
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Gromov-Wasserstein Factorization Models for Graph Clustering

Hongteng Xu1,2

1Infinia ML Inc. 2Department of ECE, Duke Univeristy
hongteng.xu@duke.edu

Abstract

We propose a new nonlinear factorization model for graphs
that are with topological structures, and optionally, node
attributes. This model is based on a pseudometric called
Gromov-Wasserstein (GW) discrepancy, which compares
graphs in a relational way. It estimates observed graphs as
GW barycenters constructed by a set of atoms with differ-
ent weights. By minimizing the GW discrepancy between
each observed graph and its GW barycenter-based estima-
tion, we learn the atoms and their weights associated with
the observed graphs. The model achieves a novel and flexi-
ble factorization mechanism under GW discrepancy, in which
both the observed graphs and the learnable atoms can be un-
aligned and with different sizes. We design an effective ap-
proximate algorithm for learning this Gromov-Wasserstein
factorization (GWF) model, unrolling loopy computations as
stacked modules and computing gradients with backpropaga-
tion. The stacked modules can be with two different archi-
tectures, which correspond to the proximal point algorithm
(PPA) and Bregman alternating direction method of multi-
pliers (BADMM), respectively. Experiments show that our
model obtains encouraging results on clustering graphs.

Introduction
As an important methodology for machine learning, fac-
torization models explore intrinsic structures of high-
dimensional observations explicitly, which have been widely
used in many learning tasks, e.g., data clustering (Ng, Jor-
dan, and Weiss 2002), dimensionality reduction (Candès et
al. 2011), recommendation systems (Wang and Blei 2011),
etc. In particular, factorization models decompose high-
dimensional observations into a set of atoms under specific
criteria and achieve their latent representations accordingly.
For each observation, its latent representation corresponds
to the coefficients associated with the atoms.1

However, most of the existing factorization models, such
as principal component analysis (PCA) (Pearson 1901),
nonnegative matrix factorization (NMF) (Sra and Dhillon

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In this paper, we borrow the terms “atoms” and “coeffi-
cients” from a kind of factorization model called dictionary learn-
ing (Aharon, Elad, and Bruckstein 2006).

min d2gw(B({Uk}Kk=1,λ; d
2
gw),C)

Figure 1: An illustration of our Gromov-Wasserstein factor-
ization model. Each star indicates a graph. For each graph,
the black curves show its edges, and the dots with different
colors are its nodes with different attributes.

2006), and dictionary learning (Aharon, Elad, and Bruck-
stein 2006), are designed for vectorized samples with the
same dimension. They are inapplicable to structural data,
e.g., graphs and point clouds. For example, in the task of
graph clustering, the observed graphs are often with dif-
ferent numbers of nodes, and the correspondences between
their nodes are often unknown, i.e., the graphs are un-
aligned. These unaligned graphs cannot be represented as
vectors directly. Although many graph embedding methods
have been proposed for these years with the help of graph
neural networks (Kipf and Welling 2016; Ying et al. 2018),
they often require side information like node attributes and
labels, which may not be available in practice. Moreover,
without explicit factorization mechanisms, these methods
cannot find the atoms that can reconstruct observed graphs,
and thus, the graph embeddings derived by them are not so
interpretable as the latent representation derived by factor-
ization models. Therefore, it is urgent to build a flexible fac-
torization model applicable to structural data.

To overcome the challenges above, we propose a novel
Gromov-Wasserstein factorization (GWF) model based on
Gromov-Wasserstein (GW) discrepancy (Mémoli 2011;
Chowdhury and Mémoli 2018) and barycenters (Peyré, Cu-
turi, and Solomon 2016). As illustrated in Fig. 1, for each
observed graph (i.e., the red star), our GWF model recon-
structs it based on a set of atoms (i.e., the orange stars cor-
responding to four graphs). The reconstruction (i.e., the blue
star) is the GW barycenter of the atoms that minimizes the
GW discrepancy to the observed graph. The weights of the
atoms (i.e., the blue arrows with different widths) formu-

6478

late the embedding of the observed graph. Learning GW
barycenters reconstructs graphs from atoms, and the GW
discrepancy provides a pseudometric to measure their re-
construction errors. We design an effective approximate al-
gorithm for learning the atoms and the graph embeddings
(the weights of the atoms), unrolling loopy computations
of GW discrepancy and barycenters and simplifying back-
propagation based on the envelope theorem (Afriat 1971).
The approximate algorithm can be implemented based on
either proximal point algorithm (PPA) (Xu, Luo, and Carin
2019) or Bregman alternating direction method of multipli-
ers (BADMM) (Wang and Banerjee 2014).

Our GWF model explicitly factorizes graphs into a set of
atoms. The atoms are shared by all observations while their
weights specialized for different individuals. This model has
several advantages. Firstly, it is with high flexibility. The ob-
served graphs, the atoms, and the GW barycenters can be
with different sizes, and their alignment is achieved by the
optimal transport corresponding to the GW discrepancy be-
tween them. Secondly, this model is compatible with exist-
ing models, which can be learned based on backpropaga-
tion and can be used as a structural regularizer in supervised
learning. In the aspect of data, this model is applicable no
matter whether the graphs are with node attributes or not.
Thirdly, the graph embeddings derived by our model is more
interpretable — they directly reflect the significance of the
atoms. To our knowledge, our work makes the first attempt
to establish an explicit factorization mechanism for graphs,
which extends traditional factorization models under GW
discrepancy. Experimental results show that the GWF model
achieves encouraging results in the task of graph clustering.

Proposed Model
In this work, we represent a graph as its adjacency ma-
trix C ∈ R

N×N , whose elements are nonnegative. Op-
tionally, when the graph is with D-dimensional node at-
tributes, we represent its node attributes as a matrix F ∈
R

N×D. Furthermore, for a graph we denote the empirical
distribution of its nodes as μ ∈ ΔN−1, where ΔN−1 =
{x = [xn] ∈ R

N |xn ≥ 0, and
∑

k xk = 1} repre-
sents a (N − 1)-simplex. Following (Peyré, Cuturi, and
Solomon 2016), we assume that the empirical distribution
is uniform, i.e., μ = 1

N 1N .2 Given a set of observations
{Ci ∈ [0,∞)Ni×Ni ,μi ∈ ΔNi−1}Ii=1, we aim at design-
ing a factorization model with K atoms U1:K = {Uk =
[uk

ij] ∈ [0,∞)Nk×Nk}Kk=1 and representing each observa-
tion Ci as an embedding vector λi = [λik] ∈ R

K , such
that the element λik can be interpreted as the significance of
the k-th atom for the i-th observation. Here, we assume that
each λi is in a (K − 1)-simplex as well, i.e., λi ∈ ΔK−1

for i = 1, ..., I . It should be noted that generally for different
Ci and Cj , their nodes are unaligned and Ni �= Nj .

Revisiting factorization models
Many existing factorization models assume that each vec-
torized data y ∈ R

N can be represented as the weighted
2Our model is applicable for other distributions, e.g., the distri-

bution derived from node degree (Xu, Luo, and Carin 2019).

sum of K atoms, i.e., y =
∑

k λkak = Aλ, where
A = [ak] ∈ R

N×K contains K atoms and λ = [λk] ∈ R
K

is the latent representation of y. Given a set of observations
{yi}Ii=1, a straightforward method to learn a factorization
model is solving the following optimization problem:

min{A,λ1:I}∈Ω

∑I

i=1
dploss(Aλi,yi). (1)

Here, Ω represents the constraints on A and/or λ1:I .
dloss(·, ·) defines the distance between yi and its estimation
Aλi, which is used as the loss function, and p indicates
the order of dloss. This optimization problem can be spe-
cialized as many classical models: without any constraints,
PCA (Pearson 1901) sets dloss to Euclidean distance and
p = 2; robust PCA (Candès et al. 2011) sets dloss to l1-
norm and p = 1; NMF (Sra and Dhillon 2006) sets Ω to
the set of nonnegative matrices; the Wasserstein dictionary
learning (Rolet, Cuturi, and Peyré 2016) sets dloss to Wasser-
stein distance and Ω the set of the nonnegative matrices with
normalized columns.

Furthermore, when λ ∈ ΔK−1, the linear factorization
model Aλ corresponds to learning a barycenter of the atoms
in the Euclidean space, which can be rewritten as

b(A,λ; d22) := Aλ = arg miny
∑K

k=1
λk‖y − ak‖22. (2)

Here, y represents the variable of the optimization problem
and its optimal solution is Aλ (i.e., an estimation of yi in
(1)). Extending the Euclidean metric to other metrics, we
obtain nonlinear factorization models, i.e., b(A,λ; dqb) :=

miny
∑K

k=1 λkd
q
b(y,ak), where db(·, ·) is the metric used

to calculate barycenters and q is its order. For example, when
ak ∈ ΔN−1 for k = 1, ...,K and db is Wasserstein metric,
b(a1:K ,λ; dqb) corresponds to the Wasserstein factorization
models (Schmitz et al. 2018). In summary, many existing
factorization models are in the following framework:

min{A,λ1:I}∈Ω

∑I

i=1
dploss(b(A,λi; d

q
b),yi). (3)

Gromov-Wasserstein factorization
As aforementioned, when the observed data are graphs, i.e.,
replacing the vectors y1:I and the atoms A in (3) with graphs
C1:I and their atoms U1:K , respectively, the classic metrics
become inapplicable. In such a situation, we set the dloss and
db in (3) to GW discrepancy, denoted as dgw, and achieve
the proposed GWF model. The GW discrepancy is an exten-
sion of the Gromov-Wasserstein distance (Mémoli 2011) on
metric measure spaces:
Definition (Gromov-Wasserstein distance) Let (X, dX , uX)
and (Y, dY , uY) be two metric measure spaces, where
(X, dX) is a compact metric space and uX is a Borel prob-
ability measure on X (with (Y, dY , uY) defined in the same
way). For p ∈ [1,∞), the p-th order Gromov-Wasserstein
distance dgw(uX , uY) is defined as

inf
π∈Π(uX ,uY)

(∫∫
X×Y,X×Y

Lp
x,y,x′,y′ dπ(x, y) dπ(x

′, y′)
) 1

p
,

where Lx,y,x′,y′ = |dX(x, x′) − dY (y, y
′)| is the loss func-

tion and Π(uX , uY) is the set of all probability measures on
X × Y with uX and uY as marginals.

6479

The GW discrepancy is similar to the GW distance,
but it does not require the dX and the dY to be strict
metrics. Therefore, it defines a flexible pseudometric on
structural data like graphs (Chowdhury and Mémoli 2018;
Xu, Luo, and Carin 2019) and point clouds (Peyré, Cuturi,
and Solomon 2016). In particular, given two graphs {Cs =
[csij] ∈ R

Ns×Ns ,Ct = [cti′j′] ∈ R
Nt×Nt} and their empiri-

cal entity distributions {μs ∈ R
Ns ,μt ∈ R

Nt}, the order-2
GW discrepancy between them, denoted as dgw(Cs,Ct), is
defined as

min
T∈Π(μs,μt)

(∑Ns

i,j=1

∑Nt

i′,j′=1
|csij − cti′j′ |2Tii′Tjj′

) 1
2
, (4)

where Π(μs,μt) = {T ≥ 0|T1Nt
= μs,T

�1Ns
= μt}.

The optimal T indicates the optimal transport between the
nodes of Cs and those of Ct. According to (Peyré, Cuturi,
and Solomon 2016), we can rewrite (4) as

dgw(Cs,Ct) := min
T∈Π(μs,μt)

(〈Cst − 2CsTC�
t , T 〉) 1

2 , (5)

where 〈·, ·〉 represents the inner product of matrices, Cst =
(Cs � Cs)μs1

�
Nt

+ 1Ns
μ�

t (Ct � Ct)
� and � represents

the Hadamard product of matrices. The computation of the
GW discrepancy corresponds to an optimal transport prob-
lem. This problem can be solved iteratively by the entropic
regularization-based method (Peyré, Cuturi, and Solomon
2016) or the proximal point algorithm (Xu, Luo, and Carin
2019).

Given K graphs {Uk}Kk=1 and their weights λ = [λk] ∈
ΔK−1, we can naturally define their order-2 GW barycenter
based on the GW discrepancy in (5):

B(U1:K ,λ; d2gw) := arg min
B

∑
k
λkd

2
gw(B,Uk). (6)

According to the definition we can find that the computation
of the GW barycenter involves solving K optimal transport
problems iteratively (Peyré, Cuturi, and Solomon 2016).

Plugging dgw into (3) and setting p = q = 2, we obtain
the proposed Gromov-Wasserstein factorization model:

min
U1:K≥0,λ1:I∈ΔK−1

∑I

i=1
d2gw(B(U1:K ,λi; d

2
gw),Ci). (7)

In this model, each graph Ci is estimated by a GW barycen-
ter of atoms U1:K . The weights associated with the atoms
formulate the embedding vector λi. Both the atoms and the
embeddings are learned to minimize the GW discrepancy
between the observed graphs and their GW barycenter-based
estimations. As aforementioned, we require the elements of
each atom to be nonnegative and make each embedding in a
(K − 1)-simplex.

As shown in Figure 1, this GWF model applies several
atoms to construct a collection of graphs, in which each
graph is a barycenter of the atoms. Each observed graph is
reconstructed by the most similar graph in the collection,
and the embedding vector λi corresponding to the recon-
structed graph indicates the significance of different atoms.
The embeddings of observed graphs can be used as fea-
tures for many downstream tasks, e.g., graph clustering. The

GWF model is very flexible — the atoms and the observed
graphs can be with different sizes. Differing from the graph
embedding methods in (Henaff, Bruna, and LeCun 2015;
Ying et al. 2018), the proposed GWF model does not rely
on any side information like labels of graphs in the learning
phase. Additionally, because of using an explicit factoriza-
tion mechanism, the proposed model has better interpretabil-
ity than many existing methods.

Learning Algorithm
Reformulation of the problem
Learning GWF models is challenging because (7) is
a highly-nonlinear constrained optimization problem. As
shown in (5, 6), the computation of the GW discrepancy and
that of the GW barycenter correspond to two optimization
problems, respectively, so the GWF model in (7) is a com-
plicated composition of multiple optimization tasks that are
with different variables. Facing such a difficult problem, we
reformulate it and simplify its computations.

Reparametrization of target variables To reformulate
(7) as an unconstrained problem, we further parametrize the
parameters U1:K and λ1:I as

uk
ij = f(vkij), ∀k = 1, ...,K, ∀i, j = 1, ..., Nk,

λi = g(zi), ∀i = 1, ..., I.
(8)

where V1:K = {Vk = [vkij] ∈ R
Nk×Nk}Kk=1 and z1:I =

{zi = [zik] ∈ R
K} are new unconstrained parameters,

f(·) = ReLU(·) and g(·) = Softmax(·) are two functions
mapping the new parameters to the feasible domains of orig-
inal problem. Note that we use ReLU(·) to pursue atoms
with sparse edges. Accordingly, we use the zi as the embed-
ding of the graph Ci.

Unrolling loops For each Ci, the feedforward computa-
tion of its objective function in (7) corresponds to two steps:
i) solving K optimal transport problems iteratively to esti-
mate a GW barycenter; ii) solving one more optimal trans-
port problem to derive the GW discrepancy between the
GW barycenter and Ci. Each step contains loopy compu-
tations of optimal transport matrices. We unroll the loops
as stacked modules shown in Figure 2(a). Specifically, we
design a Gromov-Wasserstein discrepancy (GWD) module
with M layers to achieve an approximation of GW discrep-
ancy. Based on this GWD module, we further propose a GW
barycenter (GWB) module with L layers to obtain an ap-
proximation of GW barycenter. Figure 2(b) illustrates one
layer of the GWB module.

Based on these two modifications, we reformulate (7) as

min
V1:K ,z1:I

∑I

i=1
d
2(M)
gw (B(L)(f(V1:K), g(zi); d

2
gw),Ci). (9)

Implementations of the modules
The GWD module is the backbone of our algorithm. In this
paper, we propose two options to implement this module.
This first one is the proximal point algorithm (PPA) in (Xu
et al. 2019; Xu, Luo, and Carin 2019). Given {Cs,μs} and

6480

GWB
L-Layer

GWD
M-Layer

GWD
Loss

B(0)

T (0) T (M)

B(L)

d(M)
gw (B(L),Ci)

Ci

(a) Stacked computational modules

GWD
M-Layer

GWD
M-Layer

GWD
M-Layer

: Av
er
ag
e

B(l)

B(l+1)

T
(l+1)
1

T
(l+1)
2

T
(l+1)
K

T
(l)
1

T
(l)
2

T
(l)
K

ReLU(V 1)

ReLU(V 2)

ReLU(V K)

Softmax(zi)

(b) One layer of the GW barycenter module

Figure 2: (a) The stacked modules for learning GWF mod-
els. (b) One layer of the GWB module. In each figure, the red
arrows represent the paths used for both feedforward com-
putation and backpropagation, while the black ones are just
for feedforward computation. The GWD corresponds to Al-
gorithms 1 and 2, the GWB corresponds to Algorithm 3, and
the GWD loss corresponds to (12).

Algorithm 1 GWD(M)
PPA (Cs,Ct)

1: Cst = (Cs �Cs)1μ
�
t + μs1

�(Ct �Ct)
�

2: T (0) = μsμ
�
t , a = μs

3: for m = 0, ...,M − 1
4: Φ = exp(− 1

γ (Cst − 2CsT
(m)C�

t))� T (m).
5: b = μt

Φ�a
, a = μs

Φb , and T (m+1) = diag(a)Φdiag(b).
6: return T (M)

{Ct,μt}, the PPA solve (5) iteratively. In each iteration, it
solves the following problem:

T (m+1) =arg minT∈Π(μs,μt)〈Cst − 2CsT
(m)C�

t ,T 〉
+ γKL(T ‖T (m)),

where KL(T ‖T (m)) computes the KL-divergence between
the optimal transport matrix and its previous estimation.
We solve this problem approximately by one-step Sinkhorn-
Knopp update (Sinkhorn and Knopp 1967; Xu, Luo, and
Carin 2019). After M iterations, we derive the M -step ap-
proximation of the optimal transport matrix. Accordingly,
we show the scheme of the PPA-based GWD module in
Algorithm 1. This method is based on the work in (Xu et
al. 2019), which replaces the entropy regularizer in (Peyré,
Cuturi, and Solomon 2016) with a KL divergence. Accord-
ing to (Xu et al. 2019; Xu, Luo, and Carin 2019), the PPA
outperforms the entropic GW method (Peyré, Cuturi, and
Solomon 2016) on both stability and convergence.

Besides the PPA-based GWD module, we propose a dif-
ferent kind of GWD module based on the Bregman alternat-
ing direction method of multipliers (BADMM) (Wang and
Banerjee 2014). Specifically, introducing an auxiliary vari-

Algorithm 2 GWD(M)
BADMM(Cs,Ct)

1: Cst = (Cs �Cs)1μ
�
t + μs1

�(Ct �Ct)
�

2: T (0) = μsμ
�
t , Z = 0.

3: for m = 0, ...,M − 1
4: Φ1 = exp(1γ (2C

�
s T (m)Ct +Z))� T (m).

5: S = Φ1diag(μt

Φ�
1 1

).

6: Φ2 = exp(− 1
γ (Cst − 2CsSC

�
t +Z))� S.

7: T (m+1) = diag(μs

Φ21
)Φ2.

8: Z = Z + γ(T (m+1) − S).
9: return T (M)

able S, we rewrite (5) as

minT∈Π(μs,·),S∈Π(·,μt),T=S〈Cst − 2CsSC
�
t , T 〉, (10)

where Π(μs, ·) = {T ≥ 0 | T1M = μs} and Π(·,μt) =
{T ≥ 0 | T�1N = μt}. We further introduce a dual vari-
able Z and solve (10) by the following three steps (Wang
and Banerjee 2014; Ye et al. 2017).

T (m+1) =arg minT∈Π(μs,·)〈Cst − 2CsS
(m)C�

t ,T 〉
+ 〈Z(m),T − S(m)〉+ γKL(T ‖S(m)),

S(m+1) =arg minS∈Π(·,μt)〈−2C�
s T (m+1)Ct,S〉

+ 〈Z(m),T (m+1) − S〉+ γKL(S‖T (m+1)),

Z(m+1) =Z(m) + γ(T (m+1) − S(m+1)).

(11)

Accordingly, Algorithm 2 gives the scheme of the BADMM-
based GWD module.

The BADMM algorithm is originally designed for com-
puting Wasserstein distance (Wang and Banerjee 2014;
Ye et al. 2017). To our knowledge, our work is the first at-
tempt to apply BADMM to compute the GW discrepancy.
We test these two GWD modules on synthetic graphs and
find that they are suitable for different scenarios. In partic-
ular, we synthesize 100 pairs of undirected graphs and 100
pairs of directed graphs, respectively. Each graph is with 100
nodes. The directed graphs are generated based on Barabási-
Albert (BA) model (Barabási and others 2016). For each di-
rected graph, we add its adjacency matrix to its transpose
and derive an undirected graph accordingly. For each pair
of graphs, we apply our GWD modules to compute the GW
discrepancy between the two graphs, and then, we calculate
the mean and the standard deviation of the GW discrepancy
in each step. The comparisons for the PPA-based module
and the BADMM-based module are shown in Figures 3(a)
and 3(b). The PPA-based module requires fewer steps than
the BADMM-based module to converge to a stable optimal
transport matrix for both undirected and directed graphs.
However, the BADMM-based module can achieve smaller
GW discrepancy when applying to directed graphs. In other
words, we need to select different GWD modules according
to the structures of observed graphs and the practical con-
straints on computational complexity.

The GWB module is implemented based on the GWD
modules. As shown in Algorithm 3, given an initial GW

6481

The number of iterations

PPA
BADMM

G
W

 D
is

cr
ep

an
cy

(a) Undirected graphs

PPA
BADMM

The number of iterations
G

W
 D

is
cr

ep
an

cy
(b) Directed graphs

Figure 3: Comparisons for PPA and BADMM.

Algorithm 3 GWB(L)(U1:K ,λ,B(0),μb)

1: for l = 0, ..., L− 1
2: for k = 1, ...,K

3: T
(l+1)
k = GWD(M)(B(l),Uk).

4: B(l+1) = 1
μbμ�

b

∑K
k=1 λkT

(l+1)
k Uk(T

(l+1)
k)�.

5: return B(L), T (L)
1:K

barycenter B(0) and its empirical distribution μb, we obtain
a L-step approximation of GW barycenter and the optimal
transport matrices between the barycenter and the atoms. In
particular, we calculate the GW barycenter via alternating
optimization: 1) update the optimal transports between the
atoms and the barycenter; and 2) update the barycenter ac-
cordingly. Figure 2b illustrates one step of the GWB module
(i.e., the lines 2-4 in Algorithm 3), where T

(l)
k is the esti-

mated optimal transport in the l-th step of the GWB module.
We update it by calling a GWD-module with M inner itera-
tions, and the output is denoted as T (l+1)

k .

Envelope theorem-based backpropagation
Given the modules proposed above, we can compute
d
2(M)
gw (B(L)(f(V1:K), g(zi); d

2
gw),Ci) easily and apply

backpropagation to update variables V1:K and z1:L. Here,
we take advantage of the envelope theorem (Afriat 1971) to
simplify the computation of backpropagation. In particular,
we compute each optimal transport matrix, i.e., the T

(L)
1:K

used to calculate the GW barycenter and the T (M) between
the GW barycenter and the observed graph, based on current
parameters. Accordingly, the objective function becomes

d2(M)
gw (B(L)(f(V1:K), g(zi); d

2
gw),Ci)

= 〈Cst − 2B(L)T (M)C�
i , T (M)〉

(12)

where

Cst = (B(L) �B(L))μb1
�
Ni

+ 1Niμ
�
i (Ci �Ci)

�,

B(L) =
1

μbμ�
b

∑K

k=1
gk(zi)T

(L)
k f(Vk)(T

(L)
k)�.

(13)

Based on the envelope theorem above, we calculate the gra-
dient of (12) with fixed optimal transport matrices. The gra-

Algorithm 4 Learning GWF models

Require: A dataset D = {Ci,μi}Ii=1.
1: Initialize atoms V1:K and z1:I randomly.
2: Set the node distributions of the atoms as uniform dis-

tributions.
3: For epoch = 1, 2, ...
4: For i = 1, ..., I
5: Initialize B(0) = Ci, μb = μi.
6: B(L),T

(L)
1:K=GWB(L)(f(V1:K), g(zi),B

(0),μb).
7: T (M) = GWD(M)(B(L),Ci).
8: Get d

2(M)
gw (B(L)(f(V1:K), g(zi); d

2
gw),Ci) via

(12).
9: Update V1:K and zi via backpropagation.

10: return V1:K and z1:I .

dients for the optimal transport matrices can be ignored
when applying backpropagation, which improves the effi-
ciency of our algorithm significantly. In summary, we learn
our GWF model by Algorithm 4.

Extensions
Given more side information, we can extend our GWF mod-
els to more complicated scenarios.

Learning with labels When some graphs are labeled, we
can achieve semi-supervised learning of our GWF model by
adding a label-related loss:

min
V1:K ,z1:I ,φ

∑I

i=1
d
2(M)
gw (B(L)(f(V1:K), g(zi); d

2
gw),Ci)

+ β
∑

i∈Dl

loss(φ(zi), li).
(14)

Here, loss(φ(zi), li) represents the label-related loss, where
li is the label of the i-th graph and φ(·) is a learnable func-
tion mapping the embedding zi to the label space. A typical
choice of the loss is CrossEntropy(MLP(zi)), li).

Learning with node attributes Sometimes the nodes of
each graph are associated with vectorized features. In such a
situation, the observations are {Ci,μi,Fi}Ii=1, where Fi ∈
R

Ni×D represents the features of nodes. Accordingly, the
atoms of our GWF model becomes {U1:K ,H1:K}, where
Uk ∈ [0,∞)Nk×Nk is the adjacency matrix of the k-th
atom and Hk ∈ R

Nk×D represents the features of its nodes.
To learn this GWF model, we can replace the GW discrep-
ancy with the fused Gromov-Wasserstein (FGW) discrep-
ancy in (Vayer et al. 2019a): for two graphs {Cs,μs,Fs}
and {Ct,μt,Ft}, their FGW discrepancy is

dfgw({Cs,Fs}, {Ct,Ft})
= minT∈Π(μs,μt)(〈Cst − 2CsTCT

t +D,T 〉) 1
2 ,

(15)

where D = (Fs�Fs)1D1�
Nt

+1Ns
1�
D(Ft�Ft)

�−2FsF
�
t

is the Euclidean distance matrix computed based on features.
We can approximate the FGW discrepancy by our GWD
modules as well — just replace the line 1 in Algorithm 1
(or Algorithm 2) with Cst = (Cs�Cs)1μ

�
t +μs1

�(Ct�

6482

Ct)
� +D. Similar to (12), the loss function becomes

d
2(M)
fgw ({B(L),F

(L)
b }, {Ci,Fi})

= 〈Cst − 2B(L)T (M)C�
i +D(L), T (M)〉,

(16)

where the new terms are

D(L) =(F
(L)
b � F

(L)
b)1D1�

Ni
+ 1Ni

1�
D(Fi � Fi)

�

− 2F
(L)
b F�

i ,

F
(L)
b =

1

μb1�
D

∑K

k=1
gk(zi)T

(L)
k Hk.

(17)

Related Work
GW discrepancy and its applications
As a pseudometric of structural data like graphs, GW dis-
crepancy (Chowdhury and Mémoli 2018) has been applied
to many problems, e.g., registering 3D point clouds (Mémoli
2011), aligning protein networks of different species (Xu,
Luo, and Carin 2019), and matching vocabulary sets of dif-
ferent languages (Alvarez-Melis and Jaakkola 2018). For
the graphs with node attributes, the work in (Vayer et
al. 2019a) proposes FGW discrepancy, which combines
the GW discrepancy between graph structures with the
Wasserstein discrepancy (Villani 2008) between node at-
tributes. GW barycenters are proposed in (Peyré, Cuturi,
and Solomon 2016), achieving the interpolation of multi-
ple graphs. Recently, GW discrepancy is applied as objec-
tive functions when learning machine learning models. The
work in (Bunne et al. 2019) trains coupled generative mod-
els in incomparable spaces by minimizing the GW discrep-
ancy between their samples. The work in (Xu et al. 2019)
learns node embeddings for unaligned pairwise graphs based
on their GW discrepancy. Most of the existing works calcu-
late GW discrepancy by Sinkhorn iterations(Sinkhorn and
Knopp 1967), whose complexity per iteration is O(N3) for
the graphs with N nodes. The high computational complex-
ity limits the applications of GW discrepancy. These years,
many variants of GW discrepancy have been proposed,
e.g., the recursive GW discrepancy (Xu, Luo, and Carin
2019), and the sliced GW discrepancy (Vayer et al. 2019b).
Although these works have achieved encouraging results
in many tasks, none of them consider building Gromov-
Wasserstein factorization models as we do.

Graph clustering methods
Graph clustering is significant for many practical applica-
tions, e.g., molecules modeling (Borgwardt et al. 2005) and
social network analysis (Yanardag and Vishwanathan 2015).
Different from graph partitioning, which finds clusters of
nodes in a graph, graph clustering aims at finding clusters
for different graphs. The key to this problem is embedding
unaligned graphs. Many methods have been proposed to at-
tack this problem, and most of them can be categorized into
kernel-based methods, e.g., the Weisfeiler-Lehman kernel
in (Vishwanathan et al. 2010). In principle, these methods it-
eratively aggregate node features according to the topology
of the graphs. Recently, such a strategy becomes learnable
with the help of graph convolutional networks (GCNs) (Kipf

and Welling 2016). Many GCN-based methods have been
proposed to embed graphs, e.g., the large-scale embedding
method in (Nie, Zhu, and Li 2017), and the hierarchical em-
bedding method in (Ying et al. 2018). However, these meth-
ods rely on the labels and the attributes of nodes, which
are often inapplicable for unsupervised learning. Moreover,
the embeddings achieved by them are often with low inter-
pretability because of their deep and highly-nonlinear pro-
cesses. Besides the methods above, the GW discrepancy-
based methods in (Peyré, Cuturi, and Solomon 2016; Vayer
et al. 2019a) provide another strategy — learning a distance
matrix for graphs based on their pairwise (fused) GW dis-
crepancy and applying spectral clustering accordingly. This
strategy is feasible even if the side information of nodes is
not available, but its computational complexity is very high.
Compared with the methods above, our GWF model pro-
vides another strategy to embed graphs in a scalable and
theoretically-supportive way and make the embeddings in-
terpretable in the framework of factorization models.

Experiments
To demonstrate the usefulness of our GWF model, we test
it on four graph datasets and compare it with state-of-the-art
methods on graph clustering. When implementing our GWF
model, we set its hyperparameters as follows: the number of
atoms is K = 30; the number of layers in the GWD module
is M = 50; the weight of regularizer γ is 0.01 for the PPA-
based GWD module and 1 for the BADMM-based GWD
module; the number of layers in the GWB module is L = 2.
For the graph data without node attributes, the parameters
of our GWF model involve V1:K and z1:I . For the graph
data with node attributes, we will further learn node em-
beddings of the atoms, i.e., H1:K . We use Adam (Kingma
and Ba 2014) to train our GWF model. The learning rate
of our algorithm is 0.05, and the number of epochs is 10.
To accelerate the convergence of our algorithm, we apply a
warm-start strategy: we randomly select K observed graphs
as initial atoms. For each atom, the number of its nodes is
equal to that of the selected graph. The code is at https:
//github.com/HongtengXu/Relational-Factorization-Model.

Graph clustering
We consider four commonly-used graph datasets (Kersting
et al. 2016) in our experiments: the AIDS (Riesen and Bunke
2008), the PROTEIN dataset and its full version PROTEIN-
F (Borgwardt et al. 2005), and the IMDB-B (Yanardag and
Vishwanathan 2015). For each dataset, their graphs are cat-
egorized into two classes. The graphs in AIDS, PROTEIN,
and PROTEIN-F represent molecules or proteins, which are
with node attributes. The dimensions of the node attributes
are 4 for AIDS, 1 for PROTEIN, and 29 for PROTEIN-F.
The graphs in IMDB-B represent user interactions in so-
cial networks, which merely contain topological informa-
tion. We show the details of the datasets in Table 1.

We apply various methods to cluster the graphs in each
dataset and compare their performance in the aspect of clus-
tering accuracy. For each dataset, we train a GWF model
and applying K-means to learned embeddings z1:I . Besides

6483

Class 1
Class 2

(a) AIDS

Class 1
Class 2

(b) PROTEIN

Class 1
Class 2

(c) PROTEIN-F

 Class 1
 Class 2

(d) IMDB-B (e) Loss v.s. Epochs

Figure 4: (a-d) Visualizations of z1:I based on t-SNE. (e) The convergence and the runtime of our method on IMDB-B.

our GWF model, we consider two state-of-the-art methods
as our baselines. The first is the fused Gromov-Wasserstein
kernel method (FGWK) in (Vayer et al. 2019a). Given N
graphs, the FGWK method computes their pairwise fused
GW discrepancy and construct a N × N kernel matrix
exp(−dfgw/β).3 Applying spectral clustering to the kernel
matrix, we can cluster observed graphs into two clusters.
When the node attributes are unavailable for the observed
graphs, this method computes pairwise GW discrepancy in-
stead to construct the kernel matrix. This method has been
proven to be superior to traditional kernel-based methods
on many datasets, including the PROTEIN and the IMDB-
B datasets used in this work. The second competitor of our
method is the K-means of graphs based on GW barycen-
ter (Peyré, Cuturi, and Solomon 2016) (GWB-KM). This
method applies K-means to find centers of clusters itera-
tively. The centers are initialized randomly as two observed
graphs. In each iteration, we first categorize the graphs into
different clusters according to their GW discrepancy to the
centers, and then we recalculate each center as the GW
barycenter of the graphs in the corresponding cluster.

Table 1 shows that our GWF model outperforms its com-
petitors consistently, which demonstrates its superiority in
the task of graph clustering.4 We implement our GWF model
based on PPA and BADMM, respectively. The performance
of the PPA-based model is better than that of the BADMM-
based model in general because i) the graphs in the four
datasets are undirected; ii) the BADMM-based model gen-
erally requires more steps to converge in the training phase,
and 50 steps may be too few for it.5 Additionally, given
I graphs, FGWK calculates O(I2) GW discrepancy, while
both GWB-KM and our GWF model only need to calculate
O(LKI) GW discrepancy. Because we can set LK � I ,
our model is more suitable for large-scale clustering prob-

3In (Vayer et al. 2019a), the authors claim that exp(−dfgw/β)
is a noisy observation of a true positive semidefinite kernel. Our im-
plementation confirms its performance, but whether it can always
be positive semidefinite may be questionable.

4For the data with two clusters, given the ground truth labels
y ∈ {0, 1}N and the estimated labels ŷ ∈ {0, 1}N , we calculate
the clustering accuracy via 1− 1

N
min(‖y− ŷ‖1, ‖y− 1+ ŷ‖1).

5When applying BADMM with M = 300, its performance be-
comes close to that of PPA while the runtime is much longer. Un-
less the graphs are directed and the dataset is small, we prefer using
the PPA-based method.

Table 1: Comparisons on clustering accuracy (%)

Dataset

GWD

AIDS PROTEIN PROTEIN-F IMDB-B
graphs 2000 1113 1113 1000
Ave. #nodes 15.69 39.06 39.06 19.77
Ave. #edges 16.20 72.82 72.82 96.53
FGWK O(I2) 91.0±0.7 66.4±0.8 66.0±0.9 56.7±1.5
GWB-KM O(LKI) 95.2±0.9 64.7±1.1 62.9±1.3 53.5±2.3
GWFBADMM O(LKI) 97.6±0.8 69.2±1.0 68.1±1.1 55.9±1.8
GWFPPA O(LKI) 99.5±0.4 70.7±0.7 69.3±0.8 60.2±1.6

Table 2: Comparisons on classification accuracy (%)

Method PROTEIN Method IMDB-B
HOPPERK 71.6±3.7 GCK 56.9±4.0
PROPAK 60.3±5.1 SPK 56.2±3.1
FGWK 75.1±2.9 FGWK 64.2±3.3
GWFBADMM 71.4±3.6 GWFBADMM 62.4±3.8
GWFPPA 73.7±2.0 GWFPPA 63.9±2.7

lems. Figure 4 further visualizes the embeddings z1:I for
the four datasets based on t-SNE (Maaten and Hinton 2008).
The visualization results further verify the effectiveness of
our GWF model — for each dataset, the embeddings derived
by our GWF model indeed reflect the clustering structure of
the graphs. We show the convergence and the runtime of our
learning method in Figure 4e.

Besides graph clustering, we also consider graph classi-
fication given the labels of graphs. In such a situation, we
apply the learning strategy in (14) to learn our GWF model.
The baselines include the kernel-based graph classification
methods like the shortest path kernel (SPK) (Borgwardt et
al. 2005), the HOPPER kernel (HOPPERK) (Feragen et al.
2013), the propagation kernel (PROPAK) (Neumann et al.
2016), the graphlet count kernel (GCK) (Shervashidze et
al. 2009), and the FGWK mentioned above. Each of these
methods derives a kernel matrix and train a classifier based
on kernel SVM. We test different methods based on 10-fold
cross-validation. Table 2 shows the classification accuracy
achieved by different methods on two datasets. Compared
with the state-of-the-art method FGWK, our GWF model
achieves comparable performance in the task of graph clas-
sification, and the fluctuations of our results are smaller than
those of FGWK’s results.

6484

Conclusion and Future Work
In this paper, we propose a novel Gromov-Wassserstein fac-
torization model. It is a pioneering work achieving an ex-
plicit factorization mechanism for graph clustering. We de-
sign an efficient learning algorithm for learning this model
with the help of the envelope theorem. Experiments demon-
strate that our model outperforms many existing methods in
the tasks of graph clustering. In the future, we plan to reduce
the computational complexity of our learning algorithm fur-
ther and consider its applications to large-scale graphs.

Acknowledgements This research was supported in part
by DARPA, DOE, NIH, ONR, NSF, and Inifina ML.

References
Afriat, S. 1971. Theory of maxima and the method of lagrange.
SIAM Journal on Applied Mathematics 20(3):343–357.
Aharon, M.; Elad, M.; and Bruckstein, A. 2006. K-svd: An algo-
rithm for designing overcomplete dictionaries for sparse represen-
tation. IEEE Transactions on signal processing 54(11):4311–4322.
Alvarez-Melis, D., and Jaakkola, T. S. 2018. Gromov-Wasserstein
alignment of word embedding spaces. In EMNLP.
Barabási, A.-L., et al. 2016. Network science. Cambridge univer-
sity press.
Borgwardt, K. M.; Ong, C. S.; Schönauer, S.; Vishwanathan, S.;
Smola, A. J.; and Kriegel, H.-P. 2005. Protein function prediction
via graph kernels. Bioinformatics 21(suppl 1):i47–i56.
Bunne, C.; Alvarez-Melis, D.; Krause, A.; and Jegelka, S. 2019.
Learning generative models across incomparable spaces. In ICML.
Candès, E. J.; Li, X.; Ma, Y.; and Wright, J. 2011. Robust principal
component analysis? Journal of the ACM 58(3):11.
Chowdhury, S., and Mémoli, F. 2018. The gromov-Wasserstein
distance between networks and stable network invariants. arXiv
preprint arXiv:1808.04337.
Feragen, A.; Kasenburg, N.; Petersen, J.; de Bruijne, M.; and Borg-
wardt, K. 2013. Scalable kernels for graphs with continuous at-
tributes. In NeurIPS.
Henaff, M.; Bruna, J.; and LeCun, Y. 2015. Deep con-
volutional networks on graph-structured data. arXiv preprint
arXiv:1506.05163.
Kersting, K.; Kriege, N. M.; Morris, C.; Mutzel, P.; and Neumann,
M. 2016. Benchmark data sets for graph kernels.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Kipf, T. N., and Welling, M. 2016. Semi-supervised clas-
sification with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Maaten, L. v. d., and Hinton, G. 2008. Visualizing data using t-sne.
Journal of machine learning research 9(Nov):2579–2605.
Mémoli, F. 2011. Gromov-Wasserstein distances and the metric
approach to object matching. Foundations of computational math-
ematics 11(4):417–487.
Neumann, M.; Garnett, R.; Bauckhage, C.; and Kersting, K. 2016.
Propagation kernels: efficient graph kernels from propagated infor-
mation. Machine Learning 102(2):209–245.
Ng, A. Y.; Jordan, M. I.; and Weiss, Y. 2002. On spectral clustering:
Analysis and an algorithm. In NeurIPS.
Nie, F.; Zhu, W.; and Li, X. 2017. Unsupervised large graph em-
bedding. In AAAI.

Pearson, K. 1901. Liii. on lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin Philosoph-
ical Magazine and Journal of Science 2(11):559–572.
Peyré, G.; Cuturi, M.; and Solomon, J. 2016. Gromov-Wasserstein
averaging of kernel and distance matrices. In ICML.
Riesen, K., and Bunke, H. 2008. Iam graph database repository
for graph based pattern recognition and machine learning. In Joint
IAPR Workshop, 287–297.
Rolet, A.; Cuturi, M.; and Peyré, G. 2016. Fast dictionary learning
with a smoothed Wasserstein loss. In AISTATS.
Schmitz, M. A.; Heitz, M.; Bonneel, N.; Ngole, F.; Coeurjolly, D.;
Cuturi, M.; Peyré, G.; and Starck, J.-L. 2018. Wasserstein dic-
tionary learning: Optimal transport-based unsupervised nonlinear
dictionary learning. SIAM Journal on Imaging Sciences 11(1):643–
678.
Shervashidze, N.; Vishwanathan, S.; Petri, T.; Mehlhorn, K.; and
Borgwardt, K. 2009. Efficient graphlet kernels for large graph
comparison. In AISTATS.
Sinkhorn, R., and Knopp, P. 1967. Concerning nonnegative matri-
ces and doubly stochastic matrices. Pacific Journal of Mathematics
21(2):343–348.
Sra, S., and Dhillon, I. S. 2006. Generalized nonnegative matrix
approximations with bregman divergences. In NeurIPS.
Vayer, T.; Chapel, L.; Flamary, R.; Tavenard, R.; and Courty, N.
2019a. Optimal transport for structured data with application on
graphs. In ICML.
Vayer, T.; Flamary, R.; Tavenard, R.; Chapel, L.; and Courty,
N. 2019b. Sliced gromov-Wasserstein. arXiv preprint
arXiv:1905.10124.
Villani, C. 2008. Optimal transport: Old and new, volume 338.
Springer Science & Business Media.
Vishwanathan, S. V. N.; Schraudolph, N. N.; Kondor, R.; and Borg-
wardt, K. M. 2010. Graph kernels. Journal of Machine Learning
Research 11(Apr):1201–1242.
Wang, H., and Banerjee, A. 2014. Bregman alternating direction
method of multipliers. In NeurIPS.
Wang, C., and Blei, D. M. 2011. Collaborative topic modeling for
recommending scientific articles. In KDD.
Xu, H.; Luo, D.; Zha, H.; and Carin, L. 2019. Gromov-Wasserstein
learning for graph matching and node embedding. In ICML.
Xu, H.; Luo, D.; and Carin, L. 2019. Scalable Gromov-Wasserstein
learning for graph partitioning and matching. arXiv preprint
arXiv:1905.07645.
Yanardag, P., and Vishwanathan, S. 2015. Deep graph kernels. In
KDD.
Ye, J.; Wu, P.; Wang, J. Z.; and Li, J. 2017. Fast discrete distribution
clustering using Wasserstein barycenter with sparse support. IEEE
Transactions on Signal Processing 65(9):2317–2332.
Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; and Leskovec,
J. 2018. Hierarchical graph representation learning with differen-
tiable pooling. In NeurIPS.

6485

