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Abstract

Model compression has become necessary when applying
neural networks (NN) into many real application tasks that
can accept slightly-reduced model accuracy but with strict
tolerance to model complexity. Recently, Knowledge Distil-
lation, which distills the knowledge from well-trained and
highly complex teacher model into a compact student model,
has been widely used for model compression. However, under
the strict requirement on the resource cost, it is quite chal-
lenging to make student model achieve comparable perfor-
mance with the teacher one, essentially due to the drastically-
reduced expressiveness ability of the compact student model.
Inspired by the nature of the expressiveness ability in NN,
we propose to use multi-segment activation, which can sig-
nificantly improve the expressiveness ability with very little
cost, in the compact student model. Specifically, we propose a
highly efficient multi-segment activation, called Light Multi-
segment Activation (LMA), which can rapidly produce mul-
tiple linear regions with very few parameters by leveraging
the statistical information. With using LMA, the compact stu-
dent model is capable of achieving much better performance
effectively and efficiently, than the ReLU-equipped one with
same model complexity. Furthermore, the proposed method
is compatible with other model compression techniques, such
as quantization, which means they can be used jointly for bet-
ter compression performance. Experiments on state-of-the-art
NN architectures over the real-world tasks demonstrate the
effectiveness and extensibility of the LMA.

Introduction

Neural Network (NN) has become a widely-used model in
many real-world tasks, such as image classification, transla-
tion, speech recognition, etc. In the meantime, the increas-
ing size and complexity of the advanced NN models have
raised a critical challenge (Wang et al. 2018) in applying
them into many real application tasks, which can accept ap-
propriate performance drop with very extremely-limited tol-
erance to high model complexity. Running NN models on
mobile devices and embedded systems are emerging exam-
ples that make every effort to avoid expensive computation
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and storage cost but can endure slightly-reduced model1 ac-
curacy.

Consequently, many studies have been paying attention
to producing compact and fast NN models with maintain-
ing acceptable model performance. In detail, there are two
active directions investigated model compression through
pruning (LeCun, Denker, and Solla 1990; Hassibi and Stork
1993; Han et al. 2015; Li et al. 2016; Frankle and Carbin
2019) or quantizing (Courbariaux, Bengio, and David 2015;
Rastegari et al. 2016; Mellempudi et al. 2017) the trained
large NN models into squeezed ones with trimmed redun-
dancy but preserved accuracy. More recently, increasing
efforts explored Knowledge Distillation (Hinton, Vinyals,
and Dean 2015) to obtain compact NN models by training
them with the supervision from well-trained larger NN mod-
els (Polino, Pascanu, and Alistarh 2018; Wang et al. 2018;
Mishra and Marr 2018; Hubara et al. 2017; Luo et al. 2016;
Wu et al. 2016; Zhu et al. 2016; Sau and Balasubramanian
2016). Compared with directly training a compressed model
from scratch merely using the ground truth, the supervi-
sion in terms of soft distributed representations on the out-
put layer of the large teacher model can even significantly
enhance the effectiveness of the resulting compact student
model. In practice, nevertheless, it is quite difficult to pro-
duce the compressed student model that can yield similar
effectiveness to the complex teacher model, essential due to
the limited expressiveness ability of the compressed one in
terms of the strictly-restricted parameter size.

Intuitively, to enhance the power of the compressed
model, it is necessary to increase its expressiveness ability.
However, traditional approaches to introduce more layers or
hidden units into the model can easily violate the strict re-
strictions on the model size. Fortunately, besides the neuron
number, the nonlinear transformation, in terms of the activa-
tion, within the NN model plays an equally-important role
in reflecting the expressiveness ability. As pointed out by
(Montufar et al. 2014), an NN model that uses multi-layer
ReLU or other piecewise linear activation as the activation is
still essentially a complex piecewise linear function. More-
over, the number of linear regions produced by an NN model
depends on not only its model size but also its activations.

1Unless otherwise stated, the term “model” used in this paper
refers to the Neural Network model.
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Figure 1: Depiction of knowledge distillation with LMA.

The more segments in piecewise linear activation, the more
regions NN will produce, but there are only two segments in
widely-used ReLU. Inspired by the few costs in adding more
regions in the activation, it is more reasonable to improve the
expressiveness ability of NN via multi-segment activations,
instead of increasing the model size, either depth or width.

Thus, in this paper, we introduce a novel highly effi-
cient piecewise linear activation, in order to improve the
expressiveness ability of the compressed models with little
cost. In detail, as shown in Fig. 1, we leverage a generic
knowledge distillation framework for model compression, in
which, however, the compact student model is equipped with
proposed multi-segment piecewise linear activations, named
Light Multi-segment Activation (LMA). In LMA, we first
cut the input range into multiple segments based on batch
statistics information, and ensure it can adapt to any range
of input lightly and efficiently. Then, we assign each input
with customized slope and bias depending on the segment it
belongs to, which thus empower NN models higher expres-
siveness ability due to the stronger non-linearity of the new
activation. Owing to the above design, LMA-equipped com-
pact student models yield two advantages: 1) It has much
higher expressiveness ability, compared with one merely en-
dowed with vanilla ReLU; 2) Its resource cost is still much
smaller and even more controllable compared with the other
type of multi-segment piecewise linear activation.

Extensive experiments of multi-size NN architectures on
various real tasks, including image classification and ma-
chine translation, have demonstrated both the effectiveness
and the efficiency of LMA, which implies the improved
expressiveness ability, thus the performance, of the LMA-
equipped model. Additional experiments further illustrate
that our method can also improve the expressiveness abil-
ity of the models that have been compressed by some other
popular techniques, such as quantization, so jointly using the
others and ours can achieve even better compression results.

The main contributions of this paper are multi-fold:

• To the best of our knowledge, it is the first work that lever-
ages multi-segment piecewise linear function as activation
in model compression. It proposes a novel multi-segment
activation, which improves the expressiveness ability of

the compressed student model within the knowledge dis-
tillation framework.

• With using statistical information of each batch, the pro-
posed activation can efficiently improve the performance
of compressed models with preserving low resource cost.

• The proposed method is compatible with the other popu-
lar compression techniques, such that it is easy to combine
them and further get better compression results.

• On various real challenging tasks, experimental results of
multiple models with different sizes show our methods
have good performance. And the effectiveness of joint us-
age, that combines our method with the others, is also
shown in the experiments.

Related work
This work is mainly related to two research areas, model
compression and piecewise linear activation. The represen-
tative work of the former includes model pruning, quantiza-
tion and distillation, while the latter typically studies respec-
tive effects of ReLU, Maxout and APLU on the performance
of NN.

Model Compression

In this area, (LeCun, Denker, and Solla 1990; Hassibi and
Stork 1993) first explored pruning based on second deriva-
tions. More recently, (Han et al. 2015; 2016; Jin et al. 2016;
Hu et al. 2016; Yang, Chen, and Sze 2017) pruned the
weights of Neural Networks with different strategies and
made some progress. Most recently, (Frankle and Carbin
2019) showed a dense Neural Network contains a sparse
trainable subnetwork such that it can match the performance
of the original network, named as the lottery ticket hypoth-
esis. On the other hand, (Gupta et al. 2015) have done a
comprehensive study on the effect of low precision fixed
point computation for deep learning. Therefore, quantiza-
tion is also an active research area, where various meth-
ods were proposed by many works (Mellempudi et al. 2017;
Hubara et al. 2017; Mellempudi et al. 2017; Zhu et al. 2016;
Rastegari et al. 2016; Wu et al. 2016).

Besides, using distillation for size reduction is mentioned
by (Hinton, Vinyals, and Dean 2015), which gives a new di-
rection for training compact student models. The weighted
average of soft distributed representation from the teacher’s
output and ground truth is much useful when training a
model, so some practices (Wang et al. 2018; Luo et al. 2016;
Sau and Balasubramanian 2016) have been put for train-
ing compressed compact model. Moreover, recent works
also proposed to combine the quantization with distilla-
tion, producing better compression results. Among these,
(Mishra and Marr 2018) used knowledge distillation for low-
precision models, which proposes distillation can also help
training the quantized model. (Polino, Pascanu, and Alistarh
2018) proposed a more in-depth combination of these two
methods, named Quantized Distillation. Besides, there are
also some works (Han, Mao, and Dally 2015; Iandola et al.
2016; Wen et al. 2016; Gysel, Motamedi, and Ghiasi 2016;
Mishra et al. 2017) further reduced the model size by com-
bining multiple compression techniques like quantization,
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weight sharing and weight coding. Similarly, the combina-
tion of our method with the other is also shown in this paper.

Piecewise Linear Activation

A piecewise linear function is composed of multiple linear
segments. Some piecewise functions are continuous when
the boundary value calculated by two adjacent intervals
function is the same, whereas some may not be continu-
ous. Benefit from its simplicity and the fitting ability to any
function with enough segments, it is widely-used in ma-
chine learning models (Landwehr, Hall, and Frank 2005;
Malash and El-Khaiary 2010), especially as activations in
Neural Networks (LeCun, Bengio, and Hinton 2015). The-
oretically, (Montufar et al. 2014; Pascanu, Montufar, and
Bengio 2013) studied the number of linear regions in Neu-
ral Networks produced by piecewise linear activation func-
tions (PLA), which can be used to measure the expressive-
ness ability of the networks.

Specifically, as a two-segment PLA, Rectified Linear Unit
(ReLU) (Nair and Hinton 2010) and its parametric vari-
ants can be generally defined as hi(x) = min(0, aix) +
max(0, x) , where x is the input, ai is a linear slope, and
hi(x) is the activated output. For original ReLU, it fixes ai
to zero so the formula degenerates to hi(x) = max(0, x);
Parametric ReLU (PReLU) (He et al. 2015) makes ai learn-
able and initializes it to 0.25. Besides, there are also some
PLAs with multiple segments improved from ReLU. For ex-
ample, Maxout (Goodfellow et al. 2013) is a typical multi-
segment PLA, which is defined as hi(x) = max(zij) for
all j ∈ [1, k], where k can be treated as its segment num-
ber, and it transforms the input into the maximum of k-fold
linear transformed candidates zij ; Adaptive Piecewise Lin-
ear Units (APLU) (Agostinelli et al. 2014) is also a multi-
segment one, which is defined as a sum of hinge-shaped
functions,

hi(x) = max(0, x) +
∑k

j=1
aji max(0,−x+ bji ) , (1)

where k is a hyper-parameter set in advance, while the vari-
ables aji , bji for j ∈ {1, ..., k} are learnable. The aji control
the slope of the linear segments while the bji determine the
locations of the hinges similar to segments.

In this paper, after studying the connection of above two
areas, we are the first to leverage the properties of PLA for
model compression, that to improve the expressiveness abil-
ity of compact model via multi-segment activation, thereby
improving its performance.

Methodology

We start by studying the connection between PLA and the
expressiveness ability of Neural Networks, followed by in-
troducing the Light Multi-segment Activation (LMA) that
is used to further improve the performance of the compact
model in model compression.

Preliminaries

Expressiveness Ability Study Practically, increasing
complexity of the neural networks, in terms of either width

(Zagoruyko and Komodakis 2016) or depth (He et al. 2016),
can result in swelling performance, essentially due to the
higher expressiveness ability of the NN. However, when ap-
plying the NN into some resource-exhausted environments,
its size cannot be inflated without limit. Fortunately, the non-
linear transformation within the NN, in terms of the activa-
tion, provides another vital channel to enhance the expres-
siveness ability. Yet, the widely-used ReLU in NN is just
a simple PLA with only two segments, where the slope on
the positive segment is fixed to one while the other is zero.
Therefore, other than enlarging the size of the NN model,
another effective alternative method to enhance the expres-
siveness ability of the NN model is to leverage more power-
ful activation functions. In this paper, we propose to increase
the segment number in activation to enhance its expressive-
ness ability, and further empower the compact NN to yield
good performance.

Theoretically, there are also some related analysis (Mont-
ufar et al. 2014) that can justify our motivation. As pointed
out by them, the capacity, i.e. the expressiveness ability, of
a PLA-activated Neural Network can be measured by the
number of linear regions of this model. And for an NN, in
the l-th hidden layer with nl units, the number of separate
input-space neighbourhoods that are mapped to a common
neighborhood R ⊆ Sl ⊆ R

nl can be decided recursively as

N l
R =

∑
R′∈P l

R

N l−1
R′ , N 0

R = 1, for each R ⊆ R
n0 , (2)

where Sl denotes the set of (vector valued) activations reach-
able by the l-th layer for all possible input; P l

R denotes the
set of subsets R̄1, ..., R̄k ⊆ Sl−1 that are mapped by the
activation onto R. Based on the above result, the following
lemma (see (Montufar et al. 2014); Lemma 2) is given.
Lemma 1 The maximal number of linear regions of
the functions computed by an L-layer Neural Network
with piecewise linear activations is at least N =∑

R∈PL NL−1
R , where NL−1

R is defined by Eqn. (2), and
PL is a set of neighborhoods in distinct linear regions of the
function computed by the last hidden layer.

Given the above lemma, the number of linear regions of a
Neural Network is in effect influenced by the layer number,
the hidden unit size, and the region number in PLA. From
ReLU to Maxout, the significant improvement is on the P l

in the lemma, which is also the nature of our approach. Tak-
ing Maxout as an example of detailed analysis, it can lead to
an important corollary that a Maxout network with L layers
of width n and rank k can compute functions with at least
kL−1kn linear regions (see Montufar et al. (2014); Theorem
8). Meanwhile, ReLU can be treated as a special rank-2 case
of Maxout, whose bound is obtained similarly by (Pascanu,
Montufar, and Bengio 2013). Obviously, the number of lin-
ear regions can be improved by increasing either L, n or k.
However, in a compressed model, neither the layers L nor
hidden units n can be increased too much. Thus, we pro-
pose to construct a highly efficient multi-segment activation
function with its linear regions k becomes larger.

Analysis on Existing Multi-segment PLAs As men-
tioned in Related Work, some previous studies have already
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proposed some multi-segment PLAs. In the following of this
subsection, we will analyze whether they are suitable for be-
ing applied in model compression.

Considering Maxout first, its regions are produced by k-
fold weights and only the maximum of its k-fold outputs is
picked to feed forward, which obviously causes the redun-
dancy within Maxout. On the contrary, to construct a PLA
with multiple segments and ensure limited parameters in-
crement in the meantime, a more intuitive inspiration, from
the definition of piecewise linear function, lies in that it first
cuts the input range into multiple segments, and then trans-
forms the input linearly by individual coefficients (i.e. slopes
and biases) on different segments. In this way, the parameter
number of the network based on this scheme can be con-
trolled as L ∗ (k+n2) , compared with L ∗ kn2 in the above
assumed Maxout NN.

In fact, APLU is a hinge-based implementation of this
scheme, with few additive parameters. Specifically, in
Eqn. 1, b are the cut points of the input range, and a can be
grouped accumulatively into coefficients. However, APLU
can increase the memory cost due to its accumulation oper-
ation. In details, APLU requires k times intermediate vari-
ables to compute the items parallel and then accumulates all
of them one-time. Although we also accumulate them recur-
sively to avoid this, it will be k times slower and is unaccept-
able. Besides, with the k becomes larger, the memory cost
will growth linearly.

In a word, neither Maxout nor APLU can be directly
employed for model compression in that Maxout produces
much more parameters and APLU is memory-consuming.
In the following subsection, we will introduce a new acti-
vation process that is both effective and efficient for model
compression.

Light Multi-segment Activation

Method LMA mainly contains two steps. The first is batch
segmentation, which is proposed to find the segment cut-
points based on the batch statistical information. Then the
inputs are transformed with the corresponding linear slopes
and biases according to their belonging segments.

Firstly, to construct a multi-segment piecewise activation,
it needs to cut the continuous inputs to multiple segments.
There are two straightforward solutions: 1) pre-defined like
the vanilla ReLU; 2) training cut-points like APLU. For the
former, as the input ranges of hidden layers are dramatically
changed during training, it is hard to define the appropriate
cut points in advance. For the latter, the cut points are unsta-
ble due to the random initialization and stochastic update by
back-propagation. As the naive solutions cannot work well,
inspired by the success of Batch Normalization (Ioffe and
Szegedy 2015), we propose Batch Segmentation, to deter-
mine the segment boundaries by the statistical information.

There are two statistical schemes (Dougherty, Kohavi, and
Sahami 1995) to find appropriate segments. One is based on
frequency, and the other one is based on numerical values.
Concretely, after using the frequency-based method, each
segment has the same number of inputs, while if using nu-
merical value-based one, the numerical width of each seg-
ment is equal. Indeed, the frequency-based method is more

Table 1: Cost comparison between multi-segment activation
functions.

Maxout APLU LMA

Param. Size O(k ∗ n2) O(k ∗ n+ n2) O(k + n2)
Mem. Cost O(k ∗ n) O(k ∗ n) O(n)

robust since it is not sensitive to numerical values. However,
it is not efficient, especially running on GPU and applied for
model compression. Thus, the numerical value-based solu-
tion is used in LMA for efficiency purpose. Specifically, we
assume the input is a normal distribution and cut the seg-
ments by equal value width. So, here each segment cut-point
is defined as,

b0 = μ− 3σ, bj = bj−1 +
6σ

k
, for j = 1, 2, . . . , k , (3)

where k is the segment number, a hyper-parameter, μ and
σ are the mean and standard deviation of the batch input
x, respectively. To reduce the effect of outliers and make
use of the property of normal distribution, we assume μ ±
3σ are the range endpoints and assign cut points according
to this assumption. Like Batch Normalization, the moving
average of b is used in the test phase. To further improve the
efficiency, as well as more stable statistical information, the
b could be calculated and shared in the same layer.

After determining segment boundaries, it needs to assign
the coefficient, i.e. slope and bias, to each input according
to its belonging segment. To avoid the memory-consuming
problem in APLU, we use the independent slopes and biases
in LMA. Formally, the activation process can be defined as,

hi(x) = αi
j · x+ βi

j , x ∈ (bj , bj+1] (4)

where α denotes the slope coefficient, β denotes the bias,
and j denotes segment indices. Especially, considering there
still may be few extreme inputs out of the normal dis-
tribution assumption, the first and last segment are set to
(−∞, b1] and (bk−1,+∞) respectively, instead of determin-
ing by b0 and bk. Finally, after the above steps, the linear
transformed values hi(x) feed-forward to the next layer.

Analysis and Discussion In the following, we will take
more detailed discussions on LMA from the perspective of
complexity analysis and initialization. Obviously, in LMA,
there is only two additional trainable variables α and β for
each layer, whose total size is 2 ∗ k ∗ n, where k is segment
number and n is hidden unit number. Furthermore, to reduce
the parameter size extremely, the α and β are shared in the
layer-level, which means that all the units or feature maps
are activated by the same LMA in one specific layer. There-
fore, the parameters brought by LMA in one layer is only
2∗k, even reduced by n times compared with APLU. More-
over, about the running memory cost in inference phase,
LMA only produces the belonging segment indices for in-
puts, whose space cost is O(n), while APLU needs O(k∗n)
hinges and Maxout needs O(k ∗n) activation candidates. To
conclude, the cost comparisons between each multi-segment
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PLAs are shown in Table 1, where the parameter size and
the running space cost at activation in one layer are listed.
It shows LMA is more suitable for model compression be-
cause of its less storage and running space cost.

Besides, the slopes and biases on all segments need to be
initialized in LMA. The initialization methods always can
be categorized into two classes: 1) random initialization like
the other parameters in NN; 2) initializing it as a known ac-
tivation, such as vanilla Relu or PReLU. Though the ran-
dom initialization does not impose any assumptions and may
achieve a better performance (Mishkin and Matas 2015), it
usually introduces uncertainty and leads to unstable training
too. With this in mind, we choose the second initialization
method for LMA. Specifically, we initialize the LMA to be
the vanilla ReLU, which means that all biases are initialized
to zero, the slopes of the half left segments are initialized to
zero while the rest slopes are initialized to one.

Model Compression As an effective method to improve
the expressiveness ability of the compressed model, LMA
can be applied with distillation and other compression tech-
niques. Under the distillation framework, we first train a
state-of-the-art model and get as much good performance.
Then given it as the teacher model, a more compact archi-
tecture is employed to as the student to learn the knowl-
edge from the teacher. Because of the parameter reduction
in the student, it always underperforms much lower than
the teacher despite using knowledge distillation. Here, we
replace all the original ReLUs with our LMA for the stu-
dent model, improving its expressiveness ability, and fur-
ther improving the performance much. The replacement is
very convenient that it only needs to change one line of
code in the implementation. After that, according to (Hin-
ton, Vinyals, and Dean 2015; Polino, Pascanu, and Alistarh
2018), the distillation loss for training the student is also a
normal weighted average of the loss from ground truth and
the one from teacher’s output, which is formally defined as,

L = (1− α)LCE/NLL(ŷ(x), yGT ) + αLKL(ŷ(x), yT ) , (5)

where α is a hyper-parametric factor, which is always set
to 0.7, to adjust the weight of two losses; ŷ(x) is the stu-
dent’s output logits; the first loss LCE/NLL is a Cross En-
tropy Loss or Negative Log Likelihood Loss with the ground
truth labels yGT , depending on the tasks (CE is for image
classification and NNL is for machine translation in our ex-
periments); the latter loss LKL is a Kullback–Leibler Diver-
gence Loss with the teacher’s output logits yT . Additionally,
when calculating LKL, we also use a temperature factor τ
to soften the yT and the ŷ, whose specific settings will be
shown in the experiments.

Besides, LMA is well compatible with the other compres-
sion techniques, since it is convenient to replace the activa-
tions from ReLU with LMA. For example, based on a re-
cent representative method, Quantized Distillation (Polino,
Pascanu, and Alistarh 2018), after replacing the ReLU with
LMA in student model, though it is quantified to low-
precision model during training, our method still empowers
it to achieve higher performance than origin one, which will
be shown in the experiments.

Experiment

In this section, we will conduct thorough evaluations on
the effectiveness of LMA for model compression under
two popular scenarios, image classification and machine
translation. Besides, under the model compression scenar-
ios, we will compare the performance of LMA with that
of several widely-used baseline activations.2 The baselines
adopted includes ReLU(Nair and Hinton 2010), PReLU (He
et al. 2016), APLU (Agostinelli et al. 2014) and Swish
(Ramachandran, Zoph, and Le 2017). For Swish is a well-
known SOTA ReLU-like activation, we also adopt it to fur-
ther show our effectiveness. Specifically, we will start with
our experimental setup, including the data and models em-
ployed in the experiments. After that, we will analyze the
performance of our method applied singly or jointly with
some others to demonstrate its effectiveness and advantages
for model compression.

General Settings To ensure credible results, we run all the
experiments 5 times with different random seeds, and re-
port the average and standard deviation of them. Besides, for
fair comparisons, we set all the common parameters, includ-
ing learning rate, batch size, hyper-parameters in distillation
loss, etc., the same for all the baselines. Note that, the set-
tings for parametric baseline activations (PReLU, APLU and
Swish), are all consistent with the original authors’ demon-
stration. For multi-segment activations (APLU and LMA),
the segment numbers are set as the same to each other, which
is 8 in our main experiments. Moreover, to measure the re-
source cost by the models, we report their parameter size
and inference memory cost (Mem.), in which the latter is
recorded when predicting the testing samples one by one.
The model size hardly changes after replacing the activation
function, since the additional parameters in all these acti-
vations are relatively very few. However, for another activa-
tion, Maxout, it will yield much more parameters if replaced.
Due to the poor performance compared with other baselines
under the setting of the same model size, we only report one
little result (see Table 2).

Image Classification

Settings Following what (Polino, Pascanu, and Alistarh
2018) does in its code3, we first evaluate our method
on CIFAR-10 and CIFAR-100, both of which are well-
known image classification datasets. For experiments on
CIFAR-10, some relatively small CNN architectures are em-
ployed, including one teacher model and three student mod-
els with different sizes. Widen Residual Networks (WRN)
(Zagoruyko and Komodakis 2016) are employed for exper-
iments on CIFAR-100, where WRN-16 is used as teacher
model while two WRN-10 are used as students. In the first
phase, we train the teacher models and save them for the
next distilled training. Then, we compare the performance
of the student models with different activations under the su-
pervision from both the teacher models and the ground truth.
Accuracy (Acc.) is used as the evaluation metric on this task.

2We released the code at: https://github.com/motefly/LMA
3https://github.com/antspy/quantized distillation
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Table 2: Image Classification Results. The metrics of Teacher models on each dataset are shown in the left-most cells. The
accuracy (%) is shown in “mean ± std ” pattern and the inference memory cost (in MB) is shown in “A (+D)” pattern, where
A denotes absolute memory cost and D is additional part compared with ReLU-equipped model. The last column shows the
improvement of LMA (comparing performance with ReLU and memory with APLU). The results show the PLA with more
segments (APLU and LMA) outperforms the fewer ones, especially widely-used ReLU, meanwhile LMA maintains much lower
memory cost than APLU. *For a Maxout-8-based Student Model, whose size is the same as Student 1, only get 87.76±0.55%
accuracy, even lower than ReLU-based one.

Method ReLU PReLU Swish APLU-8 LMA-8

CIFAR-10

Student 1 Acc. 88.74 ±0.25 89.31 ±0.35 89.03 ±0.11 89.92 ±0.21 90.57 ±0.20 2.1% ↑

21.4 MB

4.04 MB Mem. 14.24 15.95 (+1.7) 15.10 (+0.9) 25.80 (+11.6) 16.81 (+2.6) 78% ↓

Acc. 92.83

Student 2 Acc. 82.67 ±0.46 84.35 ±0.37 84.06 ±0.36 85.31 ±0.60 85.66 ±0.34 3.6% ↑

Mem. 29.28

1.28 MB Mem. 3.40 4.72 (+1.3) 4.06 (+0.7) 11.69 (+8.3) 5.57 (+2.2) 73% ↓
Student 3 Acc. 73.33 ±0.79 75.30 ±0.17 75.45 ±0.34 77.54 ±0.97 77.66 ±0.47 5.9% ↑
0.44 MB Mem. 1.45 2.07 (+0.6) 1.76 (+0.3) 5.15 (+3.7) 2.55 (+1.1) 70% ↓

CIFAR-100 Student 1 Acc. 69.11 ±0.80 70.03 ±0.21 69.67 ±0.40 70.99 ±0.42 70.92 ±0.42 2.6% ↑
68.7 MB 4.88 MB Mem. 16.27 16.40 (+0.13) 16.33 (+0.06) 17.03 (+0.76) 16.46 (+0.19) 75% ↓

Acc. 77.56 Student 2 Acc. 63.12 ±1.00 64.52 ±0.67 63.82 ±0.78 66.28 ±0.49 66.31 ±0.68 5.1% ↑
Mem. 140.2 1.28 MB Mem. 6.37 6.44 (+0.07) 6.41 (+0.04) 6.91 (+0.54) 6.47 (+0.10) 81% ↓

Result Table 2 summarizes the image classification results
by various methods. From this table, we can find that the
multi-segment activations (APLU and LMA) outperform the
other baselines, on both two datasets with all the models
of various sizes, where LMA outperforms ReLU by 2% to
6% on accuracy. Meanwhile, we can find that smaller com-
pact model can imply more obvious improvement caused by
multi-segment activations. In detail, on CIFAR-10, the LMA
outperforms ReLU by 2% on Student 1 while that is 6% on
Student 3. Besides, comparing APLU with LMA, we can
easily find though their accuracy is sometimes close, the ad-
ditional inference memory cost brought by equipping APLU
is much larger than that by LMA, about 3 to 4 times more.

Machine Translation

Setting To further evaluate the effectiveness of LMA, we
also conduct experiments on machine translation using the
OpenNMT integration test dataset (Ope) consisting of 200K
train sentences and 10K test sentences and WMT13 (Koehn
2005) dataset for a German-English translation task. The
translational models we employed are based on the seq2seq
models from OpenNMT 4, where the encoder and decoder
are both Transformers (Vaswani et al. 2017) instead of
LSTM used in (Polino, Pascanu, and Alistarh 2018). LSTM
is not selected because its activations are usually Sigmoid
and Tanh, both of which are saturated and much different
from PLA. Besides one teacher model for each data, we also
employ three student models with different sizes on Ope,
and two student models on WMT13. We use the perplexity
(Ppl., lower is better) and the BLEU score (BLEU), com-
puted by the Moses project (mos), as two evaluation metrics.

Result Table 3 shows the results on machine translation.
From this table, we can find that our method outperforms
all the baseline activations. Specifically, the BLEU scores of
LMA increase by 3% to 8% over ReLU on Ope and 1% to
4% on larger WMT13. Moreover, we can observe the similar

4https://github.com/OpenNMT/OpenNMT-py
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Figure 2: Segment Study for APLU and LMA on CIFAR-
10. The bars and left axis show accuracy (%) while the lines
and right axis show memory cost (MB). The cost of APLU
grows linearly but that of LMA remains much lower.

advantages of LMA in terms of the multi-segment effective-
ness and memory cost comparison as in image classification
tasks. It is worth to note that using APLU may cause mem-
ory overflow due to its huge cost (Out of Memory, OOM),
as shown by APLU-equipped Student-1 on WMT13.

Additional Experiment

Segment Study To verify if the expressiveness ability can
be enhanced via increasing the segment number, we conduct
additional experiments on CIFAR-10 to study the effect of
segment number k in LMA. As shown in Fig. 2, with the seg-
ment number increasing from 4 to 8, both APLU and LMA
yield soaring performance. Despite a slight decline beyond
10, LMA is still much better than ReLU. Besides, the mem-
ory cost of APLU grows linearly with the segment number
while that of LMA remains stable and much lower.

Joint Use To show the effectiveness of the jointly using
our method with other compression techniques, we con-
duct further experiment to combine Quantized Distillation
(Polino, Pascanu, and Alistarh 2018) with our method on
CIFAR-10. From Table 4, we can find that the accuracy of

6547



Table 3: Machine Translation Results (Mem. in MB). The metrics of Teacher models are shown in the left-most cells. Note that
on WMT13, the memory needed for training APLU-equipped Student-1 exceeds the maximum memory of our GPU (24GB),
thus there is no result of APLU. Besides some similar observations on images, it also shows APLU on translations may also
cost so much memory that the task failed, but LMA still works well.

Method ReLU PReLU Swish APLU-8 LMA-8

Ope

Student 1 Ppl. 31.84 ±0.31 31.89 ±0.64 30.91 ±0.43 30.80 ±0.39 30.21 ±0.25 5.1% ↓

443.4 MB

177.6 MB BLEU 13.73 ±0.19 13.67 ±0.27 13.89 ±0.26 13.98 ±0.21 14.11 ±0.12 2.8% ↑

BLEU 14.92

Mem. 407.39 458.98 (+52) 430.77 (+23) 719.73 (+312) 487.23 (+80) 74% ↓

Ppl. 29.71

Student 2 Ppl. 44.51 ±0.52 44.23 ±0.56 43.44 ±0.39 42.97 ±0.62 41.21 ±0.35 7.4% ↓

Mem.1014.8

87.2 MB BLEU 10.46 ±0.18 10.51 ±0.24 10.78 ±0.23 10.87 ±0.30 10.94 ±0.18 4.6% ↑
Mem. 282.05 335.34 (+53) 305.43 (+23) 596.10 (+314) 363.60 (+82) 74% ↓

Student 3 Ppl. 71.69 ±0.51 72.56 ±1.03 70.45 ±0.69 70.31 ±0.61 67.62 ±0.31 5.7% ↓
43.3 MB BLEU 6.12 ±0.12 6.06 ±0.15 6.26 ±0.25 6.40 ±0.29 6.64 ±0.04 8.5% ↑

Mem. 220.49 274.63 (+54) 243.87 (+23) 535.39 (+315) 302.89 (+82) 74% ↓
WMT13 Student 1 Ppl. 6.44 ±0.02 6.47 ±0.03 6.34 ±0.03

OOM
6.29 ±0.04 2.3% ↓

443.4 MB 177.6 MB BLEU 26.89 ±0.05 26.81 ±0.06 26.98 ±0.08 27.12 ±0.07 0.9% ↑
BLEU 28.56 Mem. 419.40 470.99 (+52) 442.78 (+23) 499.24 (+81) N/A

Ppl. 5.31 Student 2 Ppl. 12.61 ±0.05 12.72 ±0.04 12.51 ±0.03 12.35 ±0.06 12.25 ±0.05 2.9% ↓
Mem. 1040.8 43.3 MB BLEU 20.39 ±0.09 19.96 ±0.07 20.82 ±0.08 21.02 ±0.10 21.19 ±0.08 3.9% ↑

Mem. 230.83 284.97 (+54) 254.21 (+23) 545.73 (+315) 313.23 (+82) 74% ↓

Table 4: Joint Use Results with Quantized Distillation on CIFAR-10. The Teacher model employed is the same as the one in
the above experiments on CIFAR-10. It shows that LMA works well with Quantization and Distillation, at the same time.

Method
Student 1 Student 2 Student 3

ReLU LMA-8 ReLU LMA-8 ReLU LMA-8

4 bits 85.74 ±0.15 86.31 ±0.41 77.04 ±0.51 79.48 ±0.79 65.33 ±0.17 68.85 ±0.99

8 bits 87.02 ±0.23 88.56 ±0.52 80.53 ±0.75 83.37 ±0.51 70.23 ±0.98 74.47 ±0.74

LMA-equipped model is much higher than that of ReLU-
equipped one, also by about 2% to 6%, with all different
settings of the number of bits in the quantized model.

Overall, all experiments above have implied that the
multi-segment activation, including APLU and LMA, can
achieve better performance than the two-segment ones, and
the improvement brought by multi-segment design becomes
increasingly apparent against reducing model size. There-
fore, it is quite useful to leverage the segment number of
PLA to improve the performance of the compact model in
model compression. Furthermore, LMA outperforms APLU
mostly and maintain more efficient memory usage simulta-
neously even in the only one case LMA not beating APLU. It
indicates that the high efficiency of LMA makes it quite suit-
able in resources-exhausted environments. More than this,
LMA can also be used conveniently and effectively together
with the other techniques. To conclude, LMA can play the
most critical role in model compression due to its highly
competitive effectiveness, efficiency and compatibility.

Conclusion and Outlook

In model compression, especially knowledge distillation, to
fill the expressiveness ability gap between the compact NN
and complex NN, we propose a novel highly efficient Light
Multi-segment Activation (LMA) in this paper, which em-
powers the compact NN to yield comparable performance
with the complex one. Specifically, to produce more seg-
ments but preserving low resource cost, LMA uses statisti-
cal information of the batch input to determine multiple seg-
ment cut points. Then, it transforms the inputs linearly over

different segments. Experimental results on the real-world
tasks with multi-size NN have demonstrated the effective-
ness and efficiency of LMA. Besides, LMA is well compati-
ble with the other techniques like quantization, also helping
the performance of other approaches improved.

To the best of our knowledge, it is the first work that lever-
ages multi-segment piecewise linear activation for model
compression, which provides a good insight on designing
efficient and powerful compact models. In the future, on the
one hand, we will further reduce the time and space costs
of LMA computing from the bottom as much as possible,
by hardware-level or specialized computation. On the other
hand, improving the capacity of activation is also a novel
and significant direction to simplify complex architectures
and apply Neural Networks more efficiently.
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