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Abstract

Recent works on domain adaptation reveal the effective-
ness of adversarial learning on filling the discrepancy be-
tween source and target domains. However, two common lim-
itations exist in current adversarial-learning-based methods.
First, samples from two domains alone are not sufficient to
ensure domain-invariance at most part of latent space. Sec-
ond, the domain discriminator involved in these methods can
only judge real or fake with the guidance of hard label, while
it is more reasonable to use soft scores to evaluate the gener-
ated images or features, i.e., to fully utilize the inter-domain
information. In this paper, we present adversarial domain
adaptation with domain mixup (DM-ADA), which guaran-
tees domain-invariance in a more continuous latent space and
guides the domain discriminator in judging samples’ differ-
ence relative to source and target domains. Domain mixup is
jointly conducted on pixel and feature level to improve the ro-
bustness of models. Extensive experiments prove that the pro-
posed approach can achieve superior performance on tasks
with various degrees of domain shift and data complexity.

Introduction
In recent years, with the appearance of Convolutional Neu-
ral Networks (CNNs), many classification-based challenges
have been tackled with an extremely high accuracy. These
powerful CNN architectures, like AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) and ResNet (He et al. 2016),
are capable of efficiently extracting low-level and high-level
features with the guidance of labeled data. However, because
of the existence of domain shift, models trained on a specific
domain suffer from poorer performance when transferred to
another domain. This problem is of vital significance in the
case where labeled data are unavailable on target domain.
Thus how to use these unlabeled data from target domain to
fill the domain discrepancy is the main issue in the field of
domain adaptation (Pan and Yang 2010).

Beginning with the work of gradient reverse (Ganin and
Lempitsky 2015), a group of domain adaptation methods
based on adversarial learning were proposed. In the research
of this subfield, a domain discriminator is introduced to
judge the domain attribute on feature or image level. In or-
der to fool this domain discriminator, the extracted features
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Figure 1: The mixup samples are obtained by linearly in-
terpolating between source and target domain images with
mixup ratio λ. The domain discriminator learns how to out-
put soft scores for generated images with the guidance of
mixup images and soft labels (mixup ratios). Also, a flex-
ible margin is learned through comparing mixup samples’
difference relative to two domains. (Best viewed in color.)

should be domain-invariant, which is the basic motivation of
adversarial domain adaptation. However, just like most vari-
ants of Generative Adversarial Networks (GANs) (Goodfel-
low et al. 2014), the domain discriminator is only guided by
the hard label information and rarely explores the intrinsic
structure of data distribution. Namely, each data point that
shifts from both domains should be judged by a latent soft la-
bel, i.e., a probability value, instead of a hard assignment of
“1” or “0”. In addition, the distribution of domain-invariant
latent vectors is fitted using limited patterns of source and
target features, i.e., the interaction of features from two do-
mains has not been considered to enrich feature patterns.

In this paper, inspired by VAE-GAN (Larsen et al. 2016),
we develop a generative-adversarial-based framework to si-
multaneously train the classification network and generate
auxiliary source-like images from learned embeddings of
both domains. On the basis of this framework, domain
mixup on pixel and feature level is proposed to alleviate two
existing drawbacks. (1) Just as shown in Figure 1, we would
like to instruct the domain discriminator to explore the in-
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trinsic structure of source and target distributions through
triplet loss with a flexible margin and applying domain clas-
sification with mixed images and corresponding soft labels
(i.e., mixup ratio), which provides abundant intermediate
status between two separate domains. (2) In order to ex-
pand the searching range in latent space, linear interpola-
tions of source and target features are exploited. Since the
subsequent nonlinear neural network can easily ruin the lin-
ear mixed information, the extracted features of mixed im-
ages are not used for augmentation directly. This operation
leads to a more continuous domain-invariant latent distribu-
tion, which benefits the performance on target domain when
the oscillation of data distribution occurs in the test phase.

We evaluate the image recognition performance of our ap-
proach on three benchmarks with different extent of domain
shift. Experiments prove the effectiveness of our approach,
and we achieve state-of-the-art in most settings. The contri-
butions of our work are summarized as follows:
• We design an adversarial training framework which maps

both domains to a common latent distribution, and effi-
ciently transfer our knowledge learned on the supervised
domain to its unsupervised counterpart.
• Domain mixup on pixel and feature level accompanied

with well-designed soft domain labels is proposed to im-
prove the generalization ability of models. This method
promotes the generalization ability of feature extractor
and obtains a domain discriminator judging samples’ dif-
ference relative to two domains with refined scores.
• We extensively evaluate our approach under different set-

tings, and our approach achieves superior results even
when the domain shift is high and the data distribution
is complex.

Related Work

Domain adaptation is a frequently used technique to pro-
mote the generalization ability of models trained on a single
domain in many Computer Vision tasks. In this section, we
describe existing domain adaptation methods and compare
our approach with them.

The transferability of Deep Neural Networks is proved in
(Yosinski et al. 2014), and deep learning methods for do-
main adaptation can be classified into several categories.
Maximum Mean Discrepancy (MMD) (Gretton et al. 2012;
Tzeng et al. 2014) is a way to measure the similarity of
two distributions. Weighted Domain Adaptation Network
(WDAN) (Yan et al. 2017) defines the weighted MMD with
class conditional distribution on both domains. The multiple
kernel version of MMD (MK-MMD) is explored in (Long
et al. 2015) to define the distance between two distributions.
In addition, specific deep neural networks are constructed to
restrict the domain-invariance of top layers by aligning the
second-order statistics (Sun and Saenko 2016).

Adversarial Training (Ajakan et al. 2013; Ganin et al.
2016) is another way to transfer domain information.
RevGrad (Ganin and Lempitsky 2015) designs a double
branched architecture for object classification and domain
classification respectively. Adversarial Discriminative Do-
main Adaptation (ADDA) (Tzeng et al. 2017) trains two

feature extractors for source and target domains respec-
tively, and produces embeddings fooling the discriminator.
Other works optimize the performance on target domain by
capturing complex multimode structures (Pei et al. 2018;
Long et al. 2018), exploring task-specific decision bound-
aries (Saito et al. 2018b; 2018a; Tran et al. 2019), align-
ing the attention regions (Kang et al. 2018) and apply-
ing structure-aware alignment (Ma, Zhang, and Xu 2019).
In addition, the label information of target domain is ex-
plored in recent works (Zhang et al. 2018b; Xie et al. 2018;
Ma, Zhang, and Xu 2019).

Another group of methods perform adaptation by apply-
ing adversarial loss on pixel level. Source domain images
are adapted as if they are drawn from target domain using
generative adversarial networks in (Bousmalis et al. 2017;
Liu and Tuzel 2016), and generated samples expand the
training set. Furthermore, image generation and training the
task-specific classifier are accomplished simultaneously in
(Ghifary et al. 2016; Sankaranarayanan et al. 2018). Cycle-
consistency is also considered in (Hoffman et al. 2018) to
enforce the consistency of relevant semantics.

Comparison with existing GAN-based approaches. Al-
though former works use GAN as a manner of data augmen-
tation (Bousmalis et al. 2017; Liu and Tuzel 2016) or pro-
ducing domain adaptive gradient information (Ghifary et al.
2016; Sankaranarayanan et al. 2018), they may be trapped
in the mismatch between generated data and assigned hard
labels. We further explore the usage of domain mixup on
pixel and feature level to enhance the robustness of adap-
tation models. On one hand, pixel-level mixup prompts the
domain discriminator to excavate the intrinsic structure of
source and target distributions. On the other hand, feature-
level mixup facilitates a more continuous feature distribution
in the latent space with low domain shift.

Adversarial Domain Adaptation

with Domain Mixup

In unsupervised domain adaptation, a source domain dataset
(Xs, Ys) = {(xs

i , y
s
i )}ns

i=1 with ns labeled samples and a tar-
get domain dataset Xt = {xt

j}nt
j=1 with nt unlabeled sam-

ples are available. It is assumed that source samples xs obey
the source distribution Ps, and target samples xt obey the
target distribution Pt. In addition, both domains share the
same label space Y = {1, 2, 3, · · · ,K}, where K is the
number of classes.

Framework of DM-ADA

In this work, a variant of VAE-GAN (Larsen et al. 2016) is
applied to the domain adaptation task. Figure 2 presents an
overview of the whole framework. For the input, there are
three kinds: source domain images, target domain images
and mixup images obtained by pixel-wise addition of source
and target images. Just as conventional variational autoen-
coder (Kingma and Welling 2013), an encoder Ne maps in-
puts from source and target domains to the standard Gaus-
sian distribution N (0, I). For every sample, a mean vector
μ and a standard deviation vector σ are served as the fea-
ture embedding. On feature level, the feature embeddings of
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Figure 2: Illustration of the pipeline in the training phase. First, mixup inputs xm are obtained by mixing two domains’ inputs xs

and xt. Encoder Ne maps source and target inputs to (μs, σs) and (μt, σt) respectively. In the latent space, feature embeddings
of two domains are mixed to produce mixup features (μm, σm). After that, the framework is split to two branches. On one
branch, classifier C performs K-way object classification. On the other branch, latent codes are decoded by Nd, and the min-
max game between Nd and D facilitates domain-invariance on category level. (Best viewed in color.)

two domains are also linearly mixed to produce mixup fea-
tures (μm, σm). After that, the framework is split into two
branches. For one branch, the embedding of source domain
is used to do K-way object classification by the classifier C.
For the other branch, source and target domain are aligned
on category level through enforcing the decoded images to
be source-like and preserve class information of inputs. De-
tails are stated in the following parts.

Domain mixup on two levels. To explore the internal
structure of data from two domains, source domain images
xs and target domain images xt are linearly interpolated
(Zhang et al. 2018a) to produce mixup images xm and cor-
responding soft domain labels lmdom as follows:

xm = λxs + (1− λ)xt, (1)

lmdom = λlsdom + (1− λ)ltdom = λ, (2)
where λ ∈ [0, 1] is the mixup ratio, and λ ∼ Beta(α, α), in
which α is constantly set as 2.0 in all experiments. lsdom and
ltdom represent the domain label of source and target data,
which are manually set as 1 and 0.

Inputs of source and target domains are then embedded to
(μs, σs) and (μt, σt) in the latent space by a shared encoder
Ne. In order to yield a more continuous domain-invariant
latent distribution, two domains’ embeddings are linearly
mixed to produce mixup feature embedding (μm, σm):

μm = λμs + (1− λ)μt, (3)

σm = λσs + (1− λ)σt, (4)
where λ equals to the one used in pixel-level mixup.

Restricting encoder with priori. Just as conventional
VAE (Kingma and Welling 2013), the encoder Ne is regular-
ized by a standard gaussian priori over the latent distribution.
The objective is to narrow the Kullback-Leibler divergence
between posteriori and priori:

min
Ne

LKL, (5)

LKL = DKL

(N (μ, σ)||N (0, I)
)
, (6)

where μ and σ are the encoded mean and standard deviation
of source and target images.

Supervised training for classifier. The classifier C is op-
timized with cross entropy loss defined on source domain,
and the objective is as follows:

min
Ne,C

LC , (7)

LC = −Exs∼Ps

K∑

i=1

ysi log
(
C([μs, σs])

)
, (8)

where [·] denotes concatenation. It is worth noticing that
classifier C can’t be replaced by the object classification
branch of discriminator D, since the adapted features are
only passed directly to C, which enhances C’s performance
on target domain.

Decoding latent codes. Before the generation phase, we
first define the one-hot object class label lcls and a one-
dimensional uncertainty compensation lcomp for both do-
mains and mixup features as below:

lscls = [0, 0, · · · , 1, · · · , 0], lscomp = 0,

ltcls = [0, 0, · · · , 0, · · · , 0], ltcomp = 1,

lmcls = [0, 0, · · · , λ, · · · , 0], lmcomp = 1− λ,

(9)

where 1 and λ are on the ys-th position of lscls and lmcls to
indicate the known class label for both features respectively.
For all features derived from target domain or mixup proce-
dure, since the class labels remain uncertain, lcomp is set as a
compensation to normalize the sum of vector lcls and lcomp

to 1. After that, decoder Nd predicts the auxiliary generated
images xg as below:

xg = Nd([μ, σ, z, lcls, lcomp]), (10)
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where z is the noise vector randomly sampled from standard
Gaussian distribution.

Adversarial domain alignment. Compared with previ-
ous adversarial-learning-based methods (Ganin and Lempit-
sky 2015; Tzeng et al. 2017; Pei et al. 2018), we constrain
domain-invariance not only on source and target domains,
but also on the intermediate representations between two
domains. The min-max optimization objective on different
domains are defined as follows:

min
Ne,Nd

max
D
Ls
adv + Lt

adv + Lm
adv, (11)

Ls
adv = Exs∼Ps log

(
Ddom(xs)

)
+ log

(
1−Ddom(xs

g)
)
,

(12)

Lt
adv = Ext∼Pt

log
(
1−Ddom(xt

g)
)
, (13)

Lm
adv = Exs∼Ps,xt∼Pt

log
(
1−Ddom(xm

g )
)
, (14)

where Ddom is the domain classification branch of D. Dur-
ing training process, the mixup features can well be mapped
to somewhere in-between source and target domain on pixel
level, and it is more proper to assign them with scores be-
tween 0 and 1. Domain classification loss Lm

soft is utilized
to guide domain discriminator output such soft scores:

min
D
Lm
soft, (15)

Lm
soft =−Exs∼Ps,xt∼Pt

lmdomlog
(
Ddom(xm)

)

+ (1− lmdom)log
(
1−Ddom(xm)

)
.

(16)

We further introduce a triplet loss Lm
tri to constrain mixup

samples’ distance to source and target domains, which
makes domain discriminator easier to converge:

min
D
Lm
tri, (17)

Lm
tri =Exs∼Ps,xt∼Pt

[||fD(a)− fD(p)||22
− ||fD(a)− fD(n)||22 + ftri(λ)

]
+
,

(18)

where fD is the feature extractor of D, and [·]+ = max(0, ·)
denotes the hinge loss function; (a, p, n) = (xm, xs, xt),
when λ � 0.5, and (a, p, n) = (xm, xt, xs), otherwise.
Considering that samples with more source or target domain
components should have larger difference with the counter-
part domain, a flexible margin ftri(λ) = |2λ− 1| is used.

Category-level domain alignment. In order to ensure the
identical categories’ features of two domains are mapped
nearby in the latent space, classification loss Ls

cls and Lt
cls

are introduced to ensure the class-consistency between de-
coded images and inputs:

min
Ne,Nd,D

Ls
cls + Lt

cls, (19)

Ls
cls = −Exs∼Ps

K∑

i=1

ysi log
(
Dcls(x

s
g)
)
, (20)

Algorithm 1 Training procedure of DM-ADA
Input: Source domain: Xs and Ys, target domain: Xt and
the number of iterations N .
Output: Configurations of DM-ADA.
Initialize ω and ϕ
Initialize θNe , θNd

, θC and θD
for n = 1 to N do
(xs, ys)← RANDOMSAMPLE(Xs, Ys)
(xt)← RANDOMSAMPLE(Xt)
λ← RANDOMSAMPLE(Beta(α, α))
(xm, lmdom)← Eq. (1, 2) # Get mixup images
(μ, σ)← Ne(x) # Get feature embeddings
(μm, σm)← Eq. (3, 4) # Get mixup features
xg = Nd(μ, σ, z, lcls, lcomp) # Generate images
Optimize four subnetworks D, Nd, C and Ne in turn:

θD
+←−∇θD

(Ls
cls + ω(Lm

tri + Lm
soft)

+ ϕ(Ls
adv + Lt

adv + Lm
adv)

)

θNd

+←−∇θNd
(Ls

cls − ϕLs
adv)

θC
+←−∇θC (LC)

θNe

+←−∇θNe

(LC + Ls
cls + Lt

cls

+ ωLKL − ϕ(Lt
adv + Lm

adv)
)

end for

Lt
cls = −Ext∼Pt

K∑

i=1

ŷti log
(
Dcls(x

t
g)
)
, (21)

where Dcls is the object classification branch of D, and ŷt is
the pseudo label estimated by classifier C. So as to eliminate
falsely labeled samples which harm domain adaptation, we
filter out those samples whose classification confidence be-
low a certain threshold τ . Considering the fact that domain
discrepancy is gradually filled along training, τ is adaptively
adjusted following the strategy in (Zhang et al. 2018b).

Training Procedure

The proposed iterative training procedure is summarized in
Algorithm 1. In each iteration, the input source and target
samples are first mixed on pixel level to instruct the domain
discriminator to output soft labels. After the samples of two
domains are mapped to the latent space, their embeddings
are mixed to produce mixup features. The images generated
on the basis of these feature embeddings are constrained to
be source-like and preserve inputs’ class information, so that
the latent distribution is facilitated to be domain-invariant
and discriminative. In all experiments, we set α as 2.0, since
domain mixup can’t effectively explore the linear space be-
tween two domains when the value of α is small, and more
analysis of α can be found in supplementary material. ω and
ϕ are hyper-parameters that trade off among losses with dif-
ferent orders of magnitude. According to the after sensitiv-
ity analysis, the adaptation performance of our approach is
not too sensitive to the value of ω and ϕ, and these hyper-
parameters share the same value among different tasks.
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w/o domain continuity w/ domain continuity

Figure 3: The comparison between with and without domain
continuity. Circle & triangle: two classes; Blue & orange:
source and target domain; p: test sample. (Best viewed in
color.)

Discussion

Pixel-level domain mixup. The work of (Zhang et al.
2018a) proposes the mixup vicinal distribution as a man-
ner to encourage the model to behave linearly in-between
training examples. Another work (Berthelot et al. 2019) im-
proves interpolation’s continuity in latent space and bene-
fits downstream tasks. In adversarial domain adaptation, we
also would like to lead the domain discriminator to behave
linearly between source and target domains. As a result, the
domain discriminator is of high capacity to accurately judge
the generated images containing oscillations to two do-
mains. In our implementation, such discriminator is trained
with pairs of linearly mixed image xm = λxs + (1 − λ)xt

and corresponding soft label lmdom = λ, where xm simulates
an oscillation mode to two domains and λ provides the guid-
ance. Combined with feature-level mixup, pixel-level mixup
can further narrow the domain discrepancy, which is shown
in the after ablation study.

Feature-level domain mixup. Existing works attempt to
map source and target domains to a common latent distri-
bution, while limited data can not guarantee most parts of
the latent space domain-invariant. In order to yield a more
continuous domain-invariant latent distribution, the mixup
features of two domains are exploited.

We use an intuitive example to illustrate the effectiveness
of domain continuity on aligning source and target domains.
As shown in Figure 3, the biased test sample p may be mis-
classified without the constraint of domain continuity. How-
ever, through adding the mixup feature embedding to the
training process, the latent codes between the same class of
two domains should also be domain-invariant, which forms
the intra-class clusters C1 and C2. Thus the decision bound-
ary is refined, and the biased samples in these clusters can
be classified correctly.

Experiments

In this section, we first introduce the experimental setup.
Then, the classification performance on three domain adap-
tation benchmarks are presented. Finally, ablation study and
sensitivity analysis are conducted for the proposed approach.

Table 1: Classification accuracy (mean ± std %) values
of target domain over five independent runs on the digits
datasets. The best performance is indicated in bold and the
second best one is underlined.

Method MN→ MN→ US→ SV→
US (p) US (f) MN MN

Source only 76.0± 1.8 79.3± 0.7 59.5± 1.9 62.1± 1.2
MMD (2015) 81.1± 0.3 71.1± 0.5

RevGrad (2015) 77.1± 1.8 85.1± 0.8 73.0± 2.0 73.9± 1.2
CoGAN (2016) 91.2± 0.8 89.1± 1.0
DRCN (2016) 91.8± 0.1 73.7± 0.0 82.0± 0.1
ADDA (2017) 89.4± 0.2 90.1± 0.8 76.0± 1.8

PixelDA (2017) 95.9± 0.7
MSTN (2018) 92.9± 1.1 91.7± 1.5
GTA (2018) 92.8± 0.9 95.3± 0.7 90.8± 1.3 92.4± 0.9

ADR (2018a) 93.2± 2.5 96.1± 0.3 93.1± 1.3 95.0± 1.9
DM-ADA (ours) 94.8± 0.7 96.7± 0.5 94.2± 0.9 95.5± 1.1

Experimental Setup

In this part, we describe the network architectures and hyper-
parameters of different tasks. Our approach is implemented
with PyTorch deep learning framework (Paszke et al. 2017).

Digits experiments. In this part of experiments, we con-
struct four subnetworks with train-from-scratch architec-
tures following (Sankaranarayanan et al. 2018). Four Adam
optimizers with base learning rate 0.0004 are utilized to opti-
mize these submodels for 100 epochs. The hyper-parameters
ω and ϕ are set as 0.1 and 0.01 respectively, and their values
are constant in all experiments. All of the input images of
encoder and discriminator are resized to 32× 32.

Office experiments. For the encoder, the last layer of
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) is re-
placed with two parallel fully connected layers producing
256 dimensional vectors respectively, and former layers are
initialized with the model pretrained on ImageNet (Rus-
sakovsky et al. 2015). The encoder is fine-tuned with base
learning rate 0.0001 for 100 epochs, and the base learning
rate of other three submodels is set as 0.001. The inputs
of encoder and discriminator are resized to 227 × 227 and
64× 64 respectively.

VisDA experiments. ResNet-101 (He et al. 2016) serves
as the base architecture, and it is initialized with the model
pretrained on ImageNet (Russakovsky et al. 2015). The
learning rate setting is same as that in the office experiments,
and the results are reported after 20 epochs training. The in-
puts of encoder and discriminator are resized to 224 × 224
and 64× 64 respectively.

Classification on Digits Datasets

Dataset. In this set of experiments, three digits datasets are
used: MNIST (Lécun et al. 1998), USPS (Hull 1994) and
Street View House Numbers (SVHN) (Netzer et al. 2011).
Each dataset contains ten classes corresponding to number 0
to 9. Four settings are used for measurement: MN→US (p):
sampling 2000 images from MNIST and 1800 images from
USPS; MN→ US (f) and US→MN: using the full training
set of MNIST and USPS; SV→MN: using the full training
set of SVHN and MNIST.

Results. Table 1 presents the results of our approach in
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Table 2: Classification accuracy (mean ± std %) values of target domain over five independent runs on the Office-31 dataset.
The best performance is indicated in bold and the second best one is underlined.

Method A→W D→W W→ D A→ D D→ A W→ A Average
AlexNet (source only) (2012) 60.6± 0.4 95.4± 0.2 99.0± 0.1 64.2± 0.3 45.5± 0.5 48.3± 0.5 68.8

TCA (2011) 59.0± 0.0 90.2± 0.0 88.2± 0.0 57.8± 0.0 51.6± 0.0 47.9± 0.0 65.8
DDC (2014) 61.0± 0.5 95.0± 0.3 98.5± 0.3 64.9± 0.4 47.2± 0.5 49.4± 0.4 69.3
DAN (2015) 68.5± 0.3 96.0± 0.1 99.0± 0.1 66.8± 0.2 50.0± 0.4 49.8± 0.3 71.7

RevGrad (2015) 73.0± 0.5 96.4± 0.3 99.2± 0.3 72.3± 0.3 52.4± 0.4 50.4± 0.5 74.1
DRCN (2016) 68.7± 0.3 96.4± 0.3 99.0± 0.2 66.8± 0.5 56.0± 0.5 54.9± 0.5 73.6
MADA (2018) 78.5± 0.2 99.8± 0.1 100± 0.0 74.1± 0.1 56.0± 0.2 54.5± 0.3 77.1
MSTN (2018) 80.5± 0.4 96.9± 0.1 99.9± 0.1 74.5± 0.4 62.5± 0.4 60.0± 0.6 79.1
GCAN (2019) 82.7± 0.1 97.1± 0.1 99.8± 0.1 76.4± 0.5 64.9± 0.1 62.6± 0.3 80.6

DM-ADA (ours) 83.9± 0.4 99.8± 0.1 99.9± 0.1 77.5± 0.2 64.6± 0.4 64.0± 0.5 81.6

Table 3: Classification accuracy on the validation set of
VisDA-2017 challenge.

Method Accuracy (%)
ResNet-101 (source only) (2016) 52.4

RevGrad (2015) 57.4
DAN (2015) 62.8
JAN (2017) 65.7
GTA (2018) 69.5

MCD-DA (2018b) 71.9
ADR (2018a) 73.5

DM-ADA (ours) 75.6

comparison with other adaptation approaches on the digits
datasets. For the source only test, we use the same encoder
and classifier architectures as the ones used in our approach.
The reported results are averaged over five independent runs
with random initialization. Our approach achieves the state-
of-the-art performance on all four settings. Especially, it out-
performs former GAN-based approaches (Bousmalis et al.
2017; Ghifary et al. 2016; Sankaranarayanan et al. 2018),
which illustrates the effectiveness of the proposed architec-
ture on aligning source and target domains.

Classification on Office-31

Dataset. Office-31 (Saenko et al. 2010) is a standard do-
main adaptation benchmark commonly used in previous re-
searches. Three distinct domains, Amazon(A), Webcam(W)
and DSLR(D), make up of the whole Office-31 dataset. Each
domain contains the same 31 classes of office supplies. All
transfer tasks of three domains are used for evaluation.

Results. Table 2 reports the performance of our method
compared with other works. The results of AlexNet trained
with only source domain data serves as the lower bound. Our
approach obtains the best performance in three of four hard
cases: A → W, W → A and A → D. For two easier cases:
W→ D and D→W, our approach achieves accuracy higher
than 99.5% and ranks the first two places. Given the fact that
the number of samples per class is limited in the Office-31
dataset, our approach manages to improve the performance
by providing augmented samples and features.

Table 4: Effectiveness of pixel-level mixup (PM), feature-
level mixup (FM) and triplet loss (Tri).

PM FM Tri A-distance Accuracy (%)
1.528 76.7

� 1.519 78.1
� � 1.508 79.4

� 1.497 82.1
� � 1.492 83.2
� � � 1.489 83.9

Table 5: Effectiveness of Dcls and pseudo target labels.

Dcls pseudo A-distance Accuracy (%)
1.503 80.6

� 1.496 82.3
� � 1.489 83.9

Classification on VisDA-2017

Dataset. The VisDA-2017 (Peng et al. 2017) challenge pro-
poses a large-scale dataset for visual domain adaptation. The
training domain is composed of synthetic renderings of 3D
models. The validation domain is made up of photo-realistic
images drawn from MSCOCO (Lin et al. 2014). Both do-
mains contain the same 12 classes of objects.

Results. Table 3 reports the results on the VisDA-2017
cross-domain classification dataset. The ResNet-101 model
pretrained on ImageNet acts as the baseline. Our approach
achieves the highest accuracy among all adaptation ap-
proaches, and exceeds the baseline with a great margin. Un-
der the condition that large domain shift exists, like trans-
ferring from synthetic objects to real images in this task, we
think that the triplet loss and soft label play a critical role in
excavating intermediate status between two domains.

Ablation Study

Metrics. Two metrics are employed. (1) A-distance (Ben-
David et al. 2010; Mansour, Mohri, and Rostamizadeh 2009)
serves as a measure of cross-domain discrepancy. Inputted
with extracted features of two domains, a SVM classifier is
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(a) baseline (b) w/ PM (c) w/ PM & FM (d) full model

Figure 4: The t-SNE (Maaten and Hinton 2008) visualization of target domain’s feature distribution on the transfer task SVHN
→MNIST under four different configurations. (Best viewed in color.)

0/1 ours

conf: 0.9

0/1 ours

conf: 0.7source target

0/1 ours

conf: 0.5

Figure 5: The generated images with confidence 0.9, 0.7 and
0.5 using 0/1 and our discriminator. (task: SV→MN)

used to classify the source and target domain features, and
the generalization error is defined as ε. Then the A-distance
can be calculated as: dA = 2(1− 2ε). (2) Classification ac-
curacy on target domain serves as a measure of task-specific
performance. In this part of experiments, both metrics are
evaluated on the task A→W.

Effect of pixel-level and feature-level mixup. Table 4
examines the effectiveness of pixel-level mixup (PM) and
feature-level mixup (FM). The first row only uses the im-
ages and feature embeddings from two domains for train-
ing, and it serves as the baseline. In the fourth row, feature-
level mixup achieves notable improvement compared with
baseline, since the domain-invariant latent space is facili-
tated to be more continuous in this configuration. In the fifth
row, pixel-level mixup further enhance model’s performance
through guiding discriminator output soft scores between 0
and 1, which means it is an essential auxiliary scheme for
feature-level mixup. In Figure 5, compared with traditional
0/1 discriminator, our discriminator leads to more source-
like generated images, which means the domain discrepancy
can be further narrowed via pixel-level mixup.

Effect of triplet loss. In Table 4, we evaluate another
key component, i.e., triplet loss (Tri). In the third and sixth
rows, it can also be observed that model’s performance is im-
proved after adding the triplet loss to discriminator’s train-
ing process, since this loss ease the convergence of domain
discriminator. We further utilize t-SNE (Maaten and Hinton
2008) to visualize the feature distribution of target domain
on the task SV→MN. As shown in Figure 4, the features of
different classes are separated most clearly in the full model,
i.e., with domain mixup on two levels and triplet loss.

Effect of Dcls and pseudo target labels. In order to con-
duct category-aware alignment between source and target
domains, the classification branch of discriminator Dcls and
pseudo target labels are employed, and the effectiveness of
them is examined in Table 5. After appending Dcls, classifi-
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Figure 6: The sensitivity analysis of ω (left) and ϕ (right).
Four hard-to-transfer tasks of Office-31 dataset are involved.

cation accuracy increases by 1.7%, since this branch facili-
tates generated images to preserve the class information con-
tained in inputs, which makes domain adaptation perform on
the same categories of two domains. On such basis, pseudo
target labels introduce the discriminative information of tar-
get domain to the adaptation process and make model’s per-
formance state-of-the-art.

Sensitivity Analysis

In this section, we discuss our approach’s sensitivity to
hyper-parameters ω and ϕ which trade off among losses with
different orders of magnitude. Four hard-to-transfer tasks of
Office-31 dataset are used for evaluation. In Figure 6, it can
be observed that the transfer performance is not sensitive to
the variance of ω and ϕ near 0.1 and 0.01, respectively. In
consequence, we can set ω and ϕ as 0.1 and 0.01 for all
tasks, and the transfer performance should be satisfactory.

Conclusion

In this paper, we address the problem of unsupervised do-
main adaptation. A GAN-based architecture is constructed
to transfer knowledge from source domain to target domain.
In order to facilitate a more continuous domain-invariant la-
tent space and fully utilize the inter-domain information, we
propose the domain mixup on pixel and feature level. Exten-
sive experiments on adaptation tasks with different extent of
domain shift and data complexity demonstrate the predomi-
nant performance of our approach.
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