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Abstract

Multi-label feature selection has received considerable atten-
tions during the past decade. However, existing algorithms do
not attempt to uncover the underlying causal mechanism, and
individually solve different types of variable relationships, ig-
noring the mutual effects between them. Furthermore, these
algorithms lack of interpretability, which can only select fea-
tures for all labels, but cannot explain the correlation between
a selected feature and a certain label. To address these prob-
lems, in this paper, we theoretically study the causal relation-
ships in multi-label data, and propose a novel Markov blanket
based multi-label causal feature selection (MB-MCF) algo-
rithm. MB-MCF mines the causal mechanism of labels and
features first, to obtain a complete representation of infor-
mation about labels. Based on the causal relationships, MB-
MCF then selects predictive features and simultaneously dis-
tinguishes common features shared by multiple labels and
label-specific features owned by single labels. Experiments
on real-world data sets validate that MB-MCF could auto-
matically determine the number of selected features and si-
multaneously achieve the best performance compared with
state-of-the-art methods. An experiment in Emotions data set
further demonstrates the interpretability of MB-MCF.

Introduction

In machine learning research, multi-label learning focuses
on the problem that each instance is associated with mul-
tiple class labels simultaneously (Zhang and Zhou 2006),
which is ubiquitous in many real-world applications, such
as image annotation (Liu et al. 2018), text categorization
(Liu et al. 2017), and gene function classification (Fodeh and
Tiwari 2018). Similar to single-label learning, high dimen-
sional data with an enormous amount of redundant features
significantly increases the computational burden of multi-
label learning, which could also lead to over-fitting and
performance degradation of learning algorithms (Lin et al.
2015). Previous studies (Liu and Motoda 2007) have shown
that only a subset of relevant features carry the most dis-
criminative information. Thus, in recent years, many multi-
label feature selection algorithms have been proposed to find
a lower-dimensional representation of the original feature
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(a) Multiple irrelevant labels. (b) Multiple relevant labels.

Figure 1: Causal structures of two extreme cases. Labels are
highlighted in red and features are highlighted in green.

space, which can be broadly classified into transformation-
based methods and direct methods (Pereira et al. 2018).

Multi-label data contains three types of variable relation-
ships, i.e., relationships between labels, between features,
and between labels and features. Earlier feature selection
methods, such as some transformation-based methods, only
focus on the last two types of relationships, and transform
a multi-label problem into one or several single-label prob-
lems with transformation techniques (Godbole and Sarawagi
2004; Read 2008). While some recent direct approaches re-
vise traditional single-label feature selection algorithms to
process the multi-label data directly, such as sub-feature un-
covering with sparsity (SFUS) (Ma et al. 2012) and multi-
label informed feature selection (MIFS) (Jian et al. 2016),
which have taken label correlation into consideration. How-
ever, most of these algorithms consider the three types of
relationships individually. For example, MIFS uses a ma-
trix to encode label correlations only. Separately solving the
three types of relationships would ignore the mutual effects
between different types of relationships, which limits the ef-
fectiveness of feature selection. Simultaneously analyzing
all the relationships needs to consider the underlying mech-
anism, while existing methods do not attempt to uncover it.

Another problem is that, existing methods lack of inter-
pretability, i.e., cannot explain the correlation between a se-
lected feature and a certain label. It is necessary to know
which labels are influenced by a selected feature. For ex-
ample, the recently presented topic, label-specific feature
(Zhang and Wu 2015), aiming to the phenomenon that dif-
ferent class labels may carry specific characteristics of their

6430



own, will benefit from the interpretable feature section algo-
rithm. Therefore, we need to propose a method that not only
selects predictive features, but also distinguishes the com-
mon features shared by multiple labels and the label-specific
features owned by some single labels.

To address above challenges, this paper investigates the
multi-label feature selection from a causal perspective. The
superiority of causality-aware methods reflects in two as-
pects. Firstly, causal mechanism treats labels and features as
ordinary variables, focusing on the underlying cause-effect
relationships between all variables. Therefore, by mining the
causal mechanism, we can simultaneously consider all types
of the relationships, and thereby solve the aforementioned
first challenge. As depicted in Figure 1, using a directed
acyclic graph (DAG) to represent the causal structure, we
can intuitively ‘read’ from the causal structure that labels
are all independent of each other in Figure 1 (a) but are all
relevant to each other in Figure 1 (b). Similarly, the depen-
dency between labels and features and the redundancy be-
tween different features can also be ‘read’ out. As for the
interpretability, for any feature, it is easy to locate the la-
bels influenced by a certain feature in the causal structure,
which could help to distinguish the common features and
label-specific features.

Given the superiority of causality, we need to find an ef-
fective means to represent the complex causal relationships.
In this paper, Markov blanket (MB) is chosen, which is
amenable to represent the local causal structure of a variable
and has been used in single label causal feature selection
(Yu, Liu, and Li 2018). In a faithful Bayesian network (BN),
the MB of a variable consists of its parents (direct causes),
children (direct effects) and spouses (other direct causes of
direct effects). And given the MB of a variable, all other
variables will be independent of this variable (Spirtes et al.
2000). In single-label learning, the MB of a label can be di-
rectly used as the selected feature set (Pellet and Elisseeff
2008). However, in multi-label scenario, directly using the
MB of multiple labels is obviously unadvisable due to two
problems. Firstly, real-world data always violates the faith-
fulness condition, and accordingly, some features will con-
tain equivalent information (Statnikov et al. 2013) about la-
bels, which might lead to more common features. Secondly,
some relevant features might be excluded out of the local
causal structure when there exist strong label relevances. In
this paper, we take some DAGs as examples to elaborate
these two problems and provide detailed theoretical analy-
ses, which give an insight on algorithm design.

To solve these problems, we propose a MB-based multi-
label causal feature selection algorithm (MB-MCF). MB-
MCF first mines the local causal structure of each label
to uncover the causal mechanism between both labels and
features. Based on the causal relationships, MB-MCF then
searches common features between relevant labels and label-
specific features for single labels. The main contributions of
this paper are summarized as follows:

1. Some theoretical contributions facilitate the multi-label
causal feature selection research. 1) We analyze the
causal structure for multi-label scenario, and find that

the causal relationships between labels and its relevant
features might be blocked by other strongly relevant la-
bels. 2) Given the fact that real-world data sets violate the
faithfulness condition, we study the equivalent informa-
tion phenomenon in multi-label data, and formally give
the property of the common features of multiple labels.

2. Different from existing methods, the proposed MB-MCF
has at least three practical benefits: 1) Based on causal
learning, MB-MCF simultaneously considers all depen-
dencies between both labels and features, and selects fea-
tures not only predictive but also causally informative. 2)
MB-MCF possesses interpretability. 3) MB-MCF does
not require the number of selected features to be pre-
determined. To the best of our knowledge, it is the first
multi-label causal feature selection algorithm.

Notations and Definitions

In this paper, the capital letters (such as X) represent ran-
dom variables and the lower-case letters (such as x) repre-
sent their values, the capital bold italic letters (such as Z) de-
note variable sets. Specifically, let U denote the set of all the
(discrete random) variables, and T “ tT1, T2, ..., Tlu Ă U
denote the label set. In addition, the symbol X M Y |Z
(X K Y |Z) represents that variables X and Y are condi-
tionally (in)dependent given a variable set Z. The symbol
IpX,Y q denotes the mutual information between X and Y .

Definition 1 (Bayesian network) (Pearl 1998). Let P de-
note the joint probability distribution over a variable set U
of a directed acyclic graph (DAG) G. The triplet xU,G,Py
constitutes a BN, if xU,G,Py satisfies the Markov condi-
tion: every variable is independent of any subset including
its non-descendant variables given its parents in G.

Definition 2 (Faithfulness) (Spirtes et al. 2000). Given a
BN xU,G,Py, G is faithful to P if and only if every con-
ditional independence present in P is entailed by G and the
Markov condition. P is faithful if and only if there exists a
DAG G such that G is faithful to P.

Definition 3 (Markov blanket) (Pearl 1998). In a faith-
ful BN xU,G,Py, the Markov blanket of variable T in G is
unique and consists of its parents, children, and spouses.

Theorem 1 (Pearl 1998). Given the MBpT q, X K
T |MBpT q for any X P U ´ MBpT q ´ tT u.

Tsamardinos and Aliferis (2003) proved that MB is the
theoretically optimal set of features if the faithfulness con-
dition is satisfied, which confirms that we can transfer the
feature selection problem into the MB discovery of the class
attribute in a faithful BN. To understand the intuition in the
perspective of causal leaning, we consider that the MB in-
cludes the direct causes (parents), direct effects (children),
and other direct causes of direct effects (spouses) of the class
attribute (Yu et al. 2019).

Definition 4 (Equivalent information) (Statnikov et al.
2013). Two subsets of variables X and Y from U contain
equivalent information about a variable T iff the following
conditions hold: T M X, T M Y, T K X|Y and T K Y|X.

Equivalent information phenomenon occurs when the
faithfulness condition is violated. It can be interpreted as
IpT,Xq “ IpT,Yq, where the symbol I denotes the mu-
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Figure 2: We discuss two problems for multi-label causal feature selection. (a) illustrates Problem 1. When T2 is completely
dependent (red arrow) on T1, the causal relationships (highlighted with red ‘X’) between T2 and its causal features C and D
might be blocked, making C and D excluded out of the local causal structure of T2. To retrieve ignored features, we present
Theorem 2. (b) gives two examples to illustrate Problem 2. For Example 2 in (b), if tA,B,Eu and tC,D,Eu are equivalent
MBs of T2, then A and B are possible common features of T1 and T2. To find more common features and decrease redundancy
in feature set, we present Theorem 3 to give the property of common features. (c) gives an overview of the proposed MB-MCF
algorithm, where the phase 2 solves Problem 1 based on Theorem 2, and phase 2 solves Problem 2 based on Theorem 3.

tual information. In other words, X and Y contain the same
information about T . In real-world applications, the faithful-
ness condition is usually not satisfied, and thus, equivalent
information phenomenon is common in these data sets. In
this paper, we will use the definition to help us find the re-
dundant features in multi-label scenarios.

Problem Discussion and Analyses
As previously mentioned, MB is employed to represent the
local causal structure of a variable. In single-label learning,
the MB of a label is the minimal set which carries all the
information about the class label, and thereby, is the theoret-
ically optimal feature subset if the faithfulness condition is
satisfied (Pellet and Elisseeff 2008). MB of multiple labels is
the union of MB set of each label (Liu and Liu 2018), which
can be formalized as:

MBptT1, T2, ..., Tluq “
lď

i“1

MBpTiq ´ tT1, T2, ..., Tlu. (1)

However, there exist two problems making the MB of mul-
tiple labels unsuitable for direct use as a feature subset. We
take some DAGs as examples to locate these two problems
and further give some theoretical analyses to solve them.

Problem 1: Dependencies between label and its relevant
features might be blocked by other strongly relevant labels,
which makes some relevant features be discarded.

Using MB to define the variable relevance, two strongly
relevant variables are included in the MB set of each other,

while two weakly relevant variables are not, but have a con-
necting path (in BN) between them (Tsamardinos and Alif-
eris 2003). A special case might occur in strong relevance,
called deterministic relations, where presence (or absence)
of one variable implies presence (or absence) of the other,
and vice versa. For example, labels male and female for a
person can not coexist at the same instances. Statnikov et al.
(2013) has proved that deterministic relations could result in
equivalent information phenomenon (refer to Definition 4).

Due to this phenomenon, strongly relevant labels could
block the dependencies between features and labels. Specif-
ically, when a label and its relevant features contain equiva-
lent information about another label, these relevant features
might be excluded out of the local causal structure in the
causal discovery process, mainly because the label is inde-
pendent of these features given the other label. For exam-
ple in Figure 2(a), assume that the relation between T1 and
T2 is deterministic, and tC,Du and T2 contain equivalent
information about T1. If we implement a MB discovery al-
gorithm to find the local causal structure of T2, the depen-
dence between T2 and C,D will be tested as T2 K C|T1 and
T2 K D|T1. Thus, C and D would be misjudged as non-
parent-child variables and further be discarded as redundant
features instead of causal features.

To solve this problem, we propose Theorem 2 to give an
insight on how to retrieve these ignored relevant features.

Theorem 2. Labels T1 and T2 are strongly relevant to each
other. MBi denotes the MB of Ti (i P t1, 2u), and S Ă MB2.
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If T2 and S contain equivalent information about T1, then:
IpT1, pMB1 ´ tT2uq Y Sq “ IpT1,MB1q. (2)

Proof. Since labels T1 and T2 are strongly relevant to each
other, thus, T2 P MB1. According to the chain rule of mutual
information (Cover and Thomas 2012), we have:

IpT1, pMB1 ´ tT2uq Y Sq
“ IpT1, S|MB1 ´ tT2uq ` IpT1,MB1 ´ tT2uq,
IpT1,MB1q
“ IpT1, T2|MB1 ´ tT2uq ` IpT1,MB1 ´ tT2uq.

(3)

Then, subtracting IpT1,MB1 ´ tT2uq from both sides of the
Eq. (2), we obtain:

IpT1, S|MB1 ´ tT2uq “ IpT1, T2|MB1 ´ tT2uq. (4)
Eq. (2) will be proved by showing that Eq. (4) is established.
Since T2 and S contain equivalent information about T1, thus
IpT1, Sq “ IpT1, T2q. Therefore, Eq. (4) is established. We
have thus proved the theorem. �

In Theorem 2, features in feature subset S are the afore-
mentioned discarded relevant features, i.e., tC,Du in Figure
2(a). According to Eq. (2), if we remove the strongly rele-
vant labels (i.e. T2 in Eq. (2)) first and then search the causal
features of T1 again, then the discarded relevant features (i.e.
S in Eq. (2)) will be retrieved. In the designed algorithm, we
will retrieve the discarded relevant features in this way.

Problem 2: More common features might exist due to the
equivalent multiple MBs.

Due to label relevance, some features are shared by multi-
ple labels, called common features. For Example 1 in Figure
2(b), the common cause A, and the common effect B, are
included in both MBpT1q and MBpT2q. Obviously, A and
B are common features of T1 and T2. Actually, since the
real-world data usually violates the faithfulness condition,
a label might have multiple MBs, and thereby, there exist
common features as long as the intersection of one of the
MB sets and the MB of another label is non-empty. We il-
lustrate the problem with Example 2 in Figure 2(b). In the
conventional sense, the intersection of MBpT1q, tA,Bu, and
MBpT2q, tC,D,Eu, is empty. However, the common fea-
tures might still exist only if tA,B,Eu is also the MB of
T2, and then tA,Bu is the common features of T1 and T2.

From the perspective of information theory, the above
phenomenon in Example 2 in Figure 2(b) is mainly because
tA,Bu and tC,Du contain equivalent information about
T2. Intuitively, if all feature subsets containing equivalent
information could be found, then we need not implement
the time-consuming process to find all the MBs of a label.
Nevertheless, there is no theoretical proof that has been pre-
sented to guarantee that there is no loss of information if part
of the MB features are replaced with their equivalent fea-
tures. In the following, we propose Theorem 3 to illustrate
this issue.

Theorem 3. Let T “ tT1, T2, ..., Tku denote the label sub-
set, MBi denote the MB of Ti (i P t1, 2, ..., ku), Si Ă MBi.
For @i P t1, 2, ..., ku, if S Ă U and Si contain equivalent
information about Ti, then S satisfy:

Ip
kď

i“1

MBi Y S ´
kď

i“1

Si,Tq “ Ip
kď

i“1

MBi,Tq. (5)

And we call S is the common feature set of labels in T.
Proof. It suffices to prove the case that T “ tT1, T2u,

since any multi-label case is a direct consequence of two-
label case using induction on the number of variables in-
volved in T. According to the Definition 5, we have:

IpS, Tiq “ IpSi, Tiq. (6)

We first prove that IpMBi, Tiq “ IpMBi Y S ´ Si, Tiq. Ac-
cording to the chain rule, we have:

IpMBi Y S, Tiq “ IppMBi Y S ´ Siq Y Si, Tiq
“ IpMBi Y S ´ Si, Tiq ` IpSi, Ti|MBi Y S ´ Siq, (7)

where IpMBiYS, Tiq “ IpMBi, Tiq since S K Ti|MBi, and
IpSi, Ti|MBiYS´Siq “ 0 according to Eq. (6). Substituting
them into Eq. (7), we get:

IpMBi Y S ´ Si, Tiq “ IpMBi, Tiq. (8)

Let Ai “ MBi Y S ´ Si, then we transform Eq. (5) as:

IpA1 Y A2, T1 Y T2q “ IpMB1 Y MB2, T1 Y T2q. (9)

According to the chain rules, we expand the left term and
right term in Eq. (9) as L and R, respectively.

L “IpA1, T1q ` IpA2, T2|A1, T1q
` IpA1, T2|T1q ` IpA2, T1|A1q,

R “IpMB1, T1q ` IpMB2, T2|MB1, T1q
` IpMB1, T2|T1q ` IpMB2, T1|MB1q.

(10)

According to Eq. (8), we have IpA1, T1q “ IpMB1, T1q and
IpA2, T2|A1, T1q “ IpMB2, T2|MB1, T1q. According to the
property of MB, we have IpA2, T1|A1q “ IpMB2, T1|MB1q.
We continue expand the third term in Eq. (10) as follows.

IpA1, T2|T1q “ IpMB1 ´ S1, T2q ` IpS, T2|MB1 ´ S1q,
IpMB1, T2|T1q “ IpMB1 Y S1 ´ S1, T2q
“ IpMB1 ´ S1, T2q ` IpS1, T2|MB1 ´ S1q.

Therefore, IpA1, T2|T1q ě IpMB1, T2|T1q according to Eq.
(6), and thereby, L ě R. According to Eq. (1), the MB set
of tT1, T2u is a subset of MB1YMB2. Thus, we can directly
prove that L ď R from Eq. (9) according to the property of
MB. Hence, L “ R and Eq. (5) is established. �

For better understanding, we map the elements in The-
orem 3 to the Example 2 in Figure 2(b). Feature set S is
tA,Bu in Example 2, which contains the information of all
labels. And S1 “ tA,Bu (Note that, S and Si need not
be different.), S2 “ tC,Du. And thereby, Theorem 3 has
proved that, if S and S1 contain equivalent information about
T1, and S and S2 contain equivalent information about T2,
then we can use S to simultaneously replace S1 and S2, with-
out any information loss (as shown in Eq. (5)). Furthermore,
the replacement process is interpretable, which points out
the common features of multiple labels and label-specific
features of single labels. For example, in Figure 2(b), remov-
ing tC,Du and replacing it with tA,Bu, we obtain the se-
lected feature subset tA,B,Eu, in which E is a specific fea-
ture of T2, while A and B are common features of tT1, T2u.
The idea in Theorem 3 will be used in the proposed algo-
rithm.
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Our Algorithm

In this section, we propose the MB-based multi-label causal
feature selection algorithm (MB-MCF, Algorithm 1) for de-
tail. As shown in Figure 2(c), MB-MCF has three phases:
Phase 1 (lines 2-4) mines the causal mechanism in data.
Phase 2 (lines 5-14) retrieves the ignored relevant features
influenced by the strongly relevant labels, which solves the
aforementioned Problem 1 with Theorem 2. Phase 3 (lines
15-23) finds the common features and the label-specific fea-
tures, which uses Theorem 3 to solve the Problem 2.

Phase 1 (lines 2-4). This phase employs an up-to-date
divide-and-conquer-based MB discovery algorithm A (such
as CCMB (Wu et al. 2019)) to get the local causal structure
of each label. We only find the direct causes and effects (i.e.,
PCi) of each label Ti, since the direct causes and effects
carry most of the information about labels while the spouse
discovery process is time-consuming. Note that, in the dis-
covery process, we do not distinguish labels and features but
consider them as ordinary variables. Thus, PCi provides the
relationships not only between labels and features but also
between different labels.

Phase 2 (lines 5-14). This phase retrieves the features ig-
nored in the Phase 1, which is influenced by strong label
relevance as illustrated in Problem 1. Directly testing the
deterministic relations between labels is difficult. Neverthe-
less, testing strong label relevance is feasible, which can be
‘read’ from the local causal structure of a label (as Ti P PCj

in line 5). According to Theorem 2, we can find the ignored
features through removing the strongly relevant labels and
retesting the dependencies between the ignored features and
target label. Concretely, line 5 traverses all strongly relevant
label pairs Ti, Tj and line 6 traverses all possible ignored
features Fk. Given a conditioning set Z which includes the
strongly relevant label Tj , if a feature Fk is independent of
the target label Ti (line 7), then Fk might be the ignored
feature. A further test is implemented in line 8, if any con-
ditioning set Z which dose not include Tj can not block the
dependency between the feature Fk and the target label Tj ,
then, according to Eq.(2), we can assert that Fk is ignored in
the Phase 1 and retrieve it in line 9. Finally, in line 13, we
need to remove the strongly relevant labels out of the feature
set as preparation for next phase.

Phase 3 (lines 15-23). Based on the local causal structure
obtained from the preceding phases, we find common fea-
tures and label-specific features in this phase. According to
Theorem 3, feature sets containing equivalent information
can be used to replace each other without any information
loss. Thus, we first find the equivalent feature sets for each
label in lines 15-21. For each label (line 15), line 17 finds
the feature set Z such that Z and S (a subset of PCj) contain
equivalent information about label Ti. Actually, to improve
efficiency, an upper limit should be set for the size of Z since
large-size Z can be derived from the small-size Z. Accord-
ing to Definition 3, Z and S meeting the condition in line
17 can be considered as the equivalent feature sets of tar-
get label Ti, thus, they will be recorded in equivalent feature
table EIFi of Ti in line 18. As we get EIFi for all Ti, the
common feature discovery problem can be transformed to
a search problem, that is, searching the minimal set SelFea

Algorithm 1 The MB-MCF Algorithm.
1: Input: Labels set T “ tT1, T2, . . . , Tlu, features set

F “ tF1, F2, . . . , Fmu, a divide-and-conquer-based
MB discovery algorithm A, significance level α.
{Phase 1: Get the local causal structure of each label.}

2: for i “ 1 . . . l do
3: PCi Ð Find direct causes and effects of Ti from TY

F ´ tTiu with the parent-child discovery process of A.
4: end for

{Phase 2: Identify the strong label relevance and re-
trieve the ignored features.}

5: for i, j “ 1 . . . l and Ti P PCj do
6: for k “ 1 . . .m do
7: if DZ : tTiu Ă Z Ă PCj s.t. Fk K Tj |Z then
8: if @Z Ă PCj ´ tTiu s.t. Fk M Tj |Z then
9: PCj “ PCj Y tFku

10: end if
11: end if
12: end for
13: PCj “ PCj ´ tTiu
14: end for

{Phase 3: Find common features and label-specific
features.}

15: for i “ 1 . . . l do
16: for each Z Ă F ´ PCi and Z M Ti do
17: if DS Ă PCi s.t. Ti K Z|S and Ti K S|Z then
18: EIFi “ EIFi Y tă S,Z ąu
19: end if
20: end for
21: end for
22: Search the minimal set SelFea s.t. @i, D ă S,Z ąP

EIFi, pPCi ´ S Y Zq Ă SelFea.
23: Output: Selected feature subset SelFea.

such that for @i, D ă S,Z ąP EIFi, pPCi´SYZq Ă SelFea
(line 22). The constraint can be rephrased as, for label Ti, if
we replace some of the features in PCi with its equivalent
feature set, then at least one of the substituted PCi must be
included in the selected feature subset SelFea, to guaran-
tee that there is no information loss of a label. The minimal
set satisfying the constraint is the optimal feature subset. A
greedy algorithm can be used to find an optimal or subopti-
mal solution. Note that, in the process of searching SelFea,
we can record the relationship between each selected feature
and each label. For example in Figure 2(b), assuming EIFT2“ tă tA,Bu, tC,Du ąu, then tA,Bu is recorded as the
common features of tT1, T2u when tC,Du is replaced with
tA,Bu in line 22. And E is a label-specific feature of T2.

Experiments

Experimental Settings

In this section, we present the experimental studies of the
proposed MB-MCF algorithm on real-world data sets, which
are from diverse application domains. Table 1 displays the
details of the five multi-label data sets, including domain,
standard statistics, and sizes of divided training and test data
of each data set. In which, cardinality denotes the average
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number of labels for per instance, and density normalizes
the label cardinality by the number of labels.

Table 1: Details of the multi-label data sets.
Data set domain #Training #Test #Features #Labels cardinality density

Birds audio 500 100 260 19 1.014 0.053
CAL500 music 300 100 68 174 26.044 0.150
EUR-Lex text 5000 2000 5000 201 2.213 0.011
Mediamill video 1000 1000 120 101 4.376 0.043

NUS-WIDE images 10000 5000 500 81 1.869 0.023

Five state-of-the-art multi-label feature selection algo-
rithms are compared, including SFUS (Ma et al. 2012),
CSFS (Chang et al. 2014), MIFS (Jian et al. 2016), CMFS
(Braytee et al. 2017) and MCLS (Huang, Jiang, and Sun
2018). In addition, we also use the original data with no
feature selection as a baseline in each experiment. To evalu-
ate the effectiveness of the proposed methods, we employ a
representative multi-label classification algorithm, ML-kNN
(Zhang and Zhou 2007), to compute the classification accu-
racies archived by using selected features, and the number
of nearest neighbors k is set to 10 with default setting.

Due to space limitation, we choose an example-
based metric HammingLoss and two label-based metrics
FMacro and FMicro (macro-averaging and micro-averaging
of F1-measure) to measure the performances of multi-label
classification algorithm with selected features of each algo-
rithm. HammingLoss evaluates the fraction of misclassi-
fied instance-label pairs:

HammingLoss “ 1

p

pÿ

i“1

1

q
|ZiΔYi|. (11)

where p and q denote the number of instances and labels,
respectively. Zi represents the predicted label set and Yi is
the correct label set in the i-th instance, and Δ stands for the
symmetric difference between the two sets.
FMicro can be considered as a weighted average of F1-

measure over all q labels, while FMacro is an arithmetic av-
erage of all output labels, which can be calculated by:

FMicro “ 1

q

qÿ

i“1

2TPi

2TPi ` FPi ` FNi
. (12)

FMacro “
řq

i“1 2TPiřq
i“1p2TPi ` FPi ` FNiq . (13)

where TPi, FPi and FNi denote the number of true posi-
tives, false positives and false negatives in the i-th class la-
bel, respectively.

Performance Comparison

In this experiment, we first apply MB-MCF and other com-
paring algorithms to select features and then use ML-KNN
to train a classifier with the selected features. Each ex-
periment is repeated 10 times with different training and
test data, and we report the average performances, i.e.,
HammingLoss, FMacro and FMicro. Since these compar-
ing feature selection algorithms can not determine the opti-
mal number of features, we gradually increase the percent-
age of the selected features from 2% to 20% with a step of

2%. For a fair comparison, the regularization parameters for
all comparing algorithms are tuned from t0.01, 0.1, 0.3, . . . ,
0.9, 1u by grid search. For the proposed MB-MCF, we em-
ploy Hiton-MB (Aliferis, Tsamardinos, and Statnikov 2003)
as the MB discovery algorithm and use the G2-test (Pearl
1998) to implement the conditional independence tests.

Table 2: The number of features selected by MB-MCF.
Data set Birds CAL500 EUR-Lex Mediamill NUS-WIDE

#Features 40 13 871 18 85

Figure 3 shows the average HammingLoss, FMacro

and FMicro variation curves of different multi-label fea-
ture selection algorithms with respect to the percentage of
selected features. As shown in Table 2 and Figure 3, our
MB-MCF does not vary with the increasing selected fea-
ture percentage and can automatically determine the num-
ber of selected features, which is different from other al-
gorithms requiring to predetermine the number of selected
features. Clearly, MB-MCF consistently outperforms other
algorithms in terms of each metric under the same number
of selected features. Moreover, compared with the best re-
sult of the state-of-the-art methods, MB-MCF still achieves
better or very competitive performances. Specifically, in
Birds, CAL500 and Mediamill data sets, MB-MCF achieves
significantly higher FMacro, FMicro and very competitive
HammingLoss compared with the state-of-the-art meth-
ods, which demonstrates that MB-MCF captures more ef-
fective features by considering the causal information be-
tween both features and labels. In large-scale data set EUR-
Lex, SFUS can not be conducted on a 16-GB memory due
to its high space complexity. From Figure 3 (c), (h), (m),
we observe that the performances of state-of-the-art meth-
ods vary first and then tend to stable with the increase of
the percentage of selected features, and the size of the fea-
ture set selected by MB-MCF exactly falls nearby the turn-
ing point, which demonstrates the effectiveness of MB-MCF
to automatically determine the number of features. In large-
scale data set NUS-WIDE, most of existing algorithms do
not reach the performance of baseline since the insufficient
training data influences the effectiveness of feature selec-
tion. However, MB-MCF is the only algorithm outperform-
ing the baseline even when a few number of samples are
used to train, which shows that MB-MCF is more data-
efficient.

Interpretability

Compared with traditional multi-label feature selection
methods, MB-MCF can select useful features and simul-
taneously possess interpretability. To illustrate the inter-
pretability of MB-MCF, we implement MB-MCF on Emo-
tions data set and provide the detail relationships between
labels and selected features obtained from lines 15-22 in
MB-MCF. The Emotions data set contains 6 labels, namely
amazed-surprised (L1), happy-pleased (L2), relaxing-calm
(L3), quiet-still (L4), sad-lonely (L5), and angry-aggressive
(L6). We employ MB-MCF to select features on Emotions
with 500 training samples, and record the relationship be-
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Figure 3: The HammingLoss, FMacro and FMicro of MB-MCF and other state-of-the-art algorithms. The result of MB-MCF
is a red dot instead of a curve since MB-MCF could automatically determine the number of selected features.

tween each selected feature and each label as shown in Fig-
ure 4. The selected features are listed at the top of the figure
in the order of the serial numbers in Emotions data set, and
each feature corresponds to a column of the grid, each label
corresponds to a row. If a feature has an effect on a label,
then the corresponding cell is dyed.

From Figure 4, we observe that features F21 and F40 carry
the information about all labels, and F2 is a label-specific
feature of label L2. From the distribution of shaded cells, we
can conclude that the labels in label pairs pL1, L4q, pL2, L5q
and pL3, L6q have similar common features, and thereby,
they have stronger correlation with each other than other
label pairs, which is consistent with the Tellegen-Watson-
Clark model 1 of mood in previous study (Tellegen, Watson,
and Clark 1999).

On Emotions, MB-MCF achieves similar performance
with existing methods (the details are not provided due to
space limitation). However, MB-MCF can not only effec-
tively select the relevant features containing discriminative
information, but also simultaneously explain the relation-
ships between variables (including both labels and features).

Conclusion

This paper investigates multi-label feature selection prob-
lem in the causal perspective. We study the causal struc-
ture of multi-label data, and discover that strong label rel-

1The model was employed for labeling the data in the Emotions.

Figure 4: The relation between each selected feature (cor-
responding to a column) and each label (corresponding to a
row) in Emotions. The shaded cell indicates that the corre-
sponding feature has an effect on the corresponding label.

evance might block the dependencies between label and its
relevant features. Furthermore, we present the property of
common features shared by multiple labels. Based on the
above theoretical contributions, we propose a novel algo-
rithm, MB-MCF, which mines the causal mechanism first
and then finds common features and label-specific features.
Compared with traditional multi-label feature selection al-
gorithms, MB-MCF possesses interpretability, and selects
features not only predictive but also causally informative,
while it does not require the number of selected features
to be predetermined. Finally, we conduct extensive experi-
ments to validate the effectiveness and superiority of pro-
posed MB-MCF. Future work could strengthen the experi-
mental evaluations and develop a joint algorithm (Jiang et
al. 2019) to simultaneously select features and learn a clas-
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sifier with the selected causal features.
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