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Abstract

In multi-label learning, instances have a large number of
noisy and irrelevant features, and each instance is associated
with a set of class labels wherein label information is gener-
ally incomplete. These missing labels possess two sides like
a coin; people cannot predict whether their provided infor-
mation for feature selection is favorable (relevant) or not (ir-
relevant) during tossing. Existing approaches either superfi-
cially consider the missing labels as negative or indiscreetly
impute them with some predicted values, which may either
overestimate unobserved labels or introduce new noises in se-
lecting discriminative features. To avoid the pitfall of missing
labels, a novel unified framework of selecting discriminative
features and modeling incomplete label matrix is proposed
from a generative point of view in this paper. Concretely, we
relax Smoothness Assumption to infer the label observabil-
ity, which can reveal the positions of unobserved labels, and
employ the spike-and-slab prior to perform feature selection
by excluding unobserved labels. Using a data-augmentation
strategy leads to full local conjugacy in our model, facili-
tating simple and efficient Expectation Maximization (EM)
algorithm for inference. Quantitative and qualitative exper-
imental results demonstrate the superiority of the proposed
approach under various evaluation metrics.

Introduction

Feature selection is an important part in machine learn-
ing, which aims at selecting the most discriminative fea-
tures to reduce dimensionality and computation costs, im-
prove the learning performance of models, and better un-
derstand the inherent regularities in data (Guyon and Elis-
seeff 2003). In the feature selection for multi-label cases,
most approaches (Gu, Li, and Han 2011; Ma et al. 2012a;
2012b) capture label correlations to help better select the
most discriminative features across multiple labels, which
can improve the learning performance in prediction phrase.
Nevertheless, these approaches have all assumed training
data with complete label assignments.

In practice, however, it is difficult to attain complete la-
bels; a considerable number of labels are left aside by la-
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belers, intentionally or accidentally. Taking an intentional
example, in image or text learning, human labelers tend to
only annotate a few keyword labels that describe the most
obvious visual or semantic contents, a.k.a. “positive labels”.
Those rare or ambiguous contents are commonly omitted
without being labeled, which we call “unobserved labels” in
this work. From the accidental aspect, labelers could hardly
be exposed to all of the samples in massive scale, which also
leads to the existence of numerous unobserved labels.

A critical issue is that the candidate label set is typically
huge, and the labels that are irrelevant with the described
items are also abandoned by labelers, a.k.a. “negative la-
bels”. For example, the label “iceberg” could hardly be as-
sociated with a “desert” image. This comes to a problem
that, negative labels and unobserved labels are compounded
in the pool of “missing label”. This issue has not received
enough attention by existing feature selection approaches;
yet, it is crucial because the nature of two kinds of labels is
entirely disparate. They make different contributions in de-
termining whether a feature is discriminative for the learning
prototype; the negative labels provide definite negative feed-
back information, while the unobserved labels give nothing
back. This is the core motivation of our study, that is, we at-
tempt to accurately trace the unobserved labels and preclude
them from the process of feature selection.

Existing multi-label feature selection to deal with the in-
complete label cases includes the label embedding line and
the imputation line. The former family of approaches sim-
ply treats all of the missing labels as the negative ones,
and the latter family randomly assumes the positions of the
unobserved labels in the incomplete label matrix and pre-
dicts their positive or negative values. The manipulation of
the label embedding family is apparently inconsistent with
the reality, and that of the imputation family seems super-
ficially complicated, because (1) randomly positioning the
unobserved labels is unreasonable; and (2) no method could
promise an absolutely perfect prediction for the unobserved
labels, and an indiscreet prediction inevitably introduces
new noises and further deteriorates the performance of fea-
ture selection.

In this study, we concentrate on tackling the following
challenges to prevent the participation of the unobserved la-
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bels in feature selection, considering the possible negative
effects caused by their ambiguous nature: (1) accurately dis-
criminating the unobserved labels in the missing label pool;
(2) finding a compromise way to both adequately take ad-
vantage of the known label information and avoid the intro-
duction of the label noises; and (3) with the support of the
credible label information obtained by solving (1) and (2),
selectively shrinking the weights of features to facilitate the
discriminative features prevail.

In this paper, we propose a novel generative probabilis-
tic framework to conduct multi-label feature selection with
incomplete labels, named GMFS (Generative Multi-label
Feature Selection). Concretely, the binary latent indicator
variables are incorporated into the generative model to trace
the positions of the unobserved labels. To precisely estimate
these indicator variables, we relax the traditional Smooth
Assumption for explicit observations of labels. Then based
on the indication of these variables, label correlations are
captured entirely on the credible labels and employed to
guide feature selection, which helps GMFS avoid the pitfall
of the unobserved labels. In addition, the golden standard
for sparse learning, i.e., spike-and-slab prior, is incorporated
into GMFS, to separately model discriminative features and
irrelevant features with different priors. This strategy leads
to the aggressive shrinkage of irrelevant features as well as
preserves discriminative features for rare labels.

In summary, the main contributions are as follows:
• We firstly make an in-depth view into the disparity of

missing labels, and differentially treat the unobserved
ones and the negative ones in feature selection through
a generative probabilistic model;
• A fusion of both terms, i.e., label observability inference

by relaxing Smooth Assumption and sparse learning via
spike-and-slab prior, contributes to ambiguity-free guide
and selective shrinkage in feature selection;
• An extensive empirical evaluation is conducted to quanti-

tatively and qualitatively assess the selection performance
of GMFS, validating its superiority in the incomplete
learning scenarios.

Background

Smoothness Assumption has been widely applied in
multi-label learning for label completion, which describes
that similar instances share similar labels (Ma et al. 2012b;
Zhu et al. 2018). Taking the text annotation for an exam-
ple, we can find some similar description words (labels) in
the Olympic reports respectively about swimming and div-
ing, such as “champion”, “aquatics”, and “athlete”. While
we observe that similar instances also possess their person-
alized labels, e.g., the swimming reports may have words
“breaststroke” and “relay”, which could hardly appear in the
diving reports, and vice versa. Thus we argue that Smooth-
ness Assumption is too strong to be directly applied in the
incomplete learning scenarios in this work, because it em-
phasizes the uniformity of similar instances, while neglects
their distinctiveness. In order to accurately trace the unob-
served labels, we firstly relax the Smoothness Assumption as
that similar instances have similar probabilities to achieve

the same observed labels, and employ it to handle the la-
bel observability rather than predict the missing label values,
which is less restrictive and seems closer to reality.

Spike-and-Slab Prior (SSP) is a golden standard in the
Bayesian variable selection (Ishwaran, Rao, and others
2005), which takes the marginal posterior of a variable as
its selection probability. A variable ω following SSP is sam-
pled from a linear combination of two distributions:

ω ∼ πN (μ, σ2) + (1− π)δ0, (1)
where N (μ, σ2) is the slab prior, which is modeled using a
Gaussian distribution with mean μ and variance σ2, and δ0
is the spike prior, which is modeled using a Dirac delta mass
function centered at zero. SSP can assign the non-zero prob-
ability for the event ω = 0 as p(ω = 0) = 1− π. Therefore,
SSP is an ideal distribution for variable selection. However,
the Dirac delta function in SSP complicates its inference.
In this work, we present a variant of SSP to perform sparse
feature selection with a fast inference.

The Proposed Framework

Preliminaries

Let X = {x1, . . . ,xn} ∈ R
n×d denote the instance matrix,

where xi ∈ R
d is the i-th instance and n is the total number.

Y = {y1, . . . ,yn} ∈ {0, 1}n×l denotes the label matrix,
where l is the number of labels. yij = 1 represents a positive
label, while yij = 0 offers two possibilities, i.e., negative or
unobserved (Jain, Modhe, and Rai 2017).

Formulation

GMFS is a generative model with fusing the unobserved la-
bel inference and sparse feature selection. Fig. 1 shows our
model in the graphical representation. In this section, we
first design a latent factor model coupled with indicator vari-
ables to trace the unobserved labels, and relax the Smooth-
ness Assumption to estimate these variables by modeling the
label observability. Next, based on the guide of these indi-
cator variables, we accomplish the sparse feature selection
through the spike-and-slab prior. Finally, inference is per-
formed via the expectation maximization algorithm.

Modeling Label Matrix. We assume that each instance
xi (i = 1, . . . , n) is associated with a latent semantic factor
vi ∈ R

c. It can be interpreted as clustering the original l la-
bels into c different clusters, and each cluster has a specific
semantic meaning. For example, the labels “horse” and “cat-
tle” are more likely to be categorized into the same group
because of encoding similar semantic information. Each la-
bel j = 1, . . . , l is associated with a label latent coefficient
factor bj ∈ R

c, which can be interpreted as its coefficient
w.r.t. these c semantic clusters. Inspired by the exploration
of the exposure variable in recommendation system (Liang
et al. 2016), we define a binary latent indicator variable ρij
to infer the observability of the label yij from data. Then,
the prior distributions of the latent factors vi, i = 1, . . . , n,
bj , j = 1, . . . , l, and binary latent variable ρij are given as

vi|xi,W ∼ N (vi|W Txi, λ
−1
v Ic), (2)

bj ∼ N (bj |0, λ−1
b Ic), (3)
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Figure 1: Graphical model of the proposed GMFS.

ρij ∼ Bernoulli(θij), (4)
where θij is the prior probability of the latent indicator vari-
able ρij , Ic is the identity matrix, and λv and λb are hyper-
parameters that denote the precision of distributions and in-
verse variances. W ∈ R

d×c is the feature coefficient matrix
whose rows measure the importance of features in approxi-
mating the latent semantics V = {vi}ni=1. We condition vi

on W and xi by assuming its prior distribution depends on
the distribution of xi in the reduced feature space. Condi-
tioned on these latent factors, yij is estimated as

yij |vi, bj ∼
{

Bernoulli(yij |σ(vT
i bj)), if ρij = 1

δ0, if ρij = 0
,

(5)
where σ(·) denotes the logistic function; δ0 denotes the un-
observed cases, that is, p(yij = 0|ρij = 0) = 1. ρij = 1
indicates that yij is an observed label, and yij could be 1
or 0, depending on the outcome of the Bernoulli draw. For-
mally, yij is modeled by fusing two distributions as

yij ∼ ρijBernoulli(yij |σ(vT
i bj))+(1−ρij)I[yij = 0], (6)

where I[·] is the indicator function. As shown in Eq. (6),
the latent indicator variable ρij decides which distribution
from this mixture generates yij . ρij for the positive label
(i.e., yij = 1) is equal to 1 with probability 1; in other words,
we only need to infer entry whose corresponding yij is equal
to 0, that is, the missing label. By inferring ρ, we can get an
explicit indication of where the unobserved labels are.

Modeling Label Observability. To accurately trace the
unobserved labels in the missing label pool, the probabil-
ity parameter θij in Eq. (4) is critical, and we can regard
it as the observation probability of the j-th label for the
i-th instance. Here, we propose a general method, which
takes advantage of instance similarity information to cap-
ture the label observability, and this strategy can be aug-
mented with freely available external knowledge in real ap-
plications. Concretely, we relax the Smoothness Assumption
to learn θij , because the traditional Smoothness Assumption
emphasizes the uniformity of two similar instances, while
neglects their distinctiveness. A negative example is that a
user can obtain the recommendation of a product from her
friend, while whether she will buy this product is finally de-
termined by her personal preference. In addition, we choose

the Beta distribution Beta(α, β) as the label-dependent con-
jugate prior for θij , which is defined as follows:

θij = oij + E(s), E(s) =
∑

e∈Nk(i)

s · θej , (7)

where oij is the inner observance of the instance xi toward
the j-th label, s is the coefficient of effects from neighbors,
and Nk(i) denotes the k-nearest neighbors of xi computed
by RBF kernel. We employ instance correlations to infer the
positions of unobserved labels, facilitating excluding them
from the subsequent spare feature selection. Here, credible
label correlations can be explored via latent semantics V to
guide feature selection process.

Modeling Sparse Feature Selection. The generative
model specified in the label matrix modeling module con-
trols features through the feature coefficient matrix W and
the features that are most related to the latent semantic ma-
trix V are highly scored. In this situation, however, the fea-
tures discriminative to rare labels are dominated by the fea-
tures for common labels, and their weights may iteratively
shrink to zero and finally they will be lost in a single sparse
regularization. In this study, we tackle this issue by placing
a spike-and-slab prior over W for selective shrinkage. Con-
cretely, a set of latent selection variables {πf} , f = 1, . . . , d
are introduced to indicate the feature selection: πf = 1
means the f -th feature is selected; otherwise, it is unse-
lected. The spike-and-slab prior over W is assigned as

wf |πf ∼ (1− πf )N (wf |0, σ0) + πfN (wf |0, σ1), (8)
πf |τf ∼ Bernoulli(τf ), (9)

where σ0 and σ1 are the variances of two Gaussian compo-
nents (i.e., σ0 � σ1), N (wf |0, σ0) is similar to point-mass
at zero yet is more robust, and τf ∈ [0, 1] represents the se-
lection probability of the f -th feature. If the f -th feature is
selected, the slab prior over wf has large variance σ1 that
determines the discrepancy between nonzero weights and,
if not, the spike prior has very small variance σ0, leading
to aggressive shrinkage of the irrelevant or noisy features.
This strategy promises the discriminative features to be max-
imally preserved, which will be further demonstrated in in-
ference. Here, we treat τf as a random variable with the non-
informative Jeffreys prior (Grazian and Robert 2018), dis-
pensing with any hyperparameters. To quantify the selection
uncertainty, we marginalize the latent selection variables
{πf}, and sort features in a descending order according to
‖wf‖2 and select the top-ranked ones (Jian et al. 2016).

Inference

We use EM to find the maximum a posteriori estimates
of the unknown parameters of the model. To develop effi-
cient algorithm for doing inference, we leverage the recently
developed Pólya-gamma augmentation techniques (Polson,
Scott, and Windle 2013) to handle these non-conjugate like-
lihoods due to the presence of the logistic-Bernoulli likeli-
hood and the Gaussian prior for the model parameters and
are able to transform these likelihoods into Gaussian likeli-
hoods, when conditioned on auxiliary variables.
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The pólya-gamma augmentation technique (Polson,
Scott, and Windle 2013) is based on the following identity

(exp(ψ))ς0

(1 + exp(ψ))ς1
= 2−ς1 exp(κψ)

∫ ∞

0

exp(−ηψ2/2)p(η)dη, (10)

where κ = ς0 − ς1/2 and p(η) = PG(ς1, 0) denotes the
pólya-gamma distribution.

Specially, using PG augmentation, we can write the
logistic-Bernoulli likelihood from Eq. (6) as a Gaussian
when conditioned on ηij ∼ PG(1,vT

i bj). In particular,
ψij = vT

i bj , conditioned on ηij , becomes a Gaussian

p(ψij |ηij) ∝ exp(κijψij − 1

2
ηijψ

2
ij), (11)

where κij = yij − 0.5. This likelihood with the Gaussian
priors on the latent factors vi and bj results in Gaussian
posteriors on vi and bj . When doing EM, this also leads to
subproblems that are like least square regression problems.

The EM algorithm for our model alternates between com-
puting the expectations of the local latent variables, namely
the pólya-gamma variables {ηij} and the binary latent in-
dicator variables {ρij} in the E step, and then using these
expectations to estimate the latent semantic factor V , latent
label coefficient factor B, observation probabilities {θij},
and selection probabilities {τf} in the M step.

The E step: The E step involves computing the expecta-
tions of the latent variables {ηij} and {ρij}, given the cur-
rent values of other model parameters estimated in the pre-
vious M step. The E step update equations are given below:
• Expectations of Pólya-gamma variables {ηij} , ∀i, j are

known to be available in closed form (Scott and Sun 2013),
and are given by

ζij = E[ηij |ψij ] =
1

2ψij
tanh(

ψij

2
), (12)

where ψij = vT
i bj is computed using the estimates of vi

and bj from the previous M step.
• Expectations of each of the binary latent indicator vari-

ables {ρij} , ∀i, j, are given by

γij = E[ρij |ψij ] =
θijσ(−ψij)

θijσ(−ψij) + (1− θij) . (13)

Note that if yij = 1, then γij = 1. In this paper, {γij} are
only imposed to distinguish between unobserved labels and
negative labels.

The M step: Given the expectations of the latent variables
computed in the E step and marginalized the selection vari-
ables {πf}, the log posteriori objective function is optimized
in M step, which denotes as Q(V ,B,W , τ ,θ)

Q(V ,B,W , τ ,θ) = −1

2

∑
i,j
γij

(κij − ζijv
T
i bj)

2

ζij

+
∑

i,j
log Bernoulli(γij |θij)− λv

∑n

i=1
‖vi −W Txi‖2

+
∑d

f=1
log((1− τf )N (wf |0, σ0) + τfN (wf |0, σ1))

+
∑

i,j
log Beta(θij |α, β)− λb

∑l

j=1
‖bj‖2.

(14)

Note that the first term given in Eq. (14) is due to the logis-
tic likelihood transformed into a Gaussian (using PG aug-
mentation). The term is akin to a weighted least square
objective where each label being associated with a weight
γij . Intuitively, the contribution of each label yij to the
log-likelihood gets modulated based on its expressed la-
bel observability. When label yij is unobserved label (i.e.,
γij = 0), this label does not contribute to numerical com-
putation in M step. Maximizing Q(V ,B,W , τ ,θ) respec-
tively w.r.t. V ,B,W , τ ,θ, yield closed-form updates for
each of these. The updates are as follows:
• Estimating each of the latent semantic factors {vi}ni=1

is a weighted ridge-regression problem with solution

vi = (

l∑
j=1

γijζijbjb
T
j +λvIc)

−1(

l∑
j=1

γijκijbj+λvW
Txi).

(15)
Note that if the j-th label is unobserved or unobserved with
high probability for the i-th instance, i.e., γij is zero or small
value, it hardly contributes to the update of vi, which avail-
able label correlations are captured only depending on cred-
ible label information to help better steer feature selection
process. And the updates for {vi}ni=1 are all independent of
each other and are easily parallelized.
• Estimating each of the latent coefficient factors {bj}lj=1

is a weighted ridge-regression problem with solution

bj = (

n∑
i=1

γijζijviv
T
i + λbIc)

−1(

n∑
i=1

γijκijvi). (16)

Note that if the j-th label is unobserved or unobserved with
high probability for the i-th instance, it hardly contributes to
the update of bj . And the updates for {bj}lj=1 are all inde-
pendent of each other and are easily parallelized.
• In Eq. (14), we marginalize out {πf} and jointly update

over W and the selection probabilities {τf}. Given W as
fixed, the update for τf is that τf = 1 if |wf | ≥ ξ, and

τf = 0 otherwise, where ξ =

√
( 2σ0σ1

σ1−σ0
) log

√
σ1

σ0
. Here if

τf = 1, we can infer πf = 1 based on Bernoulli draw that
f -th feature is relevant, slab prior is imposed to model it that
this feature information can be preserved; if τf = 0, we can
infer πf = 0 that f -th feature is irrelevant or noisy, spike
prior leads to aggressive shrinkage of f -th feature. More-
over, based on a moderate ξ, informative features discrimi-
native to rare labels can be selected to improve the feature
selection performance.
• Given τ , the update of W has a closed form solution

for regression that is a special case of generalized ridge-
regression (Hoerl and Kennard 1970):

W = (λvX
TX + diag(A))−1λvX

TV , (17)

where A is such that af = ( 1
σ1
)τf ( 1

σ0
)(1−τf ), f = 1, . . . , d.

The update of W has a time complexity of O(d3). This
is prohibitively expensive at higher dimensions. However,
the EM algorithm does not require solving for W exactly
in each M step. Therefore, we solve for W efficient using
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gradient based methods, such as conjugate-gradient (CG)
method (Bertsekas 1997), which also allows us to leverage
the sparsity in the feature matrix. Typically, a small number
of CG iterations are sufficient in practice.
• Given γij from E step, maximizing the objective

function w.r.t. θij is equivalent to finding the mode of
the complete conditional Beta(α +

∑n
u=1 γuj + (s −

1)
∑

e∈Nk(i)
γej , β + n−∑

e∈Nk(i)
γej), which is

θij ←−
α+

∑n
u=1 γuj + (s− 1)

∑
e∈Nk(i)

γej − 1

α+ β + n+ (s− 1)
∑

e∈Nk(i)
γej − 2

,

(18)
where s ≥ 1 is the coefficient of instance similarity effects.

In conclusion, we iteratively optimize the variables and
infer them to reach the following goals: (1) the latent indi-
cator variables {ρij} are learned to trace unobserved labels;
(2) based on {ρij}, the latent semantic factor V is learned to
encode the label correlations; (3) the selection probabilities
{τf} are learned to provide a pronounced selective shrink-
age property for features; and (4) the feature coefficient ma-
trix W is learned to remove irrelevant and noisy features on
the basis of the V and τ . Our objective function in Eq. (14)
is maximized to comprehensively model incomplete labels
and sparse feature selection in the multi-label scenarios.

Complexity Analysis

The cost of the inference consists of two parts: (1) In E
step, the variables {ηij} and {ρij} are computed that costs
O(Tnlc), where T is the number of iterations; and (2) In
M step, when inferring the latent factor V and B, the
complexity is at least O(Tnc2 + Tndc + T lc2). As c is
smaller than l and n, the complexity can be calculated as
O(Tnd + T l), where they are easily parallelized. We in-
fer the parameter W using CG method, the time complex-
ity achieves O(Td) speedup. The cost of updating variables
{θij} becomes O(Tnlk + n2), where k is very small than
n. Hence, the overall complexity is O(Tnl + Tnd + n2),
where similarity computational cost O(n2) can be avoided
via employing additional knowledge in practice.

Related Work

The existing feature selection methods to handle the missing
labels can be mainly divided into two groups: the label em-
bedding line and the imputation line. The label embedding
methods decompose the incomplete labels and project them
to a low-dimensional space. For instance, Jian et al. (Jian
et al. 2016) imposed Latent Semantic Index to decompose
the multi-label output space, and Braytee et al. (Braytee et
al. 2017) employed non-negative matrix factorization to si-
multaneously decompose the original data and label matrix.
These approaches regard all missing labels as the negative
ones, which is inconsistent with common sense, while we
consider two sides of missing labels, exclude its negative ef-
fects and explore its positive potential in feature selection.

On the other hand, the imputation approaches randomly
assume the positions of unobserved labels and complete
them with pre-assumed values. For example, Zhu et al. (Zhu
et al. 2018) employed robust linear regression combined

with Smoothness Assumption to simultaneously recover un-
observed labels and select informative features, which may
introduce label noises and degrade feature selection perfor-
mance. In contrast, we trace the positions of unobserved la-
bels via a generative model and disregard their recoveries, to
avoid introducing noises in feature selection.

Another related field to our study is the sparse learn-
ing (Bradley and Mangasarian 1998; Nie et al. 2010; Liu
et al. 2013; Jian et al. 2016; Xu et al. 2018). In the regular-
ization theory literature, sparse feature selection is generally
tackled via l1 or l2,1 regularization, which requires expen-
sive cross-validation and restricts discriminative and irrele-
vant features to the same regularization level (Rendle 2010).
Our model employs the spike-and-slab prior to provide se-
lective shrinkage property, which can effectively capture the
sparse feature structure.

Experimental Study

We evaluate our approach on seven groups of multi-label
data sets fetched from Mulan library 1 and the “yahoo.com”,
as shown in Table 1.

Table 1: Data sets description

Data sets Instances Features Labels Domain
Emotions 593 72 6 music
Yeast 2417 103 14 biology
Science 5000 743 40 text
RCV1S1 6000 944 101 text
RCV1S2 6000 944 101 text
Bibtex 7395 1836 159 text
Delicious 16105 500 983 text

Experimental Settings

In this section, we compare GMFS with the following ap-
proaches: two state-of-the-art sparse feature selection meth-
ods (i.e., FSNM (Nie et al. 2010) and SFUS (Ma et al.
2012b)), two label embedding methods (i.e., MIFS (Jian et
al. 2016) and CMFS (Braytee et al. 2017)), an imputation
method (i.e., MLMLFS (Zhu et al. 2018)), and All−Fea
without any feature selection.

For our model, we fix the parameters λv , λb, α, β, and s
to 10−3, 10−3, 0.5, 0.5, and 5, which works well on most
data sets we experimented with. We tune the parameters c
(number of latent factors), k (number of nearest neighbors),
and the variances for spike-and-slab components (i.e., σ0
and σ1) using cross-validation. The grids of c, σ0, and σ1
are c = [2, l

4 ,
2l
4 ,

3l
4 , l], σ0 = [10−6, 10−5, 10−4, 10−3], and

σ1 = [1 : 1 : 5]. For conjugate gradient (CG) method used
in the M step of our inference algorithm, we run five iter-
ations for sufficient valuation. To simulate the situation of
label incompleteness, the missing label ratio is set to 20%
and 40% by randomly dropping the observed labels from
the training data (Bucak, Jin, and Jain 2011). Multi-label
libSVM (Chang and Lin 2011) with RBF kernel is chosen

1http://mulan.sourceforge.net/datasets.html.
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Figure 2: Variations of Hamming Loss and MAP with in-
creasing the percentage of missing labels on Yeast.

as the classifier due to its effectiveness verified in many
state-of-the-art works (Ma et al. 2012a; Jian et al. 2016;
Braytee et al. 2017). Each compared approach respectively
selects {d6 , 2d6 , 3d6 , 4d6 , 5d6 } features to build the multi-label
libSVM classifier, where d is the number of the original
features. We report the mean average precision (MAP) and
standard deviation averaged across five independent runs on
each dataset with different size of features.

Classification Performance

The feature selection performance respectively with 20%
and 40% missing labels are recorded in Table 2 and Table 3.
Here, we examine pairwise t-test on the experimental results
to show whether the performance of GMFS is significantly
different to the baselines over benchmarks.

According to the experimental results, we observe that (1)
GMFS achieves approximately 2%−5% improvements over
All-Fea across the benchmarks, which means that a discrim-
inative reduced space by removing noises and irrelevant fea-
tures is beneficial for learning prototypes; (2) GMFS yields
better performance than the label embedding approaches
(i.e., MIFS and CMFS), which demonstrates that the low-
dimensional semantic space of GMFS wherein the unob-
served labels are excluded can encode inherent label correla-
tions to help find discriminative features; (3) GMFS is gen-
erally better than the imputation approach (i.e., MLMLFS),
which indicates that the imputed value may be imperfect and
bring additional noises for feature selection, which is also
one of the major issues addressed by GMFS; (4) SFUS and
FSNM yield relatively inferior performance, since they are
incapable of handling missing labels, which are pervasive in
practice while beyond their discussions.

Effects of the Size of Missing Labels

To evaluate the effects of label incompleteness on feature se-
lection, we vary the missing label ratio on the Yeast bench-
mark as {10%, 20%, 30%, 40%, 50%, 60%} and show the
performance of the compared approaches under Hamming
Loss and MAP in Fig. 2. The followings can be observed.
(1) GMFS yields better performance than baselines in most
learning cases, which indicates that credible label correla-
tions that are captured based on available positive and nega-
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Figure 3: Comparison of two sparse priors.

tive labels are beneficial for improving feature selection per-
formance; (2) With increasing the scale of missing labels,
the selection performance of GMFS tends to deteriorate,
since the available label information gradually decreases
and further weakens its ability of guiding feature selection;
and (3) The sparse feature selection approaches (i.e., FSNM
and SFUS) perform relatively inferior, especially when the
missing label ratio is high, since these approaches are weak
of handling missing labels; meanwhile, this also points out
the significance of appropriately recognizing and employing
missing labels to guide feature selection.

Effects of Sparse Feature Selection

In this section, we compare GMFS with spike-and-slab prior
and GMFS with Laplace prior (i.e., l1 regularization and
regularization parameter is decided using cross validation),
to evaluate their impacts when selecting different sizes of
features. Emotions with 20% missing labels is used as the
benchmark. Fig. 3 shows the performance of GMFS with
two different priors when increasing the selected features
from 12 to 72 (i.e., the number of the original features).
We observe that (1) GMFS with spike-and-slab prior gener-
ally outperforms GMFS with Laplace prior, which attributes
to the selective shrinkage property that facilitates the infor-
mative features and especially those discriminative to rare
labels to prevail, while conducting single l1 regularization
may lose these partial informative features due to its identi-
cal shrinkage on all features; (2) the performance of GMFS
is improved with expanding the size of selected feature sub-
set from 12 to 36, due to more excellent features are selected
and included in this subset, and the highest MAP score is
achieved when the selected number is equal to 36; and (3)
the performance of GMFS exhibits a declining trend when
the selected number continuously rises, till all of the origi-
nal features are selected, where a large number of redundant
features appear in the selected subset. Thus, we can conclude
that it is difficult to find a definite optimal number of selected
features at which the best performance can be achieved by
different approaches across different data sets. In consider-
ation of this issue and for a fair comparison, we vary the
number of selected features and report the average selection
performance for each baseline throughout our experiments.
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Table 2: MAP score(±standard deviation) when missing label ratio is 20%. The best result and those not significantly worse
than it are highlighted in bold (pairwise t-test at 5% significance level).

Data sets Approaches

All−Fea FSNM SFUS MIFS CMFS MLMLFS GMFS

Emotions 0.685±0.023 0.639±0.043 0.679±0.006 0.693±0.016 0.680±0.022 0.707±0.066 0.732±0.019
Yeast 0.741±0.011 0.702±0.029 0.731±0.023 0.747±0.027 0.750±0.010 0.754±0.009 0.775±0.007
Science 0.558±0.010 0.526±0.090 0.540±0.047 0.543±0.053 0.544±0.074 0.562±0.038 0.589±0.008
RCV1S1 0.519±0.006 0.500±0.041 0.467±0.012 0.501±0.006 0.521±0.006 0.525±0.003 0.554±0.006
RCV1S2 0.538±0.010 0.463±0.070 0.514±0.021 0.527±0.017 0.537±0.005 0.542±0.004 0.579±0.011
Bibtex 0.547±0.009 0.453±0.012 0.478±0.017 0.476±0.064 0.533±0.003 0.557±0.016 0.578±0.008
Delicious 0.496±0.007 0.473±0.016 0.499±0.026 0.516±0.005 0.524±0.033 0.510±0.030 0.547±0.013

Table 3: MAP score(±standard deviation) when missing label ratio is 40%.

Data sets Approaches

All−Fea FSNM SFUS MIFS CMFS MLMLFS GMFS

Emotions 0.632±0.030 0.626±0.067 0.649±0.009 0.628±0.032 0.623±0.028 0.646±0.029 0.697±0.027
Yeast 0.726±0.009 0.689±0.033 0.700±0.006 0.723±0.013 0.739±0.014 0.731±0.027 0.756±0.010
Science 0.527±0.013 0.493±0.121 0.516±0.012 0.520±0.021 0.527±0.009 0.526±0.059 0.550±0.010
RCV1S1 0.483±0.012 0.451±0.035 0.443±0.013 0.487±0.029 0.482±0.004 0.475±0.005 0.512±0.009
RCV1S2 0.504±0.010 0.414±0.081 0.480±0.015 0.471±0.011 0.508±0.012 0.507 ±0.009 0.531±0.007
Bibtex 0.506±0.006 0.424±0.079 0.443±0.031 0.464±0.014 0.483±0.006 0.490±0.015 0.523±0.004
Delicious 0.461±0.016 0.442±0.028 0.459±0.033 0.478±0.020 0.491±0.022 0.483±0.019 0.514±0.017

Parameter Analysis

The scale of instance correlations in Eq. (7) (i.e., Nk(i))
plays an important role in estimating the label observabil-
ity. In this subsection, we evaluate its effects by varying the
number of nearest neighbors k from 0 to 30, utilizing Emo-
tions with 20% missing labels as the benchmark. Fig. 4a
shows that when k is set to 0, we cannot extract instance cor-
relations to infer label observability and GMFS performs rel-
atively inferior. This further reveals that GMFS relies on the
credible labels to guide its feature selection, which is consis-
tent with the observations in the above experiments. When
k > 0, the instance correlations facilitate effective inference
of label observability, which exposes the positions of unob-
served labels and paves the way for ambiguity-free feature
selection. A small or large scale of nearest neighbors may
hamper label observability, because of missing useful neigh-
bor information or incorporating noisy information. The re-
sults of GMFS reported throughout the paper are obtained
with a moderate value of k as 20.

We also conduct experiments to evaluate the effects of
the number of latent factors by varying c from 2 to 40, and
demonstrate the MAP score of GMFS on the Science data
set with 20% missing labels. The results in Fig. 4b indicate
that a moderate number of semantic clusters contributes to
capturing available label correlations, which facilitates the
selection of relevant features. The optimal cluster number
for the Science benchmark is 20, and a smaller or larger scale
of semantic clusters may disturb the extraction of true label
correlations. In our experiments, the optimal number of la-
tent factors is captured by cross validation.
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Figure 4: Variations of MAP on GMFS w.r.t. different pa-
rameters

Discussion

Conjecturing the intentions of human labelers is a compli-
cated issue, because it is complex to decide whether the la-
bels are intentionally missed or accidentally missed by la-
belers. We endeavor to address this issue via a generative
framework from the probabilistic view in this study.

The missing labels construct an unknown world, and we
can expect to distill favorable information from this world
and also should be alert of its pitfall. Dozens of approaches
have stressed its positive side and devoted efforts to miss-
ing information completion, while we focus on excluding
its negative effects and exploring its potential in feature se-
lection. In other words, it is unnecessary to recover missing
labels in the learning process, which is essentially different
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with missing label learning. Inevitably, our selection perfor-
mance would decay to some extent when facing a large ratio
of missing labels, while it still performed better than the im-
putation method, as shown in the experiments.

We fuse sparse feature selection and label observability
exploration in a generative framework, which makes it fun-
damentally different from a few generative multi-label learn-
ing models (Jain, Modhe, and Rai 2017; Gaure et al. 2017).
Some of the latest works on generative models (Wei, Cao,
and Philip 2016; Guan, Dy, and Jordan 2011) solved fea-
ture selection problems in unsupervised learning scenarios.
However, these methods did not have a mechanism to pro-
vide a selective shrinkage and did not approach missing la-
bel problems in multi-label feature selection.

Conclusion and Future work
We propose a generative probabilistic framework for multi-
label feature selection with incomplete labels. We incorpo-
rate a set of latent indicator variables into a latent factor
model to trace the unobserved labels in the missing label
pool, and relax the Smoothness Assumption to infer label ob-
servability. Then, the spike-and-slab prior is employed to se-
lect features based on the credible label correlations. Finally,
a fast and efficient EM algorithm is developed for inference.

In terms of the scalability, we can easily extend our model
to a mixture of latent factor model, to more adequately cap-
ture the label structure. Another interesting and possible ex-
tension would be the zero-shot learning (Mensink, Gavves,
and Snoek 2014), which can help our model handle the new
labels at the test phrase. We have tried to perform in a mini-
batch fashion by using an online EM algorithm (Cappe and
Moulines 2009), which helps our model scale to massive
data sets, and we will improve it in the future.
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