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Abstract

Partial multi-label learning (PML) aims to learn from train-
ing examples each associated with a set of candidate labels,
among which only a subset are valid for the training example.
The common strategy to induce predictive model is trying to
disambiguate the candidate label set, such as identifying the
ground-truth label via utilizing the confidence of each candi-
date label or estimating the noisy labels in the candidate label
sets. Nonetheless, these strategies ignore considering the es-
sential label distribution corresponding to each instance since
the label distribution is not explicitly available in the training
set. In this paper, a new partial multi-label learning strategy
named PML-LD is proposed to learn from partial multi-label
examples via label enhancement. Specifically, label distribu-
tions are recovered by leveraging the topological information
of the feature space and the correlations among the labels.
After that, a multi-class predictive model is learned by fitting
a regularized multi-output regressor with the recovered la-
bel distributions. Experimental results on synthetic as well as
real-world datasets clearly validate the effectiveness of PML-
LD for solving PML problems.

Introduction

Partial multi-label learning deals with the problem where
each training example is associated with a set of candidate
labels, among which only a subset correspond to the ground-
truth labels. In recent years, the need to learn from data with
partial multi-labels naturally arises in many real-world ap-
plications (Zhou 2018; Xie and Huang 2018). For instance,
in online object annotation (Figure 1), only some of the can-
didate labels given by the annotators are valid due to the
potential unreliable annotators. Partial multi-label learning
aims to induce a multi-label classifier from PML training
examples, which can assign a set of proper labels for the
unseen instance.

Formally, let X = R
q be the q-dimensional feature space

and Y = {y1, y2, . . . , yc} be the output space with c possi-
ble class labels. Given the PML training set D = {(xi, Yi) |
1 ≤ i ≤ m}, the task of PML is to induce a multi-label
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Figure 1: An example of partial multi-label learning. In on-
line object annotation, among the set of five candidate labels
given by the annotators, only three of them are valid ones (in
red) including house, mountain and tree.

predictor f : X �→ 2Y from D. Here, xi ∈ X is a q-
dimensional feature vector and Yi ⊆ Y is the set of can-
didate labels associated with xi. Partial multi-label learn-
ing takes the key assumption that the ground-truth labels
Ỹi ⊆ Y corresponding to xi reside in its candidate la-
bel set Yi, i.e. Ỹi ⊆ Yi, and therefore cannot be directly
accessed by the learning algorithm. Intuitively, the basic
strategy for coping with the PML problem is disambigua-
tion, i.e. identifying the ground-truth labels from the can-
didate label sets. One recent attempt is utilizing the confi-
dence of each candidate label being the ground-truth one
(Xie and Huang 2018). Nonetheless, the confidence scores
would be error-prone especially with the high proportion of
false positive labels since it ignores the irrelevance of the
non-candidate labels. Low-rank assumption is adopted to
identify the noisy labels for disambiguation (Yu et al. 2018;
Sun et al. 2019). For credible label elicitation techniques,
the ground-truth labels are identified from the candidate la-
bel set to make final prediction on unseen instance (Fang and
Zhang 2019).

In order to handle the ambiguity in partial multi-label
learning, we can explicitly assign a description degree to
each label instead of disambiguation. The description de-
grees d

yj
x of all the labels constitute a real-valued vector

called label distribution (Geng 2016), which describes the

6510



Description degree

0

0.1

0.2

Happy Sad Surprise Anger Disgust Fear

Labels 

(valid ones in red)

Threshold

Figure 2: An example about the differentiation between can-
didate labels and non-candidate labels in PML

instance more comprehensively than logical labels. Here
d
yj
x ∈ [0, 1] and

∑
y d

y
x = 1. Note that label distributions

are more essential than logical labels in partial multi-label
learning problems because the relevance or irrelevance of a
label to an instance is relative in mainly three aspects:

• The differentiation between candidate labels and non-
candidate labels is relative. In partial multi-label learning,
the boundary between relevant and irrelevant labels is not
clear, which may result in the partition to assign some ir-
relevant labels into the candidate label set. For example,
in the facial expressions annotation (Figure 2), a facial ex-
pression often conveys a complex mixture of basic emo-
tions (Zhou, Xue, and Geng 2015). The threshold chosen
by an unreliable annotator leads to the candidate label set
(e.g., sad, surprise, anger, disgust and fear) where sur-
prise is not valid.

• The relevance among candidate labels is different rather
than exactly equal. For example, a natural scene image
may be annotated with the candidate labels sky, water,
building and cloud simultaneously, but the relevance of
each label to this image is different.
• The irrelevance of each non-candidate label may be very

different. For example, for a car, the label airplane is more
irrelevant than the label tank.

Although label distributions are not explicitly available in
the partial multi-label training sets, they can be somehow
recovered from the training set, a process named label en-
hancement (Xu, Tao, and Geng 2018). Accordingly, a novel
partial multi-label learning algorithm named PML-LD, i.e.,
Partial Multi-label Learning with Label Distribution, is pro-
posed in this paper. PML-LD recovers label distributions via
leveraging the topological information of the feature space
and the correlations among the labels. After that, a multi-
class predictive model is learned by fitting a regularized
multi-output regressor with the recovered label distributions.

The rest of this paper is organized as follows. Firstly, re-
lated works on partial multi-label learning are briefly re-
viewed. Secondly, technical details of the proposed ap-
proach are introduced. Thirdly, the results of the compara-
tive experiments are reported. Finally, we conclude this pa-
per.

Related Work

Partial multi-label learning is closely related to two popular
learning frameworks, namely multi-label learning (Zhang

and Zhou 2014; Gibaja and Ventura 2015; Zhou and Zhang
2017) and partial label learning (Cour, Sapp, and Taskar
2011; Liu and Dietterich 2012; Zhang, Yu, and Tang 2017).

In multi-label learning (MLL), each example is associ-
ated with multiple valid labels simultaneously. Based on
the order of label correlations (Zhang and Zhou 2014) ex-
ploited for model training, multi-label learning approaches
can be roughly grouped into three types. The simplest one
is the first-order type which decomposes the problem into
a series of binary classification problems, each for one la-
bel (Boutell et al. 2004; Zhang and Zhou 2007). The first-
order approaches neglect the fact that the information of
one label may be helpful for the learning of another la-
bel. The second-order approaches consider the correlations
between pairs of class labels (Elisseeff and Weston 2002;
Fürnkranz et al. 2008). But the second-order approaches
such as CLR (Fürnkranz et al. 2008) and RankSVM (Elis-
seeff and Weston 2002) only focus on the difference be-
tween relevant label and irrelevant label. The high-order ap-
proaches consider the correlations among label subsets or all
the class labels (Read et al. 2011; Tsoumakas, Katakis, and
Vlahavas 2011). Both MLL and PML aim to induce the pre-
dictive model which can assign proper label set for unseen
instance. Nonetheless, the task of PML is more challenging
than MLL as the ground-truth is not directly accessible to
PML learning algorithm.

In partial label learning (PLL), each example is associ-
ated with multiple candidate labels among which only one is
valid. The task of partial label learning is to induce a multi-
class predictive model which can assign one proper label
for unseen instance, where existing PLL approaches work
by disambiguating the candidate label set (Cour, Sapp, and
Taskar 2011; Yu and Zhang 2017) or transforming partial
label learning problem into canonical supervised learning
problems (Zhang, Yu, and Tang 2017). Both PLL and PML
learn from training examples with labeling noise where false
positive labels reside in the candidate label set. Nonetheless,
the task of PML is more challenging than PLL as a multi-
label predictor rather than single-label predictor needs to be
induced from PML training examples.

To solve the partial multi-label learning problem, the ba-
sic strategy for coping with the PML problem is disambigua-
tion, i.e. identifying the ground-truth labels from the can-
didate label sets. One recent attempt is utilizing the confi-
dence of each candidate label being the ground-truth one
(Xie and Huang 2018). Nonetheless, the confidence scores
would be error-prone especially with the high proportion of
false positive labels since it ignores the irrelevance of the
non-candidate labels. Low-rank assumption is adopted to
identify the noisy labels for disambiguation (Yu et al. 2018;
Sun et al. 2019). For credible label elicitation techniques,
the ground-truth labels are identified from the candidate la-
bel set to make final prediction on unseen instance (Fang and
Zhang 2019).

In the next section, a novel partial multi-label learning ap-
proach will be introduced. Different from existing partial
multi-label learning approaches, the label distributions are
recovered and utilized to facilitate the learning procedure.
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The Proposed Approach

Label Distribution Estimation

For each PML example (x, Y ), let l = [ly1
x , ly2

x , ..., lyc
x ]�

denote the c-dimensional logical vector w.r.t. the candi-
date label set: lyi

x = 1 if yi ∈ Y , otherwise lyi
x = 0 .

Then, the logical label matrix L = [l1, l2, ..., ln] are con-
structed. Our aim is to recover the label distribution matrix
D = [d1,d2, ...,dn] from the logical label matrix L. To
solve this problem, PML-LD assumes the parametric model

di = W�ϕ(xi) + s = Ŵφi, (1)

where W = [w1, ...,wc] is a weight matrix and s ∈ R
c

is a bias vector. ϕ(x) is a nonlinear transformation of x to
a higher dimensional feature space. For convenient describ-
ing, Ŵ = [W�, s] and φi = [ϕ(xi); 1] are set. Accord-
ingly, the goal of our method is to determine optimal model
Ŵ ∗ which minimizes

Ŵ ∗ = argmin
Ŵ

L(Ŵ ) + λ1Z(Ŵ ) + λ2Ω(Ŵ ), (2)

where L is a loss function, Ω is the functions to leverage the
topological information of the feature space, and Z is the
function to leverage the correlation among the labels. Note
that label enhancement is essentially a pre-processing ap-
plied to the training set, which is different from standard su-
pervised learning. Therefore, our optimization does not need
to consider the overfitting problem.

Since the information in the label distributions is inherited
from the initial logical labels, L(Ŵ ) in Eq. (2) is defined as
the least squares (LS) loss function

L(Ŵ ) = ‖ ŴΦ−L‖2F , (3)

where Φ = [φ1, ...,φn].
The local label correlations (Tsoumakas et al. 2009) are

considered to provide helpful extra information to recover
the label distributions from multi-labels. Specifically, the
more correlative two labels are, the closer the correspond-
ing description degrees should be. In other words, di should
more be more similar to dj if the i-th and j-th labels
are more correlated. Here di is the vector constituted by
all the description degrees of the i-th label, i.e., di =
[dyi

x1
, dyi

x2
, ..., dyi

xn
]. Assuming that the training data can be

separated into m groups {G(1), G(2), ..., G(m)}, instances in
the same group share the same subset of label correlations.
Then the local label correlations are measured by the label
correlation matrix R(k) whose elements are r(k)ij . Therefore,
Z(Ŵ ) in Eq. (2) is defined as:

Z(Ŵ ) =
∑
k

∑
i,j

r
(k)
ij ‖di(k) − dj(k)‖2

=
∑
k

tr(Φ(k)�Ŵ�C(k)ŴΦ(k)),
(4)

where d(k) is the label distributions corresponding to all the
instance in G(k), Φ(k) is the feature matrix representing the
higher dimensional features to the instance in G(k), C(k) =

R̂(k)−R(k) is the Laplacian matrix, and R̂(k) is the diagonal

matrix whose elements are r̂
(k)
ii =

n∑
j=1

r
(k)
ij .

According to the smoothness assumption (Zhu, Lafferty,
and Rosenfeld 2005), the points close to each other are more
likely to share a label. Intuitively, if xi and xj have a high
degree of similarity, as denoted by aij , then di and dj should
be near to one another. Therefore, the hidden label distribu-
tions can be mined from the training examples by leveraging
the topological information of the feature space (Ning, An,
and Xin 2018), which leads to the following function Ω(Ŵ )
in Eq. (2):

Ω(Ŵ ) =
∑
i,j

aij‖di − dj‖2

= tr(ŴΦGΦ�Ŵ�),
(5)

where each element aij in the local similarity matrix A can

be calculated by aij = exp
(
−‖xi−xj‖2

2

)
if xi is among

K-nearest neighbors of xj , otherwise aij = 0. Here K is
set to be c+1. G = Â−A is the graph Laplacian and Â is

the diagonal matrix whose elements are âii =
n∑

j=1

aij .

Formulating the label enhancement problem into an op-
timization framework over Eq. (3), Eq. (5) and Eq. (4), the
following optimization problem is obtained:

min
Ŵ

‖ŴΦ−L‖2F + λ1

m∑
k=1

tr(Φ(k)�Ŵ�C(k)ŴΦ(k))

+ λ2tr(ŴΦGΦ�Ŵ�).
(6)

In this paper, instead of specifying any label correlation ma-
trix, each Laplacian matrix C(k) is learned directly. Note
that optimization w.r.t. C(k) may lead to the trivial solu-
tion C(k) = 0. To avoid the problems, C(k) is decomposed
as E(k)E(k)� and the constrain diag(E(k)E(k)�) = 1 is
added. Then the following formulation is obtained:

min
Ŵ ,E

‖ŴΦ−L‖2F + λ2tr(ŴΦGΦ�Ŵ�)

+ λ1

m∑
k=1

tr(Φ(k)�Ŵ�E(k)E(k)�ŴΦ(k))

s.t. diag(E(k)E(k)�) = 1, k = 1, 2, ...,m.

(7)

If the best parameter Ŵ ∗ is determined, the label distribu-
tion di can be generated through Eq. (1). Finally, di is nor-
malized via the softmax normalization.

The Alternating Solution We solve the optimization
problem in Eq. (7) in an alternating way, i.e., optimizing
one of the two variables with the other fixed. When Ŵ is
fixed to solve E, Eq. (7) can be reduced to m optimization
problems, where the i-th one is:

min
E(k)

tr(Φ(k)�Ŵ�E(k)E(k)�ŴΦ(k))

s.t. diag(E(k)E(k)�) = 1.
(8)
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The optimization of Eq. (8) uses projected gradient descent.
The gradient of the objective w.r.t. Ei is

∇E(k) = 2ŴΦ(k)Φ(k)�Ŵ�E(k). (9)

To satisfy the constraint diag(E(k)E(k)�) = 1, each row of
E(k) is projected onto the unit norm ball after each update

e
(k)
i ← e

(k)
i

‖e(k)i ‖
, (10)

where e
(k)
i is the i-th row of E(k).

When E is fixed to solve Ŵ , the task becomes:

min
Ŵ

‖ŴΦ−L‖2F + λ2tr(ŴΦGΦ�Ŵ�)

+ λ1

m∑
k=1

tr(Φ(k)�Ŵ�E(k)E(k)�ŴΦ(k)).
(11)

The optimization of Eq. (11) uses an effective quasi-Newton
method BFGS (Nocedal and Wright 2006). As to the op-
timization of the target function T (Ŵ ), the computation of
BFGS is mainly related to the first-order gradient, which can
be obtained through

∇Ŵ =2ŴΦΦ� − 2LΦ� + λ2ŴΦG�Φ� + λ2ŴΦGΦ�

+ 2λ1

m∑

k=1

(E(k)E(k)�ŴΦ(k)Φ(k)�).

(12)

Predictive Model Induction

Following the first stage of label distribution recovery, the
original PML training set D has been transformed into its
essential counterpart: E = {(xi,di)|1 ≤ i ≤ n}. In the
second stage, PML-LD aims to induce the predictive model
f : X �→ Y based on E . Considering that di for each train-
ing example in E are actually real-valued, it is natural to in-
duce the predictive model by employing multi-output regres-
sion techniques. Similar to the MSVR (Chung et al. 2015;
Sánchez-Fernández et al. 2004), we generalize a regressor
to solve the multi-dimensional case. Then, PML-LD induces
the regression model by minimizing the following loss func-
tion:

Ω(Θ, b) =
1

2

c∑
j=1

‖θj‖2 + β1

n∑
i=1

Ω1i + β2

n∑
i=1

Ω2i, (13)

where Θ = [θ1, ...,θc], b = [b1, ..., bc], Ω1 and Ω2 are the
regression loss and the sign loss, respectively.

As shown in Eq.(13), the first term of Ω(Θ, b) controls
the complexity of the induced model. In addition, the second
term of Ω(Θ, b) is defined based on the ε-insensitive loss
function:

Ω1i =

{
0, ri < ε

(ri − ε)2, ri ≥ ε
(14)

For each example (xi,di) in E , the corresponding input to
the ε-insensitive loss function Ω1i is set as: ri = ‖ei‖ =

√
e�i ei with ei = di − ϕ(xi)

�Θ − b. In this way, the
outputs of all linear predictors are considered simultane-
ously to yield a unique input to Ω1i such that the depen-
dencies among all the class labels can be exploited by the
ε-insensitive term.

The third term of Ω(Θ, b) considers the partial multi-label
loss for each example which is set as:

Ω2i = −
(

1

|Yi| · 1
�
Yi
− 1

|Ŷi|
· 1�

Ŷi

)(
Θ�ϕ(xi) + b

)
(15)

Here, for candidate label set Yi and its complementary set Ŷi

in Y , 1Yi corresponds to a c-dimensional vector whose k-th
element equals to 1 if yk ∈ Yi and 0 otherwise. Similarly,
1Ŷi

corresponds to a c-dimensional vector whose k-th ele-
ment equals to 1 if yk ∈ Ŷi and 0 otherwise. In other words,
the third term enforces the property that the average output
from candidate labels should be larger than the average out-
put from non-candidate ones (Cour, Sapp, and Taskar 2011;
Zhang 2014).

To minimize L(Θ, b), PML-LD employs the gradient-
based iterative method named Iterative Re-Weighted Least
Square (IRWLS) (Sánchez-Fernández et al. 2004). Accord-
ing to the representor’s theorem (Smola 1999), under fairly
general conditions, a learning problem can be expressed as
a linear combination of the training examples in the fea-
ture space, i.e. θj =

∑
i η

jϕ(xi). If we replace this ex-
pression into Eq. (7) and Eq. (13), it will generate the inner
product< ϕ(xi), ϕ(xj) >, and then the kernel trick can be
applied.

Virtual Label Bipartition PML-LD proceeds to predict
the set of proper labels for x via virtual label Bipartition.
According to (Li, Zhang, and Geng 2015), an extra virtual
label y0 is added into the original label set, i.e., the extended
original label set Y ′ = Y ∪ {y0} = {y0, y1, ..., yc}. In this
paper, the origin value ly0

x is set to 0.5. Once the recovered
label distribution and the predictive model have been learned
on the extended original label set, the extended label distri-
bution d∗ corresponding to the test instance x∗ can be pre-
dicted. Then, the predicted label set for x∗ is determined as:

f(x) = {yj | dyj
x > dy0

x , 1 ≤ j ≤ c} (16)

Experiments

Datasets

To thoroughly evaluate the performance of comparing ap-
proaches, a number of synthetic as well as real-world PML
datasets have been employed for experimental studies. Table
1 summarizes characteristics of the experimental datasets
used in this paper.

Specifically, a synthetic PML dataset is generated from
one multi-label dataset by adding random labeling noise.
For each multi-label example, some of its irrelevant la-
bels are randomly chosen to form the candidate label set
along with its relevant labels. As shown in Table 1, five
benchmark multi-label datasets (Zhang and Zhou 2014) are
used to generate synthetic PML datasets, including image,
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Table 1: Characteristics of the PML experimental datasets. For each PML dataset, the average number of candidate labels ( avg.
#CLs) and the average number of ground-truth labels ( avg. #GLs) are also recorded.

Dataset #Examples #Features #Labels avg. #CLs avg. #GLs
emotions 593 72 6 3, 4, 5 1.86
image 2,000 294 5 2, 3, 4 1.23
scene 2,407 294 6 3, 4, 5 1.07
yeast 2,417 103 14 9, 10, 11, 12, 13 4.23
eurlex sm 12,679 100 15 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 1.53
music emotion 6,833 98 11 5.29 2.42
music style 6,839 98 10 6.04 1.44
mirflickr 10,433 100 7 3.35 1.77

Table 2: Experimental results of each comparing approach in terms of hamming loss, where the best performance (the smaller
the better) is shown in bold face.

Dataset avg.#CLS PML-LD PML-LC PML-FP PARTICLE-VLS PARTICLE-MAP PML-LRS FPML

emotions
3 0.180±0.014 0.260±0.012 0.241±0.013 0.205±0.009 0.226±0.009 0.295±0.023 0.252±0.020
4 0.169±0.014 0.258±0.015 0.250±0.017 0.206±0.012 0.232±0.012 0.306±0.021 0.257±0.012
5 0.218±0.023 0.313±0.024 0.271±0.013 0.344±0.034 0.264±0.020 0.355±0.013 0.277±0.020

image
2 0.151±0.010 0.209±0.011 0.190±0.006 0.175±0.012 0.179±0.017 0.380±0.011 0.200±0.007
3 0.165±0.012 0.219±0.008 0.200±0.013 0.195±0.013 0.192±0.009 0.416±0.010 0.206±0.010
4 0.186±0.009 0.279±0.013 0.231±0.012 0.329±0.010 0.236±0.019 0.435±0.005 0.231±0.014

scene
3 0.083±0.006 0.155±0.008 0.139±0.006 0.117±0.002 0.114±0.005 0.351±0.005 0.114±0.006
4 0.098±0.005 0.185±0.023 0.160±0.003 0.147±0.007 0.135±0.006 0.367±0.004 0.143±0.004
5 0.119±0.012 0.237±0.010 0.193±0.011 0.383±0.014 0.198±0.025 0.380±0.006 0.176±0.015

yeast

9 0.139±0.001 0.229±0.007 0.215±0.005 0.207±0.010 0.237±0.013 0.438±0.006 0.265±0.004
10 0.139±0.002 0.236±0.007 0.218±0.006 0.202±0.004 0.224±0.009 0.439±0.008 0.268±0.002
11 0.143±0.001 0.237±0.008 0.224±0.005 0.210±0.008 0.222±0.009 0.448±0.004 0.270±0.004
12 0.143±0.001 0.247±0.006 0.230±0.004 0.336±0.008 0.230±0.004 0.453±0.005 0.271±0.005
13 0.145±0.001 0.270±0.008 0.268±0.004 0.697±0.004 0.232±0.006 0.465±0.006 0.282±0.005

eurlex sm

5 0.067±0.001 0.112±0.001 0.082±0.002 0.067±0.001 0.075±0.002 0.083±0.002 0.087±0.002
6 0.070±0.001 0.121±0.001 0.084±0.001 0.067±0.000 0.078±0.002 0.085±0.001 0.089±0.001
7 0.071±0.001 0.130±0.001 0.083±0.001 0.068±0.000 0.080±0.001 0.084±0.001 0.089±0.001
8 0.074±0.001 0.129±0.000 0.085±0.001 0.068±0.001 0.084±0.002 0.086±0.001 0.089±0.001
9 0.076±0.001 0.126±0.002 0.087±0.002 0.068±0.001 0.088±0.002 0.087±0.002 0.092±0.001
10 0.076±0.001 0.123±0.002 0.088±0.002 0.071±0.002 0.093±0.002 0.087±0.002 0.091±0.002
11 0.080±0.001 0.124±0.001 0.088±0.001 0.073±0.001 0.098±0.002 0.091±0.002 0.091±0.001
12 0.082±0.001 0.122±0.002 0.090±0.001 0.101±0.001 0.104±0.002 0.093±0.001 0.095±0.001
13 0.088±0.002 0.122±0.001 0.097±0.001 0.855±0.002 0.126±0.003 0.098±0.002 0.099±0.003
14 0.091±0.002 0.107±0.005 0.103±0.001 0.897±0.000 0.150±0.004 0.106±0.003 0.110±0.002

music emotion 5.29 0.123±0.002 0.241±0.004 0.244±0.002 0.211±0.004 0.217±0.003 0.389±0.003 0.217±0.003
music style 6.04 0.109±0.002 0.152±0.036 0.125±0.002 0.121±0.001 0.155±0.004 0.432±0.003 0.116±0.003

mirflickr 3.35 0.062±0.045 0.236±0.057 0.214±0.048 0.186±0.036 0.180±0.036 0.329±0.076 0.194±0.033

emotions, scene, yeast, and eurlex sm. For each
multi-label dataset, different settings are considered by vary-
ing the average number of candidate labels (avg. #CLs).
Accordingly, a total of twenty-four synthetic PML datasets
have been generated. Furthermore, three real-world PML
datasets including music emotion, music style and
mirflickr (Huiskes and Lew 2008) are also employed in
this paper. For the real-world PML dataset, candidate labels
are collected from web users which are further examined by
human labellers to specify the ground-truth labels.

Methodology

The performance of PML-LD is compared against six state-
of-the-art partial multi-label learning approaches, each con-
figured with parameters suggested in respective literature:

• PML-LC (Xie and Huang 2018) which optimize labeling
confidence and predictive model alternatively with label
correlations [suggested configuration: C1 = 1, C2 with
{1, 2, ..., 10}, C3 with {1, 10, 100}].
• PML-FP (Xie and Huang 2018) which optimize labeling

confidence and predictive model alternatively with feature
prototypes [suggested configuration: C1 = 1, C2 with
{1, 2, ..., 10}, C3 with {1, 10, 100}].
• FPML (Yu et al. 2018) which adopts noisy labels estima-

tion to learn from partial multi-label examples via low-
rank approximation [suggested configuration: λ1 = 1,
λ2 = 1, λ3 = 10].

• PARTICLE-VLS (Fang and Zhang 2019) which adopts
credible label elicitation technique to learn from partial
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Table 3: Experimental results of each comparing approach in terms of average precision, where the best performance (the larger
the better) is shown in bold face.

Data Set avg.#CLS PML-LD PML-LC PML-FP PARTICLE-VLS PARTICLE-MAP PML-LRS FPML

emotions
3 0.804±0.021 0.752±0.029 0.781±0.021 0.800±0.020 0.800±0.027 0.757±0.021 0.763±0.019
4 0.789±0.026 0.753±0.027 0.758±0.039 0.803±0.017 0.792±0.022 0.751±0.022 0.754±0.028
5 0.741±0.028 0.664±0.021 0.708±0.025 0.717±0.026 0.724±0.041 0.714±0.022 0.708±0.019

image
2 0.809±0.020 0.736±0.022 0.769±0.013 0.790±0.024 0.789±0.024 0.776±0.016 0.767±0.016
3 0.787±0.021 0.698±0.016 0.751±0.018 0.779±0.017 0.781±0.014 0.745±0.013 0.745±0.017
4 0.762±0.017 0.592±0.011 0.701±0.014 0.721±0.015 0.723±0.018 0.718±0.015 0.704±0.015

scene
3 0.863±0.013 0.718±0.008 0.762±0.015 0.830±0.009 0.826±0.013 0.801±0.015 0.814±0.013
4 0.839±0.010 0.658±0.047 0.715±0.010 0.792±0.013 0.792±0.010 0.754±0.015 0.757±0.012
5 0.797±0.022 0.546±0.031 0.644±0.024 0.703±0.012 0.712±0.019 0.699±0.024 0.686±0.030

yeast

9 0.746±0.007 0.713±0.013 0.738±0.011 0.744±0.007 0.722±0.007 0.558±0.008 0.734±0.005
10 0.744±0.007 0.708±0.012 0.730±0.008 0.743±0.007 0.720±0.009 0.548±0.012 0.726±0.008
11 0.738±0.006 0.699±0.014 0.723±0.009 0.738±0.006 0.712±0.008 0.527±0.008 0.712±0.007
12 0.728±0.005 0.686±0.005 0.709±0.001 0.726±0.004 0.699±0.007 0.494±0.003 0.695±0.006
13 0.712±0.004 0.654±0.009 0.651±0.004 0.704±0.003 0.688±0.001 0.475±0.005 0.650±0.005

eurlex sm

5 0.793±0.007 0.486±0.006 0.707±0.009 0.789±0.005 0.779±0.004 0.713±0.008 0.676±0.006
6 0.778±0.005 0.445±0.004 0.695±0.004 0.777±0.005 0.762±0.007 0.700±0.005 0.663±0.005
7 0.769±0.003 0.417±0.009 0.690±0.007 0.771±0.001 0.759±0.006 0.701±0.006 0.658±0.010
8 0.754±0.011 0.415±0.006 0.675±0.009 0.753±0.006 0.742±0.006 0.690±0.007 0.664±0.008
9 0.734±0.006 0.429±0.014 0.661±0.004 0.739±0.006 0.729±0.009 0.681±0.005 0.643±0.004

10 0.731±0.004 0.446±0.008 0.658±0.006 0.736±0.005 0.728±0.005 0.675±0.006 0.649±0.008
11 0.709±0.005 0.444±0.008 0.653±0.007 0.724±0.004 0.710±0.005 0.649±0.009 0.644±0.005
12 0.692±0.009 0.457±0.007 0.637±0.006 0.704±0.002 0.699±0.005 0.642±0.007 0.621±0.003
13 0.662±0.010 0.475±0.008 0.607±0.004 0.672±0.006 0.665±0.005 0.604±0.008 0.597±0.014
14 0.619±0.006 0.542±0.025 0.563±0.006 0.610±0.007 0.606±0.010 0.565±0.015 0.535±0.009

music emotion 5.29 0.630±0.010 0.574±0.010 0.566±0.009 0.607±0.010 0.611±0.011 0.621±0.006 0.605±0.007
music style 6.04 0.737±0.003 0.612±0.096 0.701±0.005 0.713±0.004 0.710±0.007 0.554±0.004 0.727±0.005

mirflickr 3.35 0.835±0.090 0.715±0.040 0.744±0.058 0.671±0.027 0.827±0.101 0.615±0.078 0.783±0.068

Table 4: Win/tie/loss counts of pairwise t-test (at 0.05 aignificance level) on PML-LD against each comparing approach.

PML-LD against
PML-LC PML-FP PARTICLE-VLS PARTICLE-MAP PML-LRS FPML

Ranking loss 25/2/0 22/5/0 21/6/0 19/8/0 23/4/0 23/4/0
Hamming loss 26/1/0 27/0/0 20/1/6 27/0/0 27/0/0 27/0/0

One-error 25/2/0 23/4/0 1/16/10 5/20/2 25/2/0 21/6/0
Coverage 23/4/0 20/7/0 7/19/1 17/10/0 21/6/0 20/7/0

Average precision 25/2/0 22/5/0 8/17/2 14/13/0 24/3/0 24/3/0
In Total 124/11/0 114/21/0 57/59/19 82/51/2 120/15/0 115/20/0

multi-label examples and virtual label splitting for predic-
tive model induction [suggested configuration: k = 10,
α = 0.95, thr = 0.9].

• PARTICLE-MAP (Fang and Zhang 2019) which adopts
credible label elicitation technique to learn from partial
multi-label examples and maximum a posteriori (MAP)
reasoning for predictive model induction [suggested con-
figuration: k = 10, α = 0.95, thr = 0.9].

• PML-LRS (Sun et al. 2019) which adopts low-rank and
sparse decomposition scheme to learn from partial multi-
label examples [suggested configuration: η = 1, γ = 0.1,
β = 1].
For PML-LD, the parameter λ1, λ2, m, β1 and β2 are fix

to 0.01, 0.01, 20, 1, 10 respectively. The kernel function in
PML-LD is Gaussian kernel.

Five popular multi-label metrics ranking loss, hamming
loss, one-error, coverage, and average precision are em-
ployed for performance evaluation, whose detailed defini-

tions can be found in (Zhang and Zhou 2014; Gibaja and
Ventura 2015). On each dataset, five-fold cross-validation is
performed where the mean metric value as well as standard
deviation are recorded for each comparing approach.

Experimental Results

Tables 2 and 3 report the detailed experimental results.
Due to page limitation, we only show representative results
on hamming loss and average precision. Those results on
other evaluation measures are similar. For each dataset and
evaluation metric, pairwise t-test based on five-fold cross-
validation (at 0.05 significance level) is conducted to show
whether the performance of PML-LD is significantly differ-
ent to the comparing approach. Accordingly, Table 4 sum-
marizes the resulting win/tie/loss counts over 27 datasets and
5 evaluation metrics.

Based on the experimental results of comparative studies,
it is impressive to observe that:
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10 20 30 40 50

2

0.60

0.65

0.70

0.75

0.80

P
er

fo
rm

a
n

ce
 (

A
v

er
a

g
e 

p
re

ci
si

o
n

)

music_emotion

music_style

eurlex_sm (avg.#CLs=10)

(e) Varying β2

Figure 3: Parameter sensitivity analysis for PML-LD on music emotion, music style and eurlex sm. (a) Classification
accuracy of PML-LD changes as λ1 increases from 0.01 to 0.05 with step-size 0.01 (λ2 = 0.01,m = 20, β1 = 1, β2 = 10); (b)
Classification accuracy of PML-LD changes as λ2 increases from 0.01 to 0.05 with step-size 0.01 (λ1 = 0.01,m = 20, β1 =
1, β2 = 10); (c) Classification accuracy of PML-LD changes as m increases from 10 to 50 with step-size 10 (λ1 = 0.01, λ2 =
0.01, β1 = 1, β2 = 10); (d) Classification accuracy of PML-LD changes as β1 increases from 1 to 5 with step-size 1 (λ1 =
0.01, λ2 = 0.01,m = 20, β2 = 10); (e) Classification accuracy of PML-LD changes as β2 increases from 10 to 50 with
step-size 10 (λ1 = 0.01, λ2 = 0.01,m = 20, β1 = 1).

• Across all the statistical tests, PML-LD achieves supe-
rior or at least comparable performance against PML-
LC, PML-FP, PML-LRS and FPML. Especially, PML-LD
achieves superior performance against PML-LC, PML-FP,
PML-LRS and FPML in 91.9% cases (124 out of 135),
84.4% cases (114 out of 135), 88.9% cases (120 out of
135) and 85.2% cases (115 out of 135) respectively.

• PML-LD achieves comparable performance against
PARTICLE-VLS and PARTICLE-MAP in 85.9% cases (116
out of 135) and 98.5% cases (133 out of 135) respec-
tively. In addition, PML-LD achieves superior perfor-
mance against PARTICLE-VLS and PARTICLE-MAP in
42.2% cases (57 out of 135) and 63.0% cases (82 out of
135) respectively.

• On the real-world PML datasets music emotion,
music style and mirflickr, PML-LD achieves op-
timal performance in almost all cases. It is because that
PML-LD can better recover the hidden label distributions
in the real-world PML datasets.

Sensitivity Analysis

In this subsection, performance sensitivity of the proposed
PML-LD approach w.r.t. its parameters λ1, λ2, m, β1 and β2

will be further analyzed.
Figure 3 illustrates how PML-LD performs under dif-

ferent parameter configurations. For clarity of illustra-
tion, three datasets music emotion, music style and
eurlex sm are chosen here for sensitivity analysis while
similar observations also hold on other datasets.

As shown in Figure 3, it is obvious that the performance
of PML-LD is relatively stable across a broad range of each
parameter. This property is quite desirable as one can make
use of PML-LD to achieve robust classification performance
without the need of parameter fine-tuning. Therefore, the pa-
rameter configuration for PML-LD in Subsection 4.2 natu-
rally follows from these observations.

Conclusion

In this paper, the problem of PML is studied where a
novel approach PML-LD is proposed. Different from exist-
ing strategies, PML-LD considers the label distributions in
the training datasets. Since the label distributions are not ex-
plicitly available in the training sets, PML-LD recovers the
label distributions via leveraging the topological informa-
tion of the feature space and the correlations among the la-
bels, and then induces the predictive model based on multi-
output regression analysis. Effectiveness of the proposed ap-
proach is validated via comprehensive experiments on both
synthetic datasets and real-world PML datasets.
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