Cost Comparison Averaging
over 100 trials on Critical Care, an L2 model takes 2.39±0.2
sec. per epoch. Global tree models take 5.90±0.4 sec. to get
1 000 training samples for the surrogate network using data
augmentation and compute APL for Dθ, and 21.42 ± 0.6
sec. to train the surrogate model for 100 epochs. Regional
tree models take 6.603± 0.271 sec. and 39.878± 0.512 sec.
respectively for 5 surrogates. The increase in base cost is due
to the extra forward pass through R surrogate models to pre-
dict APL. The surrogate cost(s) are customizable depending
on the size of Dθ, the number of training epochs, and the
frequency of re-training. If R is large, we need not re-train
each surrogate; we can randomly sample regions. Surrogate
training can be parallelized.

Discussion and Conclusion

Interpretability is a bottleneck preventing widespread accep-
tance of deep learning. In this work, we introduced regional
tree regularization, which enforces that a neural network
is simple across all expert-defined regions—something that
previous regularizers could not do. While we used relatively
simple ways to elicit regions from experts, future work could
iterate between using our innovations in how to optimize
networks for simple regional explanations given regions and
using interactive methods to elicit regions from experts.
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Appendix

Supplement is available at https://arxiv.org/abs/1908.04494.
PyTorch implementation is available at https://github.com/
mhw32/regional-tree-regularizer-public.
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