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Abstract

For deep learning applications, the massive data develop-
ment (e.g., collecting, labeling), which is an essential process
in building practical applications, still incurs seriously high
costs. In this work, we propose an effective data augmentation
method based on generative adversarial networks (GANs),
called Domain Fusion. Our key idea is to import the knowl-
edge contained in an outer dataset to a target model by us-
ing a multi-domain learning GAN. The multi-domain learn-
ing GAN simultaneously learns the outer and target dataset
and generates new samples for the target tasks. The simulta-
neous learning process makes GANs generate the target sam-
ples with high fidelity and variety. As a result, we can ob-
tain accurate models for the target tasks by using these gen-
erated samples even if we only have an extremely low vol-
ume target dataset. We experimentally evaluate the advan-
tages of Domain Fusion in image classification tasks on 3 tar-
get datasets: CIFAR-100, FGVC-Aircraft, and Indoor Scene
Recognition. When trained on each target dataset reduced
the samples to 5,000 images, Domain Fusion achieves bet-
ter classification accuracy than the data augmentation using
fine-tuned GANs. Furthermore, we show that Domain Fusion
improves the quality of generated samples, and the improve-
ments can contribute to higher accuracy.

Introduction

Deep learning models have demonstrated state-of-the-art
performance in various tasks using high dimensional data
such as computer vision (Real et al. 2019), speech recog-
nition (Zeyer et al. 2018), and natural language processing
(Vaswani et al. 2017). These models achieve the high perfor-
mance by optimizing their millions of parameters through
the training on labeled data. Since the models can easily
overfit the small data due to the enormous parameters, the
generalization performance tends to be in proportion to the
size of labeled data. In fact, Sun et al. (2017) experimentally
showed that the test performance on vision tasks could be
improved logarithmically with the labeled data size. To ob-
tain higher performance of deep models, we must develop as
many labeled data as possible by collecting data and attach-
ing labels. However, developing the labeled data becomes
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one of the main obstacles in the entire deployment of deep
models since it requires a lot of time and high costs.

One of the most common techniques to alleviate the costs
of labeled data developments is data augmentation (DA). To
improve the performance of the target task (e.g., classifica-
tion or regression), DA amplifies the variation of existing
labeled data (target data) by adding small transformations
(e.g., random expansion, flip, and rotation). Since DA im-
proves the performance despite its simplicity and has no de-
pendency on network architectures, it is widely applied to
many applications (Krizhevsky, Sutskever, and Hinton 2012;
Ko et al. 2015). However, when we train target models on
low-volume datasets, the improvements by DA is limited be-
cause DA is designed to transform an existing sample into a
slightly modified sample. In other words, DA does not gen-
erate truly unseen data, which have information not included
in the data to be transformed. For example, in image recogni-
tion, DA is not able to transform running-horse images into
sitting-horse images. Therefore, the benefit of DA is limited
when we only have low-volume datasets.

Several methods (Tran et al. 2017; Zheng, Zheng, and
Yang 2017; Calimeri et al. 2017; Zhu et al. 2018; Anto-
niou, Storkey, and Edwards 2018) have been presented to
overcome the limitation of DA by applying generative ad-
versarial networks (GANs, Goodfellow et al. (2014)). GANs
generate various and realistic data samples by learning data
distributions; they can generate unseen samples from the
learned distributions. The existing methods employ this abil-
ity and use the generated samples as additional input for the
target task. Although these GAN-based methods succeed at
improving the target performance, they assume that there is
a sufficient volume of data for training GANs. In fact, in the
case of low volume data, the generated samples have less
fidelity and variety and can degrade the target performance
(Wang et al. 2018; Shmelkov, Schmid, and Alahari 2018).
This is because low volume data has insufficient knowledge,
and thus, we need to utilize supplementary knowledge for
training GANs. To train GANs with low-volume target data,
Wang et al. (2018) proposed Transferring GANs (TGANs)
which incorporate a fine-tuning technique into GANs. How-
ever, Wang et al. experimentally show TGANs do not im-
prove the generating performance very well when we have
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only 1 K target dataset.
In this paper, we propose Domain Fusion (DF), which is

an effective data augmentation technique exploiting GANs
trained on a target and another dataset. To generate help-
ful samples, DF incorporates knowledge from the outer do-
main, which is another domain from the target, into a GAN.
Specifically, we train GANs on target and outer datasets, si-
multaneously unlike TGAN. After training GANs, we use
the generated samples in the target domain for the target
tasks. In order to generate the target samples explicitly, we
adopt conditional GANs that can produce the conditioned
samples by assigning class labels. As a result, DF transfers
the helpful knowledge of the outer domain into generated
target samples via the shared parameters of GANs. We call
this training method multi-domain training, and the trained
GANs multi-domain learning GANs.

Furthermore, to enhance the quality of the generated sam-
ples, we propose two improvement techniques for DF. First,
we introduce a metric to select an outer dataset that includes
knowledge to generate more helpful target samples. An ap-
propriate outer dataset needs to be selected for the target do-
main since the performance of DF depends on the choice.
To this end, we develop a new metric based on Fréchet
inception distance (FID, Heusel et al. (2017)) and multi-
scale structural similarity (MS-SSIM, Wang, Simoncelli,
and Bovik (2003)) that focuses on the relevance between the
target and outer domain, and the diversity of the outer sam-
ples. Second, when generating samples from a GAN, we ap-
ply filtering to remove extremely broken samples that could
lead to negative effects on target models. For this purpose,
we use discriminator rejection sampling (DRS,Azadi et al.
(2019)), which uses the information from a discriminator of
a GAN to omit the bad samples. We extend the DRS algo-
rithm for conditional GANs to generate high-quality class-
conditional samples. Applying these improvements, we can
generate more helpful target samples.

Our experimental results demonstrate that the samples
from our GANs in DF more improve the accuracy in a low
data regime compared to TGANs. Furthermore, we show
that our GANs can produce higher quality samples than
TGANs in terms of FID and Inception Score. We also ex-
perimentally confirm the correlation between the quality of
generated samples and the classification accuracy. More im-
portantly, we show that the classifiers trained by a combina-
tion of DF and conventional DA outperform the ones trained
by only using conventional DA.

Our main contributions are as follows:

• We propose a new data augmentation method using GANs
called Domain Fusion, which transfers knowledge of the
outer dataset into the target models by using a GAN
trained on multi-domain via the shared parameters. We
also propose a metric for outer dataset selection, and mod-
ified DRS for filtering generated samples.

• We confirm that the correlations between the quality of
generated samples and the target-task performances in our
experiments on CIFAR-100, FGVC-Aircraft and Indoor
Scene Recognition in low-volume data regime. These re-
sults support that Domain Fusion improve the target mod-

els because of the high quality generated samples.

Background

Generative Adversarial Networks

A generative adversarial network (GAN) is composed of
a generator network Gθ(z), and a discriminator network
Dφ(x) (Goodfellow et al. 2014). The G generates fake sam-
ples from random noise z ∼ pz and the D has a role to
distinguish an observation x whether x comes from genera-
tor G(z) or data distribution pdata. The objective functions
for training a discriminator and a generator are respectively
formalized as follows:

LD = −Ex∼pdata
logDφ(x)

−Ez∼pz
log (1−Dφ(Gθ(z))), (1)

LG = −Ez∼pz logDφ(Gθ(z)). (2)

Through a tandem training of G and D, D learns to max-
imize the probability of assigning the “real” label into real
examples, whereas G learns to maximize the probability of
failing the distinction by the D. When G and D converge to
equilibrium point, the generator network G produces realis-
tic samples as good representation of data distribution pdata.

In Domain Fusion, we use conditional GANs (cGANs)
(Odena, Olah, and Shlens 2017; Miyato and Koyama 2018)
that generate samples conditioned by class labels. The ob-
jective functions are given by rewriting Eq. (1) and (2):

LD = −Ex∼pdata
logDφ(x, y)

−Ez∼pz log (1−Dφ(Gθ(z, y), y)), (3)
LG = −Ez∼pz

logDφ(Gθ(z, y), y). (4)

While there are several formulations for cGANs, we adopt a
projection based conditioning (Miyato and Koyama 2018) as
our implementation of cGAN. This approach concatenates
the embedded conditional vector to the feature vector of the
generator and discriminator to learn the condition.

Data Augmentation with GANs

There are several studies applying GANs into data augmen-
tation schemes. Calimeri et al. (2017) have proposed an
approach simply applying generated samples as additional
datasets for medical imaging tasks. Zhu et al. (2018) have
shown an application using conditional GANs for augment-
ing plant images. For re-identification tasks in computer vi-
sion, the study of (Zheng, Zheng, and Yang 2017) has pre-
sented a training method with unconditional generated sam-
ples. Tran et al. (2017) have presented a way to train classifi-
cation models with GANs in semi-supervised fashion. Sim-
ilarly to our work, these studies leveraged generated sam-
ples from GANs as supplementary training data for target
models. This is an intuitive and flexible strategy because we
can easily use the generated samples as augment dataset like
conventional DA. However, in low volume data, these types
of data augmentation suffers from the problem of insuffi-
cient training a GAN as described in the next section. In fact,
Shmelkov, Schmid, and Alahari (2018) have shown that the
generated samples from low-data trained GANs degrade the
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accuracy of classifiers. Our approach can help these exist-
ing GAN-based methods to reduce the negative effects of
this problem since it improves the quality of the generated
samples in the case of low volume data.

Training GANs with Low Data Volume

In a low volume training data regime, Wang et al. (2018)
have shown a fine-tuning technique for training of GANs,
called Transferring GANs. The authors tried to initialize
weights of a GAN by leveraging pretrained generators and
discriminators with greater volume outer datasets such as
ImageNet. They investigated the effect of the target data
size by the experiments where GANs were pretrained on the
outer dataset (ImageNet) and then fine-tuned to the target
dataset (LSUN Bedrooms). Their results showed that fine-
tuned GANs generate high-quality samples in the case of
large target data (18.5 of FID by 1M samples), but relatively
low-quality samples in the case of less volume target data
(93.4 of FID by 1K samples). Since 1K of target samples
still requires us much effort for developing dataset, training
of GANs with low data volume is still challenging.

Domain Fusion

In this section, we present Domain Fusion using multi-
domain learning GANs. A multi-domain learning GAN is
trained on the target dataset and outer dataset simultane-
ously. The procedure of Domain Fusion consists of the fol-
lowing three steps; (a) selecting an outer dataset, (b) multi-
domain training a GAN, (c) sampling target labeled samples
from the trained GAN. In the rest of this section, we describe
each of the steps.

Selecting Outer Dataset

First, we select an outer dataset that has useful knowledge
for the target domain. In this paper, we denote a dataset S
composed of X and Y , where X is a set of data samples
(e.g., images) and Y is a set of labels. If we have a target
dataset ST, the outer dataset SO is selected from the can-
didates {Si} according to M(ST, Si) which is our outer
dataset metric of Si for ST:

SO = {(x, y) |x ∈ Xi, y ∈ Yi, (Xi, Yi) ∈ Si,

i = argminiM(ST, Si)}. (5)

In fact, it is non-trivial what metrics we should choose for
outer dataset selection. We propose a metric that makes
account both the relevance between the target and outer
dataset, and the diversity of outer samples (see Improve-
ments Section).

Multi-Domain Training

Next, we train a conditional GAN; discriminator D(x, y) to
minimize Eq. (3) and generator G(z, y) to minimize Eq. (4)
on both ST and SO. The objective functions of the multi-
domain training are defined as follows:

LD = αLDT
+ (1− α)LDO

, (6)
LG = αLGT

+ (1− α)LGO
, (7)

Algorithm 1 Multi-Domain Training of Domain Fusion

Input: Set of target data XT, set of outer data XO, set of
target labels YT, set of outer labels YO, batchsize B,
learning rate ηθ, ηφ, scaling factor α

Output: Trained Generator Gθ

1: Randomly initialize parameters θ, φ
2: while not convergence do
3: for k steps do
4: {xi

T }Bi=1, {yiT}Bi=1←GetSample(XT, YT, B)
5: {ziT}Bi=1 ← GenNoise(B)
6: LDT ← −

∑B
i logDφ(x

i
T, y

i
T) � Eq.(8)

7: −∑B
i log(1−Dφ(Gθ(z

i
T, y

i
T), y

i
T))

8: {xi
O}Bi=1, {yiO}Bi=1←GetSample(XO, YO, B)

9: {ziO}Bi=1 ← GenNoise(B)
10: LDO ← −

∑B
i logDφ(x

i
O, y

i
O) � Eq.(9)

11: −∑B
i log(1−Dφ(Gθ(z

i
O, y

i
O), y

i
O))

12: φ← φ− ηφ∇φ(αLDT
+ (1−α)LDO

) � Eq.(6)
13: end for
14: {yiT}Bi=1 ← GetLabel(YT, B)
15: LGT

← −∑B
i logDφ(Gθ(z

i
T, y

i
T), y

i
T)) � Eq.(10)

16: {yiO}Bi=1 ← GetLabel(YO, B)
17: LGO ← −

∑B
i logDφ(Gθ(z

i
O, y

i
O), y

i
O)) � Eq.(11)

18: θ← θ − ηθ∇θ(αLGT
+ (1− α)LGO

) � Eq.(7)
19: end while

where,

LDT
= −ExT∼ptarget

logDφ(xT, yT)

−Ez∼pz
log (1−Dφ(Gθ(z, yT), yT)), (8)

LDO
= −ExO∼pouter

logDφ(xO, yO)

−Ez∼pz log (1−Dφ(Gθ(z, yO), yO)), (9)
LGT

= −Ez∼pz
logDφ(Gθ(z, yT), yT), (10)

LGO
= −Ez∼pz

logDφ(Gθ(z, yO), yO), (11)

and 0 ≤ α ≤ 1 is a hyperparameter balancing the learning
scale between the target and outer dataset (α = 0.5 in de-
fault setting). In each step of the optimization, we sample
data from the both target and outer dataset, and then com-
pute the objective functions. For both the target and outer
domain, we adopt conditional GANs (CGANs) because the
labels allow GANs to generate the target samples explicitly.
Furthermore, GANs with labels can achieve a higher gener-
ation performance than one without the labels (Lučić et al.
2019). We assume that YT and YO are disjoint each other. In
the training, we can summarize YO into one class since the
target tasks do not use labels of the outer dataset. However,
we experimentally found that class-wise training with YO

as well as YT contributes to the higher quality of generated
samples. We infer that this is because YO makes the learning
of the outer domain be easier, and such learned representa-
tions help to generate target samples. The overall procedure
of the multi-domain training is illustrated in Algorithm 1.
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Sampling Target Examples

After training, we generate a set of new data samples Xgen

from the trained generator G(z, y) as follows:

Xgen = {x |x = G(z, y), z ∼ pz, y ∈ YT}. (12)

Note that the input label y is an element of YT since the
purpose of a Domain Fusion is to augment the target dataset
ST. We generate equal amount of samples for each label.

In general, trained conditional GANs generate samples by
only using a generator G. However, the generated samples
can include poor quality samples that have been rejected by
the discriminator at the training. To obtain more high-quality
samples, we apply discriminator rejection sampling (DRS,
Azadi et al. (2019)). In the next section, we show our modi-
fied DRS algorithm for conditional sampling.

Finally, the generated Xgen is integrated into the target
dataset ST.

Saug = {(x, y) |x ∈ Xaug, y ∈ Yaug}, (13)
Xaug = XT ∪Xgen, (14)
Yaug = YT (15)

We assume that generated data Xgen derived from the gener-
ator G(z, y ∈ YT) have attribute consistency of the specified
labels y ∈ YT. Thus, the augmented dataset Saug is directly
used as the input for the target model training as the alterna-
tive of the target dataset ST.

Improvements

Outer Dataset Selection Metric

In Domain Fusion, the choice of an outer dataset for the tar-
get is a dominant factor determining both the target model
performance and the quality of generated samples. In order
to select a proper outer dataset, we focus on the relevance
between the target and outer dataset, and the diversity of an
outer dataset.

Relevance Between the Target and Outer Dataset In
the context of transfer learning, measuring the relevance be-
tween outer and target domain is widely used to avoid neg-
ative transfer, i.e., the target models could perform worse
than the case of non transferring. For GANs, Wang et al.
(2018) attempt to select the outer dataset by measuring
Fréchet inception distance (FID, Heusel et al. (2017)) to the
target dataset. An FID between two datasets Xi and Xj is
computed on features of ImageNet pretrained Inception Net:

FID(Xi, Xj) = ‖μi − μj‖22 +Tr(Σi +Σj − 2(ΣiΣj)
1
2 ),
(16)

where μi and Σi are the mean and covariance of the feature
vectors of Inception Net for input Xi. A lower FID means
that Xi and Xj are highly related to each other. Following
Wang et al., we adopt FID as part of our metrics to measure
the relevance of the target and outer dataset. In our use, FID
is a more preferable than other relevance metrics (e.g., gen-
eral Wasserstein distance and maximum mean discrepancy)
because there is no need to train additional feature extractors
or kernel functions for each pair of datasets.

Diversity of an Outer Dataset In (Wang et al. 2018), they
also reported the limitation of FID to predict actual quality
of the generated samples from fine-tuned GANs. This in-
dicates that even if the outer dataset is highly relevant to
the target, the outer dataset does not necessarily improve
the quality of the generated target samples. Thus, only us-
ing FID is insufficient for proper outer dataset selection.

In Domain Fusion, we propose a metric with an additional
perspective of diversity to select an outer dataset. We as-
sume that an outer dataset with diverse samples is preferable
for the target sample generation because the more diverse
samples can contain more useful and general information for
target sample generations. In order to select the dataset con-
taining more diverse samples, we exploit multi-scale struc-
tural similarity (MS-SSIM, Wang, Simoncelli, and Bovik
(2003)). MS-SSIM is an approach to assess structural simi-
larity in multi-scale, and it is well accepted as an evaluation
method for image compression tasks. Recently, MS-SSIM
is used for evaluating the diversity of generated samples by
GANs Odena, Olah, and Shlens; Miyato and Koyama (2017;
2018). We apply MS-SSIM to assess the diversity of existing
datasets for selecting more helpful outer datasets. An MS-
SSIM of two data samples xi and xj is defined as follows:

SSIM(xi, xj)= lM (xi, xj)
αM

∏M
m=1cm(xi, xj)

βj sm(xi, xj)
γm ,

(17)

where l =
2μxi

μxj
+C1

μ2
xi

+μ2
xj

+C1
, c =

2σxi
σxj

+C2

σ2
xi

+σ2
xj

+C2
, s =

σxixj
+C3

σxi
σxj

+C3
,

and M denotes a scale number. l is computed only once at
the maximum M , and c, s are computed at all scales. μxi

and σxi
are the mean and standard deviation of xi. σxixj

is
the covariance of xi and xj . α, β, and γ represent the hyper-
parameters, and C1, C2, and C3 are small constants com-
puted by the dynamic range of the pixel values and scalar
constants. The ranges of MS-SSIM is between 0 (high di-
versity) and 1 (low diversity), and MS-SSIM(xi, xi) = 1.

To evaluate the diversity of a dataset, we calculate the
mean MS-SSIM for all the combinations of the samples in
the dataset.

SSIM(X) =

∑xi �=xj

xi∈X

∑xj �=xi

xj∈X SSIM(xi, xj)

(|X|2 − |X|) , (18)

where |X| denotes the size of X . We consider that the mean
MS-SSIM indicates the diversity of the dataset.

Outer Dataset Metric M By combining FID and mean
MS-SSIM, we compute an outer dataset metricM for a tar-
get dataset XT and an outer dataset XO as follows:

M(XT, XO) = FID(XT, XO) · SSIM(XO) (19)

A lower M indicates a more proper outer dataset. We aim
to select an outer dataset with both high relevance to a tar-
get dataset and high diversity within the samples. This met-
ric helps to pick such outer datasets according to the mul-
tiplication of FID and MS-SSIM representing the relevance
and diversity, respectively. The role of MS-SSIM (diversity),
which is in [0, 1], is to weight FID (relevance), which is in
[0,+∞]. In Experimental Results Section, we show that FID
and MS-SSIM complementarily contribute to choosing an
appropriate outer dataset in practice.
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Table 1: List of outer datasets. Each dataset size is the total
number of the train and test size expect for Pascal-VOC.

Dataset Classes Size

Oxford 102 Flowers (Nilsback and Zisserman 2008) 102 8,189
Stanford Cars (Krause et al. 2013) 196 16,185
Food-101 (Bossard, Guillaumin, and Van Gool 2014) 101 101,000
Describable Textures (DTD) (Cimpoi et al. 2014) 47 5,640
LFW (Huang et al. 2007) 1 13,000
SVHN (Netzer et al. 2011) 10 99,289
Pascal-VOC 2012 Cls. (Everingham et al. 2015) 20 5,717

Filtering by Modified DRS

In general, after training of GANs, we obtain the generated
samples from GANs by only using the generator. This is be-
cause we implicitly assume a successfully trained generator
can always generate the samples fooling the discriminator
with a probability of 1/2 (Goodfellow et al. 2014). However,
since this assumption does not hold in real world, the gener-
ator can produce broken samples that are easily detected by
the discriminator as fake. For data augmentation, we must
avoid such broken samples.

In order to filter out broken samples, we adopt discrimi-
nator rejection sampling (DRS, Azadi et al. (2019)) to Do-
main Fusion. DRS is a rejection sampling method proposed
for GANs, which computes an acceptance probability for
each sample by using the density ratio from the discrimina-
tor. Since DRS cuts off the broken samples according to the
acceptance probability, sampling with DRS produces more
high-quality samples than one with a generator alone.

Since the original paper of DRS has only shown the algo-
rithm for unconditional sampling, we cannot directly apply
the algorithm to Domain Fusion, which requires conditional
sampling for the data augmentation. Therefore, we modify
the DRS algorithm for conditional sampling. The modifica-
tion is to compute the density ratio for each class label. In
the original DRS, one density ratio is estimated for a GAN
without considering classes. This may cause losing the di-
versity of samples of a specific class, because the sampling
difficulty varies according to each class (Brock, Donahue,
and Simonyan 2019). By estimating the class-wise density
ratio, we aim to coordinate the acceptance probability for
each class. Applying this modification, we can obtain class
conditional generated samples with high fidelity and vari-
ety. (Our modified algorithm is shown in the supplemental
materials.)

Experimental Results

In this section, we show the evaluation of Domain Fusion
(DF) on the image classification task using three datasets:
CIFAR-100, FGVC-Aircraft, and Indoor Scene Recogni-
tion. We compare our proposed DF with the conditional
GAN (CGAN) and Transferring GAN (TGAN).

Settings

Target Datasets The target task was the image classifica-
tion on CIFAR-100 (Krizhevsky and Hinton 2009), FGVC-
Aircraft (Maji et al. 2013), and Indoor Scene Recognition
(ISR) (Quattoni and Torralba 2009). We used CIFAR-100

instead of CIFAR-10 because CIFAR-100 can contribute to
a more realistic evaluation with a larger number of labels
and fewer samples per class. These three datasets are char-
acterized by samples with different features; CIFAR-100 is
composed of the classes with various modes (vegetables,
cars, furniture, etc.), FGVC-Aircraft includes only one mode
(airplane) and has fine-grained classes that slightly differ
each other, and ISR is also constructed by one mode (in-
door scenes) but has more diverse and rough-grained infor-
mation than FGVC-Aircraft. To evaluate the performance
in low volume data setting, we reduced each training set
of CIFAR-100 (50,000 images), FGVC-Aircraft (6,667 im-
ages), and ISR (5,360 images) to 5000 images, which are
randomly sampled for each class. Note that although the re-
ductions for FGVC-Aircraft and ISR are relatively smaller
than one of CIFAR-100, they originally have small absolute
dataset volume per class; they are difficult to train the mod-
els even if we use full of the datasets. We trained conditional
GANs, and then, trained the classification model by using
the generated samples as the additional dataset. At the test
step, we used the original test images (CIFAR-100: 10,000
images, FGVC-Aircraft: 3,333 images, ISR: 1,340 images)
to accurately evaluate the trained models.

Outer Datasets Table 1 describes the list of the candi-
date for the outer dataset. These are image datasets of var-
ious domain that are often used for the evaluation of com-
puter vision tasks. At training of DF and TGAN, we used
train and test sets of these outer datasets except for Pascal-
VOC. We used only train set of Pascal-VOC for training be-
cause Pascal-VOC is employed for the reverse-side evalua-
tion which flips the target and outer dataset each other (The
reverse-side evaluation is appeared in the supplemental ma-
terials). For fair evaluation of the outer datasets, we ran-
domly sampled 5,000 images from each dataset, and used
the samples for training GANs. We coordinated the num-
ber of samples to equal among classes. Since these datasets
contain various images of resolutions, we resized all of the
images into 32×32 by bilinear interpolation.

Implementation Details GANs. We used ResNet-based
SNGAN (Miyato et al. 2018; Miyato and Koyama 2018)
for 32×32 resolution images as the implementation of con-
ditional GANs. The model architecture was the same as
(Miyato and Koyama 2018). We trained a GAN for 50k
iterations with a batch of 256 using Adam (β1 = 0,
β2 = 0.9) (Kingma and Ba 2014). Following (Heusel et
al. 2017), the learning rate of generators and discriminators
were 1.0 × 10−4 and 4.0 × 10−4, respectively. We linearly
shifted both the learning rates to 0. Moreover, to fairly evalu-
ate the models for each outer dataset, we incorporated early
stopping with Inception Score (IS) (Salimans et al. 2016).
The trigger of early stopping was set by estimated IS in each
1,000 iterations for 12,800 generated samples. We stopped
training when the consecutive drop count of IS reaches to
5. In multi-domain training, we set α = 0.5 for all ex-
periments. In order to use filtering by DRS, we added ad-
ditional sigmoid layers into the discriminator of the condi-
tional SNGAN, and trained the additional layers for 10,000
steps for each class label (the learning rate was 1.0× 10−7).
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Table 2: Performance comparison among data augmentation using GANs (top-1 and top5 classification accuracy (%), FID, and
IS). TGAN and DF are the cases of applying Pascal-VOC as an outer dataset that marks the best score of our metricM for all
targets. TGAN-Best denotes the best cases of TGAN approach when using another outer dataset that achieves the best accuracy.
AVG represents average scores of 7 outer datasets. Note that, when we used 100% volume of CIFAR-100, FGVC-Aircraft, and
ISR (without generated images and any other data augmentations), the classifiers respectively achieved 61.71%, 30.25%, and
27.27% test accuracy under these conditions.

CIFAR-100 FGVC-Aircraft Indroor Scene Recognition

Top-1 Acc. Top-5 Acc. FID IS Top-1 Acc. Top-5 Acc. FID IS Top-1 Acc. Top-5 Acc. FID IS

Without DA 27.2±0.1 54.3±0.5 − − 22.6±2.3 48.4±3.4 − − 24.0±2.0 52.0±0.7 − −
CGAN 26.5±0.4 53.6±0.3 59.2±0.9 4.99±0.07 23.6±0.6 50.9±0.7 110.7±2.8 3.41±0.05 25.7±0.7 52.6±0.7 97.9±0.1 3.48±0.02
TGAN 25.9±0.5 52.1±0.6 60.9±5.9 5.20±0.20 24.1±0.4 51.0±0.7 109.0±3.6 3.45±0.03 24.0±0.2 51.0±1.4 104.1±5.3 3.49±0.07
DF (ours) 28.9±0.5 56.2±0.4 53.5±1.7 5.32±0.03 27.3±0.9 55.4±0.4 97.9±1.6 3.53±0.15 26.1±0.7 53.8±0.9 96.5±4.0 3.61±0.08

TGAN-Best 28.2±0.5 55.7±0.2 54.5±5.2 5.16±0.03 26.2±0.3 52.9±0.3 109.5±2.0 3.47±0.03 25.7±1.0 54.9±1.2 97.8±5.8 3.50±0.03
TGAN-AVG 26.7±1.4 53.6±1.9 60.5±3.5 4.98±0.22 23.8±3.4 49.8±4.6 113.4±8.5 3.42±0.04 23.4±1.5 51.0±2.3 111.8±12.8 3.38±0.18
DF-AVG 28.1±0.9 55.1±1.5 56.3±2.5 5.24±0.24 25.2±1.5 52.3±1.8 105.8±15.2 3.47±0.06 24.2±1.2 52.4±1.8 106.5±13.9 3.46±0.25

Table 3: Ablation study of Domain Fusion

CIFAR-100 FGVC-Aircraft Indoor Scene Recognition

Top-1 Acc. Top-5 Acc. FID IS Top-1 Acc. Top-5 Acc. FID IS Top-1 Acc. Top-5 Acc. FID IS

CGAN with DRS 27.3±0.3 54.5±1.3 58.7±0.8 5.05±0.01 24.6±0.8 52.4±0.9 110.0±3.5 3.42±0.09 24.8±0.9 52.8±0.5 99.9±6.8 3.42±0.06
TGAN with DRS 26.6±1.5 53.5±1.2 59.9±5.9 5.22±0.03 24.4±1.2 52.2±0.6 107.4±3.0 3.49±0.05 24.9±0.8 53.2±1.4 103.9±2.5 3.44±0.09
DF w/oM and DRS (Worst) 25.5±0.3 52.4±0.2 60.9±0.1 4.75±0.13 24.2±0.3 50.9±1.8 105.2±5.8 3.35±0.01 24.2±0.3 50.9±1.8 105.2±5.8 3.35±0.01
DF w/o DRS 28.3±0.7 55.7±0.5 54.9±2.4 5.16±0.04 27.0±0.5 54.0±0.3 98.4±2.6 3.50±0.05 25.4±0.1 53.4±1.7 99.0±1.3 3.57±0.06
DF 28.9±0.5 56.2±0.4 53.5±1.7 5.32±0.03 27.3±0.9 55.4±0.4 97.9±1.6 3.53±0.15 26.1±0.7 53.8±0.9 96.5±4.0 3.61±0.08

For TGAN, we trained the conditional GANs on an outer
dataset for 50k iterations with the early stopping, and then
fine-tuned the pretrained GANs for a target dataset in the
same setting.

Classifiers. The architecture for the target classifier was
ResNet-18 for 224×224 (He et al. 2016) with Adam op-
timizer for 100 epochs, batches of size 512. We selected
the batch size by grid search over 128, 256, 512, 1024 on
all three target datasets to maximize the average accuracy
across the datasets. The hyperparameters for Adam were
αAdam = 2.0 × 10−4, β1 = 0, β2 = 0.9. We applied no
conventional data augmentation (e.g., flip, rotation) to the
input images without noted. We used 50,000 samples (4,000
real images + 46,000 generated images) as training set, and
1,000 real images as validation set. In all cases, we run the
test for measuring mean accuracy on each test set of the tar-
get datasets.

Evaluation Metrics We evaluated DF on the two aspects:
the performance of target classification models and the qual-
ity of generated samples on target domain. For the classi-
fiers, we assessed the performance by top-1 and top-5 ac-
curacy. The sample quality was measured by Fréchet Incep-
tion Distance (FID) (Heusel et al. 2017) and Inception Score
(IS) (Salimans et al. 2016). For each target dataset, we com-
puted FID and IS with 128 generated samples per class. FID
was calculated between the generated samples and the real
images in the 100% volume train set. In all experiments, we
trained GANs and classifiers three times, and show the mean
and standard deviation of accuracy, FID, and IS.

Effects of Generated Sample Quality

Evaluation of Classification Accuracy

Comparison to Other GAN-based Data Augmentations
First, we evaluated the efficacy of Domain Fusion (DF) in

Table 4: Performance comparison to conventional DA

CIFAR-100 FGVC-Aircraft Indoor Scene Recognition

Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc.

cDA 30.7±0.7 57.3±0.3 29.6±0.9 58.5±1.6 31.0±0.3 59.6±0.7
DF+cDA 32.1±0.7 59.2±0.4 31.2±0.7 60.2±1.0 32.4±1.7 61.6±1.1

terms of the classification accuracy by comparing it to other
GAN-based data augmentations. We compared the perfor-
mance against two patterns of GAN-based data augmenta-
tion: generating target samples from (i) CGAN: conditional
GANs trained on each target dataset only (Zhu et al. 2018),
and (ii) TGAN: conditional Transferring GANs pretrained
on an outer dataset (Wang et al. 2018). We also show the
performance of classifiers trained on a target dataset without
data augmentation (Without DA).

Table 2 lists the results of the top-1 and top-5 accuracy
on the classification task, and summarizes the FID and IS
of generated samples from GANs. For the results of DF and
TGAN, we report the accuracy with the outer dataset which
has best our metric scoreM (Pascal-VOC). Additionally, for
TGAN, we show the best accuracy among 7 outer datasets
as TGAN-Best (CIFAR-100 and ISR: Food-101, FGVC-
Aircraft: Stanford Cars). We can see that our DF achieves the
best classification accuracy among all patterns. As reported
in (Shmelkov, Schmid, and Alahari 2018), CGAN dropped
the accuracy from Without DA in the cases of CIFAR-100.
On the other hand, we see that DF, which transfers outer
knowledge to target models, outperforms Without DA. DF
also generated the target samples with better FID and IS
than CGAN. These results suggest that the quality improve-
ments of the generated samples contribute to the target ac-
curacy. Compared to TGAN, DF helps more accurate clas-
sifications and generates better samples. For all of the tar-
get datasets, we confirmed the differences between DF and
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(a) CIFAR-100 (b) FGVC-Aircraft (c) Indoor Scene Recognition

Figure 1: Correlation between generated sample quality and top-1 accuracy

(a) CIFAR-100

(b) FGVC-Aircraft

(c) Indoor Scene Recognition

Figure 2: Comparison of metrics

TGAN are statistically significant by using the paired t-test
with 0.05 of the p-value for all of the top-1/top-5 accuracy,
FID, and IS. These differences may be caused by the trans-
fer strategies of DF and TGAN. Since TGANs try to transfer
outer knowledge by fine-tuning, they suffer from forgetting
knowledge (Goodfellow et al. 2013) in the pretrained GANs
while retraining for the target dataset. Multi-domain training
in DF seems to more effectively transfer the outer knowl-
edge to the target samples without forgetting the knowledge
than fine-tuning in TGAN.

In Domain Fusion, as shown in Improvements Section,
we apply the metricM for outer dataset selection and DRS
to improve the quality of generated samples and the perfor-
mance of target classifiers. As an ablation study, we com-
pare the performances of DF and the cases of DF without
our metricM and DRS. Table 3 shows the results of the ab-
lation study of DF. Note that the row of DF w/oM and DRS

denotes the worst cases among outer datasets that use no fil-
tering by DRS, and the outer dataset was LFW for all target
datasets. We see that applying our metric M into DF al-
lows us to select an appropriate outer dataset for each target
dataset, and DRS boosts the performance of target classifiers
and GANs. Furthermore, we tested CGAN with DRS and
TGAN with DRS, but they underperformed our DF in terms
of both the accuracy and the sample quality. This result in-
dicates that DF improves the performances of classifiers and
GANs by importing outer dataset knowledge, rather only fil-
tering generated samples by DRS.

Combining to Conventional Data Augmentation We
also investigated the classification performance when com-
bining conventional DA (cDA) and DF. For training the
classifiers, we adopted multiple DA transformations: ran-
dom flip (for x-axis), random expand (100% to 400% of ex-
pansion ratio), random rotation (0 to 15.0 of angle). These
transformations were applied to images when the images are
loaded into a batch. In Table 4, we show the top-1 and top-5
classification accuracies by applying cDA and the combina-
tion of cDA and DF. The outer dataset of DF is Pascal-VOC
which has the best our metric scoreM for all target datasets.
In all cases of the target datasets, we see that DF outperforms
only using cDA regarding to the classification performance
improvements. These results indicate that DF generates use-
ful samples that are not obtained from cDA.

The results of Table 2 imply that there are a meaning-
ful relation between the target accuracy and the quality of
the generated samples. We analyzed the relation by testing
DF on 7 outer datasets. Figure 1 shows the relation between
quality (FID and IS) of generated samples from DF on each
outer dataset (x-axis) and test accuracy on a target dataset
(y-axis). The dashed line in each panel represents linear re-
gression, and R denotes correlation coefficient. These plots
indicate that the target accuracy depends on the quality of
generated samples. According to these results, DF produces
strong or moderate correlations between the test accuracy
and both FID and IS. Further, the visualization results in
Figure 3 show that the samples from DF express more clear
features for each class than ones from CGAN and TGAN.
Therefore, we can see that DF improves the target perfor-
mance because the GANs generates target samples with high
quality.
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Figure 3: Comparison of generated samples

Evaluation of MetricM
We turn to evaluate our metric M for selecting an outer
dataset. We computed M by using 5,000 sampled images
of each outer dataset and the target datasets. Figure 2 (left
column) represents the relation between our metricM and
the top-1 accuracy by DF for each outer data. As the re-
sults of theM calculation, we obtain ranking of preferable
outer datasets for a target dataset. In this experiment, the
ranking order for CIFAR-100 is Pascal-VOC (1.5), Food-
101 (2.6), DTD (4.1), Stanford Cars (5.1), Flowers (6.0),
SVHN (10.5), LFW (14.2). For FGVC-Aircraft, the order
is Pascal-VOC (3.5), Stanford Cars (5.6), Food-101 (5.9),
DTD (7.7), Flowers (10.5), SHVN (17.5), LFW (20.7). Fur-
ther, the order of ISR is Pascal-VOC (1.8), Food-101 (3.7),
Stanford Cars (5.6), DTD (6.2), Flowers (9.1), SHVN (14.8),
LFW (16.8). By our metric, Pascal-VOC is predicted as
the best outer dataset for all of the target datasets. Since
Pascal-VOC is a general image dataset composed of the var-
ious modal classes (e.g., Aeroplane, Dogs and Bottles), it
has much diversity of the samples (SSIM of 0.029). More-
over, the relevance between each target dataset and Pascal-
VOC is also relatively high because Pascal-VOC partially
share the classes with the target datasets (CIFAR-100: FID
of 50.79, FGVC-Aircraft: FID of 120.05, ISR: FID of 63.2).
From these observations, general datasets such as Pascal-
VOC possibly tend to be selected by our metric M and to
contribute for target models successfully.

The lower score of M tends to well predict the higher
top-1 accuracy on the classification (R = −0.99 in CIFAR-
100, R = −0.80 in FGVC-Aircraft and ISR). We also com-
pare M to other metrics: FID between the target and each
outer dataset, MS-SSIM of the samples of each outer dataset
(described in the center and right columns of Figure 2 re-
spectively). Although the FID and MS-SSIM correlate with
the top-1 accuracy, our metricM have the equal or stronger
correlation than them. In particular, for FGVC-Aircraft and
ISR, our metricM succeeds to predict better outer datasets
by cooperating FID and MS-SSIM complementarily.

Conclusion

This paper presented Domain Fusion (DF); a generative
data augmentation technique based on multi-domain learn-
ing GANs. For improving accuracy in a target task when
using a low-volume target dataset, DF exploits outer knowl-

edge via the samples from GANs trained on the target and
outer dataset simultaneously. We also proposed a metric to
select the outer dataset that consists of two perspectives: rel-
evance and diversity. In experiments of the classification task
using 3 target and 7 outer datasets, we found that DF im-
proved the target performance and the quality of generated
samples.
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