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Abstract

Partial multi-label learning (PML) deals with problems where
each instance is assigned with a candidate label set, which
contains multiple relevant labels and some noisy labels. Re-
cent studies usually solve PML problems with the disam-
biguation strategy, which recovers ground-truth labels from
the candidate label set by simply assuming that the noisy la-
bels are generated randomly. In real applications, however,
noisy labels are usually caused by some ambiguous con-
tents of the example. Based on this observation, we propose
a partial multi-label learning approach to simultaneously re-
cover the ground-truth information and identify the noisy la-
bels. The two objectives are formalized in a unified frame-
work with trace norm and �1 norm regularizers. Under the
supervision of the observed noise-corrupted label matrix, the
multi-label classifier and noisy label identifier are jointly opti-
mized by incorporating the label correlation exploitation and
feature-induced noise model. Extensive experiments on syn-
thetic as well as real-world data sets validate the effectiveness
of the proposed approach.

Introduction

Multi-label learning (MLL) solves problems where each ob-
ject is assigned with multiple class labels simultaneously
(Zhang and Zhou 2014). For instance, an image may be an-
notated with labels sea, sunset and beach. A large number of
recent works have witnessed the great successes that MLL
has achieved in many research areas, e.g., music emotion
recognition (Trohidis et al. 2008), text categorization (Lin et
al. 2018) and image annotation (Chen et al. 2019).

In traditional multi-label studies, a basic assumption is
that each training instance has been precisely annotated with
all of its relevant labels. However, in many real-world sce-
narios, it is difficult and costly to obtain precise annotations.
Instead, it is more common that a set of candidate labels are
roughly assigned by noisy annotators. In addition to the rel-
evant labels, the candidate set may also contain some noisy
labels, where the number of relevant or noisy labels is un-
known. For example, in crowdsourcing image tagging (as
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Figure 1: An example of partial multi-label learning. The
image is partially labeled by noisy annotators in crowdsourc-
ing. Among the candidate labels, house, tree, car, light and
cloud are ground-truth labels while flower, cat and people
are noisy labels.

shown in Figure 1), among the candidate labels annotated
by annotators, only some of them are accurate ones owing to
potential unreliable annotators. The scenario has been for-
malized as a learning framework called partial multi-label
learning (PML) by (Xie and Huang 2018).

To solve PML problems, one straightforward method is to
simply treat all the candidate labels as relevant ones. Then
the PML problem can be solved by standard multi-label
learning algorithms, e.g., Binary Relevance (BR) (Boutell et
al. 2004), ML-kNN (Zhang and Zhou 2007), CPLST(Chen
and Lin 2012) and so on. However, such methods will be
misled by the noisy labels in the candidate set, and fail to
generalize well on future data.

In order to deal with the challenge, several PML tech-
niques are proposed recently. Among them, the most com-
monly used strategy to learn from PML examples is dis-
ambiguation. It tires to recover ground-truth labeling infor-
mation from candidate labels, by either introducing labeling
confidences (Xie and Huang 2018; Fang and Zhang 2019) or
employing low-rank and sparse decomposition scheme (Li-
juan Sun and Jin 2019). Despite the advances these meth-
ods have achieved, a potential limitation is that they neglect
the cause of noisy labels in the candidate set, which may
be an important information for recovering the ground-truth
labels. These methods typically assume that noisy labels are
generated randomly, which may be not consistent with many
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real-world scenarios. In practice, we observe that noisy la-
bels are usually caused by some ambiguous contents of the
example and there thus existing some relationships between
the noisy labels and feature representations. For example,
in crowdsourcing annotation scenario, annotators may be
misled by some ambiguous contents associated with the ex-
ample in specific tasks. Figure 1 illustrates an example in
crowdsourcing image tagging, annotators provided the im-
age with noisy labels flower, cat and people due to the mis-
leading objects marked by the red, green and blue boxes.
Similar cases also happen in other tasks, such as ambigu-
ous words in the text categorization and ambiguous melody
fragments in the music emotion recognition.

Based on the observations mentioned above, in this paper,
we propose a new approach for Partial Multi-label Learn-
ing with Noisy label Identification (PML-NI), which re-
covers the ground-truth labeling information and identifies
the noisy labels simultaneously. Specifically, the multi-label
classifier and noisy label identifier are learned jointly under
the supervision of the observed noise-corrupted label ma-
trix. On one hand, the multi-label classifier is constrained
to be low rank by trace norm regularization to capture the
correlation among labels; on the other hand, the noisy label
identifier with sparsity regularization is trained to model the
feature-induced noise labels. Comprehensive experiments
on synthetic as well as real-world data sets from diverse do-
mains validate that the proposed approach consistently out-
performs the compared methods.

The rest of this paper is organized as follows: Section 2
reviews some related works; Section 3 introduces our pro-
posed PML-NI approach; experimental results are reported
in Section 4, followed by the conclusion in Section 5.

Related Works

Partial multi-label learning is a powerful framework to deal
with partially labeled data in multi-label setting. It is derived
from two popular learning frameworks: multi-label learning
and partial label learning.

There are plenty of literature on multi-label learning.
Among them, Binary Relevance is the most simple approach
which decomposes the task into a set of binary classification
problems (Boutell et al. 2004). There are many studies try-
ing to exploit the label correlations for enhancing the multi-
label learning (Zhu, Kwok, and Zhou 2017; Huang, Yu, and
Zhou 2012). Some of them focus on pairwise correlation (Li,
Song, and Luo 2017), while some others consider high order
correlation among all labels (Burkhardt and Kramer 2018;
Read et al. 2011).

Partial label learning (PLL) is a framework for learning
from partially labeled data for single label tasks (Grand-
valet and Bengio 2004; Jin and Ghahramani 2002). In
PLL problem, the partial label set consists of exactly one
ground-truth label and some other noisy labels. The most
common strategy applied in PLL methods is disambigua-
tion, which tries to recover the ground-truth label from
the candidate set (Feng Lei 2019; Zhang, Zhou, and Liu
2016). The disambiguation strategy are mostly implemented
in two ways: one is to assume certain parametric model

and the ground-truth label is regarded as the latent vari-
able which can be iteratively refined by optimizing cer-
tain objectives, such as the maximum likelihood criterion
(Grandvalet and Bengio 2004; Jin and Ghahramani 2002;
Liu and Dietterich 2012) or the maximum margin criterion
(Yu and Zhang 2017); the other one is to assume equal im-
portance of each candidate label and then make prediction
by averaging their modeling outputs. For parametric mod-
els, the averaged outputs for all candidate labels are distin-
guished from the outputs for candidate labels (Cour, Sapp,
and Taskar 2011). For non-parametric models, the predicted
label for unseen instance is determined by averaging the
candidate labeling information from its neighboring exam-
ples in the PL training set (Hüllermeier and Beringer 2006;
Zhang and Yu 2015). Compared to partial label learning,
PML is much more challenging owing to the number of
ground-truth labels in the candidate set is unknown.

To solve PML problems, the most intuitive method is to
treat all candidate labels as relevant ones. In this case, PML
problem can be solved by off-the-shelf multi-label learning
algorithms. Nevertheless, such methods will be misled by
the noisy labels in the candidate set, which may lead to de-
graded performances. In order to overcome this problem,
some techniques are designed to solve PML problems re-
cently. For example, (Xie and Huang 2018) propose two ef-
fective methods PML-lc and PML-fp by introducing a con-
fidence value for each candidate label. The decomposition
scheme is utilized to tackle PML data in (Lijuan Sun and
Jin 2019). PARTICLE (Fang and Zhang 2019) identifies the
credible labels with high labeling confidences by employ-
ing an iterative label propagation procedure. Despite the ad-
vances these methods have achieved, a potential limitation is
that they do not consider the cause of noisy labels in the can-
didate set, which may be an essential information for solving
PML problems.

The Proposed Approach

For each partially labeled training example, we denote by
xi ∈ R

d a feature vector and its corresponding label vector
y ∈ {0, 1}q with q class labels. Let Y = [y1,y2, ...,yn] ∈
{0, 1}q×n denote the noise-corrupted label matrix. In this
setting, yji = 1 means the j-th label is a candidate label
to the i-th instance. We further denote by ỹ ∈ {0, 1}q the
unknown ground-truth label vector.

The PML-NI Framework

As mentioned in the above discussion, in many real-world
scenarios, noisy labels are usually caused by some ambigu-
ous contents of the example and there thus existing some re-
lationships between noisy labels and feature contents. Here
we model the noisy labels as the outputs of a linear mapping
from the feature representations as follows:

yi − ỹi = V̂ xi + s = V φi (1)

where yi − ỹi represents the noisy label vector for instance
xi. Here, V̂ = [v̂1, v̂2, ..., v̂q]

� is a weight matrix and
s = [s1, s2, ..., sq]

� is a bias vector. For convenient describ-
ing, we set V = [V̂ , s] and φi = [xi; 1], in which we call V
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the noisy label identifier. Accordingly, the goal of our frame-
work is to determine the optimal parameter V ∗ that can cor-
rectly identify the noisy labels given the feature vector φi.
However, the ground-truth label ỹi here is unknown and the
equation in Eq.(1) is thus intractable. To solve the problem,
we propose a joint learning framework that can identify the
noisy labels while training the multi-label classifier simulta-
neously:

min
W ,U ,V

L (W ,Φ,Y) + λR (W )

s.t. W = U + V (2)

Here, W is the joint learning model that consists of the
multi-label classifier U and noisy label identifier V . The
classifier U = [Û , t] tries to provide each training ex-
ample φi with its ground-truth label ỹi, where Û =

[û1, û2, ..., ûq]
� and t = [t1, t2, ..., tq]

� are weight matrix
and bias vector, respectively. L is the loss function to min-
imize empirical loss between modeling outputs WΦ and
noise-corrupted label matrix Y, where Φ = [φ1,φ2, ..,φn]
is the feature matrix. R is a regularization term to control
the model complexity, where λ is a balancing parameter. For
simplicity, we choose the least square loss for model training
and square Frobenius norm to control the model complexity,
and then the optimization problem in eq.(2) can be re-written
by:

min
W ,U ,V

1
2 ‖Y −WΦ‖2F + λ

2 ‖W ‖2F
s.t. W = U + V (3)

However, the classifier and identifier here are unconstrained
and their individual abilities, i.e., ground-truth label predic-
tion and noisy label identification are hardly considered. To
deal with the problem, in the following content, we will
show how to capture their intrinsic property and potential
structure information by employing different regularizers for
each of U and V . Therefore, the optimization problem in
Eq.(3) can be firstly reformulated as follows:

min
W ,U ,V

1
2 ‖Y −WΦ‖2F + λ

2 ‖W ‖2F + βΩ (U)

+γΨ(V )

s.t. W = U + V (4)

Here, Ω and Ψ are regularizers to encourage the classifier
and identifier to perform their individual abilities, where β
and γ are balancing parameters.

In multi-label learning, a common assumption is that
there existing the label correlations among different la-
bels (Zhu, Kwok, and Zhou 2017; Huang and Zhou 2012;
Lijuan Sun and Jin 2019) and the feature mapping matrix U
is thus linearly dependent. The low-rank assumption is thus
naturally used to capture this intrinsic property of the classi-
fier. Therefore, the optimization problem can be defined by
incorporating the label correlation exploitation:

min
W ,U ,V

1
2 ‖Y −WΦ‖2F + λ

2 ‖W ‖2F + βrank(U)

s.t. W = U + V

Note that the goal of identifier V is to correctly iden-
tify noisy labels mixed up in the candidate set. On one
hand, as aforementioned, noisy labels are usually caused by
some specific contents, i.e., only a few of ambiguous fea-
ture, which are sparse among the observed feature matrix;
on the other hand, noisy labels occur occasionally and tend
to be sparse among observed candidate labels. In order to
make full use of these two kinds of sparsity, we assume that
the feature mapping matrix V also contains some sparsity
and employ �0 norm regularizer as a feature-induced noise
model to capture such structure information. Therefore, the
optimization problem can be defined by incorporating the
feature-induced noise model:

min
W ,U ,V

1
2 ‖Y −WΦ‖2F + λ

2 ‖W ‖2F + βrank(U) (5)

+γ ‖V ‖0
s.t. W = U + V

However, it is difficult to solve the optimization problem in
Eq.(5) due to the rank and cardinality operators are highly
nonconvex and computationally NP-hard (Fazel, Hindi, and
Boyd 2004; Wright et al. 2008). Therefore, these opera-
tors are relaxed by their convex surrogates, i.e., the trace
norm (Candès and Recht 2009) and �1-norm(Candes and
Tao 2005). The final optimization problem can be re-written
as follows:

min
W ,U ,V

1
2 ‖Y −WΦ‖2F + λ

2 ‖W ‖2F + β ‖U‖tr (6)

+γ ‖V ‖1
s.t. W = U + V

The optimization problem in Eq.(6) can be solved effectively
by alternating optimization.

Alternating Optimization

After substituting the constraint into Eq.(6), the optimization
problem can be re-arranged as follows:

min
U ,V

1
2 ‖Y − (U + V )Φ‖2F + λ

2 ‖U + V ‖2F (7)

+β ‖U‖tr + γ ‖V ‖1
which can be effectively solved by alternatively optimizing
U and V .

When V is fixed, the optimization problem in Eq.(7) with
respective to U can be reformulated as follows:

min
U

‖UΦ−E‖2F + λ ‖U + V ‖2F + β ‖U‖tr (8)

where E = Y − V Φ. The accelerated proximal gradi-
ent descend has been proved to be an effective optimization
technique for trace norm minimization to solve this problem
(Huang et al. 2018). Let

g (U) =
1

2
‖UΦ−E‖2F +

λ

2
‖U + V ‖2F

and
h (U ,Z) = g (Z) + 〈∇g (Z) ,U −Z〉+ β ‖U‖tr

where
∇g (Z) = (ZΦ−E)Φ� + λ (U + V )

The main steps are summarized as follows:
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• Choose θ0 = θ−1 ∈ (0, 1], L > 1, U0 = U−1, η > 1. Set
k = 0.

• In the k-th iteration,

– Set Zk = Uk + θk(θ
−1
k−1 − 1)(Uk −Uk−1)

– Set Uk+1 = argminU{h (U ,Zk) +
L
2 ‖U −Zk‖2F}

– while g(Uk+1) + β ‖Uk+1‖tr > h (Uk+1,Zk) +
L
2 ‖Uk+1 −Zk‖2F:

∗ Increase L = ηL

∗ Uk+1 = argminU{h (U ,Zk) +
L
2 ‖U −Zk‖2F}

– Set θk+1 =
√

θ4k + 4θ2k − θ2k/2

– Update k = k + 1

The iteration continues until convergence. In the above
steps, we have omitted the procedures for obtaining Uk+1

and next we will show this. The problem can be rewritten as

min
U

〈∇g (Zk) ,U −Zk〉+ L

2
‖U −Zk‖2F + β ‖U‖tr

which is equivalent to

min
U

L

2

∥∥∥∥U −
(
Zk − 1

L
∇g (Zk)

)∥∥∥∥
2

F

+ β ‖U‖tr

This can be solved by Singular Value Thresholding (SVT)
(Cai, Candès, and Shen 2010), which performs singular
value decomposition on Zk − 1

L∇g (Zk) = ŨΣṼ. Let
Σ̃ii = max(0,Σii − β

L ) and then the solution is given by
ŨΣ̃Ṽ.

When U is fixed, the optimization problem in Eq.(7) with
respective to V can be reformulated as follows:

min
V

‖V Φ−Λ‖2F + λ ‖V +U‖2F + γ ‖V ‖1
where Λ = Y−UΦ. The problem can be solved effectively
by employing the shrinkage operator (Lin, Chen, and Ma
2010).

Let

f (V ) =
1

2
‖V Φ− Λ‖2F +

λ

2
‖U + V ‖2F

and we have

proxγ = argminV γ ‖V ‖1 + f(V )

which is called shrinkage operator and the optimal param-
eter V ∗ = proxγ . Let H = V − 1

L∇f(V ), where L is
the Lipschitz constant. And then the closed solution can be
obtained (Combettes and Wajs 2005):

∀k ∈ [q] , i ∈ [d] V ∗
ki =

⎧⎨
⎩

Hki − γ/L, Hki > γ/L

0, |Hki| ≤ γ/L

Hki + γ/L, Hki < γ/L

where Vki and Hki are i-th dimensional values of k-th label
for V and H .

The entire optimization procedure will be terminated
when the overall loss converges.

Experiment

Experimental Setting

We perform experiments on totally ten data sets includ-
ing synthetic as well as real-world PML data sets 1. These
data sets spanned a broad range of applications: image and
corel16k for image annotation, music emotion, music style
and birds for music recognition, genbase for protein clas-
sification as well as medical, enron, bibtex and tmc2007
for text categorization. Table 1 illustrates the number of
instances, number of class labels, cardinality and domain
for each data set. We also did some pre-processing to fa-
cilitate the partially labeling as in (Xie and Huang 2018;
Fang and Zhang 2019). Specifically, for data sets with too
many class labels (more than 100 in our experiments), their
rare labels are filtered out to keep under 15 labels, and in-
stances without any relevant labels are filtered out.

There are different criteria for evaluating the perfor-
mances of multi-label learning. In our experiments, we em-
ploy five commonly used criteria including ranking loss,
hamming loss, one error, coverage and average precision.
More detail about these evaluation metrics can be found in
(Zhang and Zhou 2014). For the ranking loss, hamming loss,
one error and coverage metrics, the smaller value, the better
the performance. For the average precision metric, the larger
the value, the better the performance.

To validate the effectiveness of the proposed PML-NI
method, we compare with three state-of-the-art PML algo-
rithms and two well-established MLL approaches as fol-
lows:

• PARTICLE (Fang and Zhang 2019). It transforms the
PML task into a multi-label problem through a label prop-
agation procedure. Then a calibrated label ranking model
is induced to instantiate two PML methods PAR-VLS and
PAR-MAP.

• PML-LRS (PML-LRS) (Lijuan Sun and Jin 2019). It uti-
lizes low-rank and sparse decomposition scheme to cap-
ture the ground-truth label matrix and irrelevant label ma-
trix from the observed candidate label matrix.

• ML-kNN (Zhang and Zhou 2007). It is a nearest neigh-
bor based multi-label classification method. ML-kNN is
a very popular baseline method in multi-label learning lit-
erature owing to its simplicity.

• CPLST (Chen and Lin 2012). It is a typical label em-
bedding approach in MLL, which integrates the concepts
of principal component analysis and canonical correlation
analysis.

For the comparing methods, parameters are set as suggested
in the original paper, i.e., PAR-VAL and PAR-MAP: balanc-
ing parameter α = 0.95 and credible label elicitation thresh-
old thr = 0.9; PML-LRS: balancing parameters are set as
γ = 0.01, β = 0.1 and η = 1. For CPLST, we take the first 5
principle components following the experimental setting in
(Wang et al. 2019). k is set as 10 for all the nearest neighbor
based algorithms. Libsvm (Chang and Lin 2011) is used as

1Publicly available at http://mulan.sourceforge.net/datasets.
html and http://meka.sourceforge.net/#datasets
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Table 1: Characteristics of the experimental data sets.

Data set # Instances # Features # Class Labels Cardinality Domain

music emotion 6833 98 11 2.42 music
music style 6839 98 10 1.44 music

birds 654 260 19 2.402 music
genbase 662 1186 27 1.252 biology
medical 978 1449 45 1.245 text
enron 1702 1001 53 3.378 text
image 2000 294 5 1.23 image
bibtex 7395 1836 159 2.402 text

corel16k 13811 500 161 2.867 image
tmc2007 21519 500 22 2.158 text

Table 2: Experimental results of each comparing approach in terms of ranking loss, where •/◦ indicates whether PML-NI is
superior/inferior to the other method.

Data α% PML-NI PAR-VAL PAR-MAP PML-LRS ML-kNN CPLST
music emotion .251± .009 .265± .008• .253± .008• .256± .002• .257± .006• .364± .009•

music style .141± .003 .157± .002• .164± .004• .148± .006• .157± .005• .232± .006•

birds
50% .190± .014 .438± .058• .285± .021• .302± .018• .324± .040• .252± .012•

100% .207± .019 .400± .046• .298± .017• .323± .028• .322± .019• .283± .031•
150% .236± .028 .466± .066• .307± .026• .330± .014• .331± .030• .293± .013•

genbase
50% .003± .001 .025± .013• .012± .006• .017± .004• .008± .004• .050± .010•

100% .004± .002 .059± .030• .010± .004• .017± .003• .011± .004• .063± .018•
150% .010± .003 .017± .008• .011± .004• .031± .008• .027± .007• .075± .016•

medical
50% .023± .005 .157± .034• .071± .015• .048± .013• .047± .008• .089± .008•

100% .023± .007 .155± .035• .074± .017• .049± .008• .047± .008• .097± .010•
150% .025± .005 .147± .029• .073± .013• .053± .005• .049± .005• .102± .015•

enron
50% .175± .013 .318± .070• .188± .047• .163± .021◦ .180± .007• .301± .019•

100% .176± .012 .376± .088• .216± .048• .168± .012◦ .190± .011• .294± .011•
150% .178± .013 .366± .077• .209± .047• .171± .021◦ .196± .011• .297± .017•

image
50% .175± .005 .195± .045• .267± .102• .187± .010• .186± .016• .189± .019•

100% .178± .009 .198± .042• .267± .099• .182± .014• .190± .012• .189± .010•
150% .183± .006 .205± .059• .265± .139• .185± .015• .212± .013• .196± .013•

bibtex
50% .038± .003 .080± .002• .057± .001• .042± .002• .115± .008• .115± .010•

100% .032± .002 .095± .006• .062± .004• .035± .004• .136± .019• .138± .002•
150% .033± .003 .098± .007• .064± .004• .035± .003• .143± .011• .151± .006•

corel16k
50% .211± .002 .288± .002• .236± .003• .214± .003• .264± .007• .229± .004•

100% .224± .004 .334± .008• .262± .005• .226± .004• .273± .002• .239± .005•
150% .224± .006 .326± .007• .258± .003• .228± .001• .275± .007• .237± .005•

tmc2007
50% .046± .001 .087± .014• .057± .008• .046± .001• .075± .004• .080± .002•

100% .047± .001 .082± .014• .057± .009• .047± .002• .079± .002• .081± .001•
150% .050± .002 .107± .023• .060± .010• .050± .002• .082± .001• .086± .001•

the base learner to instantiate PAR-VLS and PAR-MAP. For
PML-NI, balancing parameters are set as λ = 1, β = 1 and
γ = 0.5.

For the last 8 data sets, to construct partial multi-label as-
signments for the training data, we simulate the annotation
process by using a svm classifier trained on original super-
vised multi-label data sets as the human annotator. Specifi-
cally, a svm classifier is firstly trained on the multi-label data
set. Then, for each instance xi of the data set, we add the ir-
relevant noisy labels of xi with α% number of ground-truth
labels according to their probabilities to be relevant labels

predicted by the svm classifier and the α% is varied in the
range {50%, 100%, 150%}. To examine the performance of
the proposed approaches, we performed experiments with
all possible percentages of the noisy labels. In the following
content, we will show details of three groups of experiments
on these totally 26 data sets including 24 synthetic and 2
real-world data sets.

Comparison Results

Due to the page limit, we follow the setting in (Fang and
Zhang 2019) to only report detailed results of each com-
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Table 3: Experimental results of each comparing approach in terms of average precision, where •/◦ indicates whether PML-NI
is superior/inferior to the other method.

Data α% PML-NI PAR-VAL PAR-MAP PML-LRS ML-kNN CPLST
music emotion .598± .010 .607± .010◦ .611± .011◦ .589± .006• .595± .007• .506± .009•

music style .731± .003 .713± .004• .710± .007• .714± .008• .717± .011• .658± .009•

birds
50% .507± .019 .413± .034• .395± .024• .371± .030• .370± .037• .451± .015•

100% .466± .013 .416± .042• .386± .024• .352± .033• .366± .037• .410± .033•
150% .419± .026 .392± .033• .369± .023• .344± .031• .352± .017• .387± .040•

genbase
50% .980± .005 .895± .022• .968± .020• .860± .022• .948± .011• .738± .028•

100% .971± .010 .819± .039• .965± .019• .851± .025• .920± .055• .723± .030•
150% .922± .022 .897± .042• .960± .010◦ .785± .049• .773± .069• .612± .020•

medical
50% .819± .010 .703± .021• .737± .029• .738± .034• .737± .014• .592± .027•

100% .809± .017 .680± .020• .714± .031• .724± .020• .734± .014• .568± .027•
150% .758± .016 .673± .013• .675± .018• .665± .014• .664± .032• .498± .031•

enron
50% .563± .013 .297± .132• .432± .068• .528± .022• .450± .017• .350± .004•

100% .494± .017 .271± .129• .398± .081• .474± .019• .412± .016• .346± .013•
150% .474± .014 .264± .120• .397± .058• .453± .021• .395± .017• .326± .022•

image
50% .780± .007 .770± .055• .734± .076• .765± .013• .767± .015• .766± .019•

100% .782± .006 .767± .051• .735± .077• .772± .016• .763± .016• .769± .007•
150% .772± .007 .760± .068• .709± .150• .770± .016• .732± .009• .757± .015•

bibtex
50% .890± .008 .810± .009• .831± .006• .888± .007• .748± .009• .733± .017•

100% .889± .007 .763± .010• .816± .011• .874± .013• .708± .028• .621± .008•
150% .888± .006 .761± .010• .816± .009• .873± .006• .697± .019• .598± .015•

corel16k
50% .511± .006 .473± .003• .484± .003• .511± .004◦ .456± .010• .500± .003•

100% .483± .007 .453± .006• .454± .007• .481± .007• .436± .004• .476± .005•
150% .487± .006 .458± .004• .455± .009• .479± .005• .433± .009• .475± .007•

tmc2007
50% .804± .002 .731± .033• .783± .022• .803± .006• .746± .008• .747± .002•

100% .803± .003 .737± .035• .785± .021• .802± .005• .729± .004• .738± .005•
150% .793± .003 .676± .033• .760± .036• .792± .005• .710± .005• .721± .002•

Table 4: Friedman statistics FF in terms of each evaluation
metric and the critical value at 0.05 significance level ( #
comparing algorithms k = 6, # data sets N = 24).

Evaluation metric FF critical value
Hamming Loss 30.1256

2.2932
Ranking loss 37.9784
One Error 14.8082
Coverage 38.7910
Average Precision 23.5169

paring methods in terms of ranking loss and average preci-
sion in Table 2 and 3, while similar results can be observed
in terms of other evaluation metrics (the detailed results in
terms of hamming loss, one error and coverage are reported
on supplementary materials). When compare PML-NI ap-
proach with other methods, our algorithm shows significant
superiority. It achieves the best performance in most cases.
Among the five comparing approaches, PML-LRS shows
some superiority, and is better than PML-NI in three cases
on enron in terms of ranking loss and one case on corel16k
in terms of average precision, while losses for other cases.
PAR-MAP outperforms PML-NI in one case on genbase in
terms of average precision, while losses for other cases.

To validate the effectiveness of PML-NI for real applica-

tions, we also perform experiments on real-world PML data
sets music emotion and music style. The results show that
PML-NI achieves the best results in almost all cases except
for the data set music emotion where PAR-VAL and PAR-
MAP outperform PML-NI in terms of average precision.

Furthermore, we also use Friedman test (Demsar 2006;
Zhang, Zhong, and Zhang 2018; Lijuan Sun and Jin 2019)
as the statistical test to analyze the relative performance
among the comparing approaches. Table 4 reports the Fried-
man statistics FF and the corresponding critical value with
respective to each evaluation metric. For each evaluation
metric, the null hypothesis of indistinguishable performance
among the comparing algorithm is rejected at 0.05 signifi-
cance level.

Then, the post-hoc Bonferroni-Dunn test (Demsar 2006;
Zhang, Zhong, and Zhang 2018; Lijuan Sun and Jin 2019)
is utilized to illustrate the relative performance among com-
paring approaches. Here, PML-NI is regarded as the control
method whose average rank difference against the compar-
ing algorithm is calibrated with the critical difference (CD).
Accordingly, PML-NI is deemed to have significantly dif-
ferent performance to one comparing algorithm if their av-
erage ranks differ by at least one CD (CD = 1.3912 in our
experiment: # comparing algorithms k = 6, # data sets
N = 8× 3 = 24). Figure 2 shows the CD diagrams ((Dem-
sar 2006)) on each evaluation metric, where the average rank
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Figure 2: Comparison of PML-NI (control algorithm) against five comparing algorithms with the Bonferroni-Dunn test. Algo-
rithms not connected with PML-NI in the CD diagram are considered to have a significantly different performance from the
control algorithm (CD = 1.5510 at 0.05 significance level).

(a) performance curve with λ changes (b) performance curve with β changes (c) performance curve with γ changes

Figure 3: Results of PML-NI with varying value of trade-off parameters on music emotion.

of each comparing algorithm is marked along the axis (lower
ranks to the right). In each subfigure, any comparing algo-
rithms whose average rank is within one CD to that of PML-
NI is interconnected to each other with a thick line. It can
be observed that PML-NI achieves the best (lowest) average
rank in terms of all evaluation metrics. These experimental
results convincingly validate the significance of the superi-
ority for our PML-NI approach.

Sensitive Analysis

In this section, we study the influences of three balancing
parameters, λ, β and γ for the proposed approach on the
real-world data sets. We conducted experiments by varying
one parameter while keeping the other two parameters fixed.
Due to the page limit, we only show the experimental results
which are measured by the five evaluation metrics on real-
world data set music emotion in Figure 3, while the results
on real-world data set music style are reported on supple-
mentary materials. As we can see, in general, performance
is not sensitive to the parameters except for the parameter β,
whose performance will be significantly degraded when the
value of β is too large (approximates to 100 in the experi-
ment). Therefore we can safely set them in a wide range in

practice.

Conclusion

In this paper, we disclose the phenomenon that noise labels
are usually caused by some ambiguous contents of the ex-
ample. Based on this observation, we propose to learn par-
tial multi-label problems in a novel strategy by exploiting
the potential connections between noisy labels and feature
contents. Under the supervision of the observed label ma-
trix, the proposed PML-NI approach jointly learn the multi-
label classifier and noisy label identifier by incorporating
the label correlation exploitation and feature-induced noise
model. Experiments results validate that the proposed ap-
proaches are superior to state-of-the-art approaches. In the
future, we plan to improve the PML-NI method by consid-
ering various forms of noisy labels and utilizing more pow-
erful learning models.

References

Boutell, M. R.; Luo, J.; Shen, X.; and Brown, C. M. 2004. Learning
multi-label scene classification. Pattern recognition 37(9):1757–
1771.

6460



Burkhardt, S., and Kramer, S. 2018. Online multi-label dependency
topic models for text classification. Machine Learning 107(5):859–
886.
Cai, J.-F.; Candès, E. J.; and Shen, Z. 2010. A singular value
thresholding algorithm for matrix completion. SIAM Journal on
optimization 20(4):1956–1982.
Candès, E. J., and Recht, B. 2009. Exact matrix completion via
convex optimization. Foundations of Computational mathematics
9(6):717.
Candes, E., and Tao, T. 2005. Decoding by linear programming.
arXiv preprint math/0502327.
Chang, C., and Lin, C. 2011. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and
Technology 2(3):27:1–27:27.
Chen, Y.-N., and Lin, H.-T. 2012. Feature-aware label space di-
mension reduction for multi-label classification. In Advances in
Neural Information Processing Systems, 1529–1537.
Chen, Z.-M.; Wei, X.-S.; Wang, P.; and Guo, Y. 2019. Multi-
label image recognition with graph convolutional networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 5177–5186.
Combettes, P. L., and Wajs, V. R. 2005. Signal recovery by prox-
imal forward-backward splitting. Multiscale Modeling & Simula-
tion 4(4):1168–1200.
Cour, T.; Sapp, B.; and Taskar, B. 2011. Learning from partial
labels. Journal of Machine Learning Research 12:1501–1536.
Demsar, J. 2006. Statistical comparisons of classifiers over multi-
ple data sets. J. Mach. Learn. Res. 7:1–30.
Fang, J., and Zhang, M. 2019. Partial multi-label learning via
credible label elicitation. In Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence, (AAAI-19).
Fazel, M.; Hindi, H.; and Boyd, S. 2004. Rank minimization and
applications in system theory. In Proceedings of the 2004 American
control conference, volume 4, 3273–3278. IEEE.
Feng Lei, B. A. 2019. Partial label learning with self-guided re-
training. In Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence, (AAAI-19).
Grandvalet, Y., and Bengio, Y. 2004. Learning from partial labels
with minimum entropy. Cirano Working Papers.
Huang, S.-J., and Zhou, Z.-H. 2012. Multi-label learning by ex-
ploiting label correlations locally. In Twenty-sixth AAAI conference
on artificial intelligence.
Huang, S.-J.; Xu, M.; Xie, M.-K.; Sugiyama, M.; Niu, G.; and
Chen, S. 2018. Active feature acquisition with supervised ma-
trix completion. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining,
1571–1579. ACM.
Huang, S.; Yu, Y.; and Zhou, Z. 2012. Multi-label hypothesis
reuse. In The 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12, Beijing, China,
August 12-16, 2012, 525–533.
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