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Abstract

Partial label (PL) learning tackles the problem where each
training instance is associated with a set of candidate labels,
among which only one is the true label. In this paper, we pro-
pose a simple but effective batch-based partial label learn-
ing algorithm named PL-BLC, which tackles the partial la-
bel learning problem with batch-wise label correction (BLC).
PL-BLC dynamically corrects the label confidence matrix of
each training batch based on the current prediction network,
and adopts a MixUp data augmentation scheme to enhance
the underlying true labels against the redundant noisy labels.
In addition, it introduces a teacher model through a consis-
tency cost to ensure the stability of the batch-based prediction
network update. Extensive experiments are conducted on syn-
thesized and real-world partial label learning datasets, while
the proposed approach demonstrates the state-of-the-art per-
formance for partial label learning.

Introduction

In partial label (PL) learning, each training instance is as-
signed a set of candidate labels, only one of which is
valid. In some literatures, this learning paradigm is also
termed as superset label learning (Liu and Dietterich 2012;
Hüllermeier and Cheng 2015) or ambiguous label learning
(Hüllermeier and Beringer 2006; Zeng et al. 2013). Since
precisely annotating the ground-truth label of each instance
is typically difficult and costly, the task of partial label learn-
ing naturally arises in various application domains, such
as automatic face naming (Hüllermeier and Beringer 2006;
Zeng et al. 2013), web mining (Luo and Orabona 2010), and
ecoinformatics (Liu and Dietterich 2014).

As the ground-truth label for each instance in the PL train-
ing set is hidden among the ambiguous labels in the can-
didate annotation set, one intuitive strategy of partial label
learning is performing disambiguation, i.e., trying to iden-
tify the ground-truth label from the candidate label set. Ex-
isting disambiguation-based PL approaches can be roughly
grouped into two categories, the average-based disambigua-
tion approaches and the identification-based approaches.
The average-based disambiguation approaches treat each
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candidate label in an equal manner for model induction, and
make the final prediction by averaging the modeling outputs
over all candidate labels (Hüllermeier and Beringer 2006;
Cour, Sapp, and Taskar 2011; Zhang, Zhou, and Liu 2016).
The identification-based disambiguation approaches take the
ground-truth labels as latent variables and try to identify
the ground-truth labels by employing an iterative procedure
to gradually update the confidence value over each candi-
date label (Jin and Ghahramani 2003; Zhang and Yu 2015;
Tang and Zhang 2017).

As it is more suitable to consider the different relevance
degrees of each candidate label, the identification-based ap-
proaches have recently started gaining more attention from
the research community. One recent work (Xu, Lv, and Geng
2019) attempts to recover the generalized label distribution
by exploiting the topological information extracted based on
a widely-used smooth assumption, and then learn a predic-
tion model by fitting the recovered generalized label distri-
bution. This phrase-wise learning methodology however is
prone to the false positives in the labels identified via the
generalized label distribution. Another recent work in (Lei
and An 2019) learns the label confidence values of candidate
labels by exploiting a self-training strategy by minimizing
the widely used squared loss between the model predictions
and the learned label confidence matrix. Although this work
achieves some reasonable results, its label confidence score
estimation is error-prone, which can have a profound neg-
ative impact on the model prediction, especially when the
candidate label set is large.

In this paper, we propose a novel Partial Label Learn-
ing with Batch Label Correction (PL-BLC) method, which
dynamically corrects the label confidence values of candi-
date labels and exploits a mixup data enhancement scheme
to boost the prediction model through training batches. For
each training batch, PL-BLC first dynamically corrects the
confidence values of the candidate labels on being true la-
bels based on the outputs of the current prediction network.
Then PL-BLC mixes the partial label training instances with
the corrected label confidence matrix by adopting a MixUp
procedure, which serves as a data enhancement method to
improve the prediction model’s robustness against the noisy
labels. In addition, PL-BLC further adopts a self-ensembling
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method to construct a teacher model for prediction, which
maintains the stability of the batch updated prediction net-
work and consequently enhances its batch-wise label cor-
rection capacity. We conduct extensive experiments on real-
world and synthesized PL datasets under the partial label
learning setting. The empirical results show the proposed
PL-BLC achieves the state-of-the-art PL performance.

Related Work

Partial label learning is a prevalent classification problem in
many real-world domains, where the true label of each train-
ing instance is hidden in the given candidate label set but
unknown to the learning algorithm. It has some connection
with noise label learning but addresses different problems.
Noisy label learning (Natarajan et al. 2013) learns from
training instances with corrupted labels, where the ground-
truth labels are replaced by symmetric or asymmetric noisy
labels, while in partial label learning the ground-truth label
coexists with noisy labels.

To learn from PL data, one intuitive strategy is to treat all
the candidate labels equally, and then average the outputs of
all the candidate labels for final prediction. Following this
strategy, some instances-based algorithms (Hüllermeier and
Beringer 2006; Gong et al. 2017) predict the label y of a
test instance x by averaging the outputs of its neighbors,
i.e., argmaxy∈Y

∑
xi∈N(x) I(y ∈ Si) where N(x) denotes

the neighbors of x and Si denotes the candidate label set
for instance xi. Besides the instance-based instantiation,
averaging strategy can also be applied on discriminative
parametric models (Cour, Sapp, and Taskar 2011; Zhang,
Zhou, and Liu 2016) by differentiating the average mod-
eling output over the candidate labels from that over non-
candidate labels, i.e., max (

∑m
i=1(

1
|Si|

∑
y∈Si

F (xi,y; θ)−
1

|̂Si|
∑

ŷ∈̂Si
F (xi, ŷ; θ))) where Ŝi denotes the set of non-

candidate labels. The simple average-based strategy how-
ever fails to explore the difference among the candidate la-
bels and often produces unsatisfactory performance.

To address the drawback of average-based strategy, the
identification-based strategy naturally arises due to its ef-
fectiveness of handling the candidate labels with discrimi-
nation. Existing approaches following this strategy consider
the ground-truth label as a latent variable, and assume some
parametric model F (x,y; θ) where the ground-truth can be
identified by argmaxy∈Si

F (xi,y; θ). Some conventional
methods try to optimize the objective function based on the
maximum likelihood criterion (Jin and Ghahramani 2003) or
the maximum margin criterion (Nguyen and Caruana 2008).
Recently, exploiting the topological information in the fea-
ture space to derive the confidence score of each candi-
date label gets increasing attention from the research com-
munity (Zhang and Yu 2015; Zhang, Zhou, and Liu 2016;
Feng and An 2018). The work in (Xu, Lv, and Geng 2019)
proposes to iteratively update the generalized label distribu-
tions by leveraging the topological information in the feature
space based on a widely-used smooth assumption, i.e., sim-
ilar instance should have the same label, and learn a multi-
class prediction model by fitting a regularized multi-output
regressor with the generalized label distributions. However,

the extracted topological information may not always be ef-
fective for helping the model training in PL settings. This
method is also prone to errors induced in the generalized la-
bel distributions. In another recent work (Lei and An 2019),
a self-training strategy is adopted to refine the label con-
fidence scores of the candidate labels with the maximum
infinity norm regularization. It performs partial label learn-
ing over the refined label confidence scores by minimizing a
squared prediction loss. Although this work produces com-
petitive performance, it is prone to the estimation error of
label confidence scores, which can profoundly impair the
prediction model due to the inherent property of alternative
optimization.

MixUp (Zhang et al. 2017), which demonstrates outstand-
ing robustness against noisy labels without explicitly mod-
eling it, is one most popular data augmentation approach
since its introduction. During the past few years, MixUp
has been adopted to address different tasks, including semi-
supervised learning (Berthelot et al. 2019), domain adaption
(Mao et al. 2019), and learning with noisy labels (Arazo et
al. 2019). The proposed work in this paper is the first one
that exploits MixUp for partial label learning.

The Proposed Approach

Given a partial label training set D = {(xi, Si)} n
i=1, where

xi ∈ X = R
d is the input feature vector for the i-th instance,

Si ⊆ Y denotes the candidate label set associated with xi,
and Y denotes the multi-class label space. The key assump-
tion of partial label learning is that the ground-truth label yi

for each instance xi is hidden in its candidate label set, i.e.,
yi ∈ Si, but unknown to the learning algorithm. The task of
partial label learning is to induce a multi-class classification
model F : X �→ Y from D. We use B = {(xi, Si)}m

i=1
to denote a batch of PL training instances sampled from D.
In this section, we present a novel batch-based partial label
learning method, PL-BLC. It performs batch-wise label cor-
rection and prediction network training in an online learning
fashion, to gradually boost each other with a sequence of
randomly sampled training batches. Each batch update in-
volves three major operation components: label correction,
which prepares a corrected soft label matrix based on current
prediction outputs; data enhancement, which uses MixUp to
induce robust data from the given batch for training the pre-
dictor; and teacher model based consistency regularization,
which adopts a teacher model to ensure the consistency of
the prediction network through noisy batches We elaborate
these components and the proposed approach in the follow-
ing subsections.

Label Correction

Comparing to standard multi-class learning, the main dif-
ficulty of partial label learning is that the ground-truth la-
bel coexists with additive noisy labels in the candidate
label set but is unknown to the learning algorithm. The
main challenge lies in correcting the partial label vector to-
wards the true label indicator vector. Given a batch B =
{(xi, Si)}m

i=1, without further information, each label in the
candidate set has equal probability to be the ground-truth la-
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bel. Then the initial prior label confidence matrix over the
batch B can be written as Q ∈ [0, 1]m×L, where L is the
number of classes, such that

Qij =

{
1/|Si|, if yj ∈ Si

0 otherwise
(1)

To correct such a candidate uniform label confidence ma-
trix, we propose to encode the global statistical data infor-
mation observed so far by incorporating the label predic-
tion outputs from the current prediction network F (x, θ),
which is trained over the previous batches. We assume the
prediction network F (x, θ) produces a multi-class proba-
bility vector with a softmax function for a given instance
x. We then can produce a corrected label confidence matrix
P ∈ [0, 1]m×L by taking a prior confidence weighted con-
vex combination of a uniform distribution and the prediction
outputs of F :

P = Q+ (1−Q) ◦ F (XB , θ) (2)

where XB = [x1, · · · ,xm]� ∈ R
m×d denotes the input

matrix in the batch B, F (XB , θ) produces the m × L pre-
diction probability matrix over the m instances, and “◦” de-
notes the Hadamard matrix product operator. The prior label
confidence matrix Q not only contributes the initial label in-
formation encoded from the pre-given candidate label set,
but also controls the relative amount of information to ac-
cept from the prediction network. Note, in the extreme case,
when there is only one label (i.e., the true label) in the candi-
date set, such a label correction will maintain the true label
while rejecting potential noise from the prediction.

To maintain a valid label distribution over each instance
and remove noise outside of the candidate set of labels, we
further rescale P into P̃ by renormalizing each row of P :

P̃ij =

⎧⎨
⎩

Pij∑
yk∈Si

Pik
if yj ∈ Si

0 otherwise
(3)

We treat P̃ as the corrected soft label matrix for batch B. By
replacing each candidate label set Si with P̃i, we can obtain
a corrected PL training batch B̃ = {(xi, P̃i)}m

i=1. With the
progress of prediction network training, this corrected label
matrix will be more aligned with the true label matrix and
consequently help further boost the prediction network. By
using such a simple label correction method to dynamically
update the batch labels in the training process, one can grad-
ually mitigate the negative impact of the label noise without
directly modeling the noise label distribution.

Data Enhancement with MixUp

MixUp is a data augmentation technique developed in
(Zhang et al. 2017), which demonstrates strong robustness
against noisy labels. generates augmenting instances from
sample pairs (xi,xj) and their corresponding labels (yi,yj)
as follows:

x̂ = λxi + (1− λ)xj , ŷ = λyi + (1− λ)yj (4)

where λ is randomly sampled from a beta distribution
Beta(α, β), for α, β ∈ (0,∞). Training a prediction model
on data generated from MixUp can encourage the model to
behave linearly between training samples, which reduces os-
cillations in high density regions.

We adopt the MixUp scheme to enhance our corrected
training batch, aiming to further improve the robustness of
the prediction network against noisy labels. Specifically, we
produce a mixup batch B̂ by randomly mixing up pairs of
instances from B̃ as follows:

B̂ = MixUpλ∼Beta(α,β)(B̃, B) (5)

where B contains the instances of B̃ after random order
shuffling. That is, we mix up each corresponding pairs of
instances, (xi, P̃i) ∈ B̃ and (xi, P̃i) ∈ B:

x̂i = λxi + (1− λ)xi, P̂i = λP̃i + (1− λ)P̃i
(6)

where xi denotes the i-th instance from B, which is origi-
nally the i-th instance from B̃ before order shuffling. This
yields a mixup enhanced batch B̂ with the same size.

In light of the robustness of MixUp against the noisy label
information, we expect a prediction network F (x, θ) trained
on the mixup enhanced PL data can yield improved perfor-
mance. Specifically, we adopt a least squared classification
loss on the enhanced batch B̂ for training F :

min
F

Lc(B̂, F ) =
1

m

m∑
i=1

‖F (x̂i, θ)− P̂i‖22 (7)

Teacher Model based Consistency Regularization

To effectively integrate the consistent knowledge learned
through sequences of batches and avoid possible volatility
caused by the noisy partial labels, we propose to deploy a
mean teacher model F (x, θ′) to assist the prediction net-
work F (x, θ), which can be treated as a student network.
Following the self-ensembling strategy in (Tarvainen and
Valpola 2017), the teacher model needs no separate train-
ing, but rather takes a weighted average of the student model
along the training sequences of batches. Specifically, after
observing each batch and updating the student model’s pa-
rameter θ, the teacher model’s parameter θ′ can be updated
as the exponential moving average (EMA) of the student
model:

θ′ = γθ′ + (1− γ)θ (8)

where γ is a smoothing coefficient hyperparameter.
As the teacher model is less affected by the noisy labels

in any single batch, we deploy the teacher model under a
prediction consistency loss Lc′ to assist the learning of the
student prediction network F :

Lc′(B,F ) =
∑
x∼B

KL(F (x, θ), F (x, θ′)) (9)

where KL(·, ·) is the Kullback-Leibler divergence between
the softmax prediction outputs from the prediction network
and the teacher model. We expect this prediction consistency
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loss can help enhance the label correction against noise and
improve partial label learning.

Although the label correction step can shift a noisy candi-
date uniform label vector Qi towards a label differentiating
label vector P̃i, P̃i still presents much higher entropy com-
paring to a ground-truth one-hot label vector. To promote the
discriminativity of the prediction network over labels, we
then propose to sharpen the prediction outputs of the teacher
model and consequently impact the student model through
the prediction consistency loss above. Let q = F (x, θ′) de-
note the prediction probability vector of the teacher model
over an input instance x, we perform a common sharpening
operation (LeCun, Bengio, and Hinton 2015) over q:

Sharpen(q, T )i = q
1
T
i

/ L∑
j=1

q
1
T
j , ∀i (10)

where T is the “temperature” hyperparameter that controls
the degree of sharpening. Reducing the temperature encour-
ages the model to produce low-entropy predictions.

Learning with PL-BLC

By integrating the classification loss in Eq.(7) and prediction
consistency loss in Eq.(9) together, we get the overall batch-
wise training loss for the proposed PL-BLC model:

L(B̂, B, F ) = Lc(B̂, F ) + ηLc′(B,F ) (11)
where η is a trade-off hyperparameter that controls the rela-
tive importance of the classification loss and prediction con-
sistency loss. We perform training to minimize this objective
using a batch-based stochastic gradient descent algorithm.
The full training algorithm is outlined in Algorithm 1.

Experiment

Datasets

We conducted controlled experiments on synthetic PL
datasets constructed from 8 UCI datasets shown in Table
1. Following the widely-used controlling protocol (Wu and
Zhang 2018; Xu, Lv, and Geng 2019; Lei and An 2019),
we generate the synthetic PL datasets with three controlling
parameters p, r and ε. Specifically, p controls the propor-
tion of instances that have candidate labels (i.e., Si > 1),
r controls the number of noisy labels in the candidate la-
bel set (i.e., |Si| = r + 1), and ε controls the probabil-
ity of a specific noisy label co-occurring with the ground-
truth label. For each UCI dataset, we generated multiple PL
variants with different parameter configurations. We consid-
ered the following four groups of configurations: (I) r = 1,
p ∈ {0.1, 0.2, · · ·, 0.7}; (II) r = 2, p ∈ {0.1, 0.2, · · ·, 0.7};
(III) r = 3, p ∈ {0.1, 0.2, · · ·, 0.7}; and (IV) p = 1, r = 1,
ε ∈ {0.1, 0.2, · · ·, 0.7}. Hence, in total we have 224 (28
config. × 8 datasets) generated synthetic PL datasets.

We also conducted experiments on six real-world PL
datasets, which are collected from several application do-
mains, including FG-NET (Panis and Lanitis 2014) for facial
age estimation, Lost (Cour, Sapp, and Taskar 2011), Soc-
cer Player (Zeng et al. 2013) and Yahoo! News (Guillau-
min, Verbeek, and Schmid 2010) for automatic face nam-
ing from images or videos; MSRCv2 (Dietterich and Bakiri

Algorithm 1 Training Algorithm of PL-BLC.
Input:
D : the PL training set {(xi, Si)} n

i=1.
F (x, θ): prediction neural network with parameters θ.
F (x, θ′): teacher model with θ′ equals to EMA of θ.
γ: rate of EMA.
α, β: Beta distribution parameters for MixUp.
T : sharpening temperature.
η: trade-off parameter.

1: for number of training iterations do
2: Sample a batch B with m samples from D.
3: Compute the prior label confidence matrix via Eq.(1).
4: Compute the corrected label matrix P̃ via Eq.(2), (3).
5: B = Shuffle(B̃).
6: Sample λ from Beta(α, β).
7: B̂ = MixUpλ(B, B̃).
8: Compute the classification loss Lc(B̂, F ) via Eq.(7).
9: q̂ = Sharpen(F (x, θ′), T )

10: Lc′(B,F ) =
∑

x∼B KL(F (x, θ), q̂).
11: L(B̂, B, F ) = Lc(B̂, F ) + ηLc′(B,F ).
12: Update the network parameter of F by descending

θ along it’s stochastic gradient ∇θL(B̂, B, F ).
13: Update the teacher model θ′ = γθ′ + (1− γ)θ.
14: end for

1994) for object classification, and BirdSong (Briggs, Fern,
and Raich 2012) for bird song classification. The character-
istics of these datasets are reported in Table 2.

Table 1: Characteristics of the 8 UCI datasets.

Dataset #Example #Feature #Class
glass 214 9 6
ecoli 336 7 8
deter 358 23 6
vehicle 846 18 4
segment 2310 18 7
satimage 6,345 36 7
usps 9,298 256 10
letter 20,000 16 26

Table 2: Characteristics of the real-world PL datasets.

Dataset #Example #Feature #Class avg.#CLs
FG-NET 1,002 262 78 7.48
Lost 1,122 108 16 2.23
MSRCv2 1,758 48 23 3.16
BirdSong 4,998 38 13 2.18
Soccer Player 17,472 279 171 2.09
Yahoo! News 22,991 163 219 1.91

Comparison Methods

We compared the proposed PL-BLC approach with the fol-
lowing PL methods, each configured with the suggested pa-
rameters according to the respective literature:
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• PL-KNN (Hüllermeier and Beringer 2006): It uses k-NN
method to learn from PL samples by weighed voting.

• PL-SVM (Nguyen and Caruana 2008): It uses SVM to
learn from PL samples with l2 regularization.

• CLPL (Cour, Sapp, and Taskar 2011): It decomposes the
partial label learning problem into binary learning prob-
lems via feature mapping with convex loss optimization.

• PALOC (Wu and Zhang 2018): It uses a one-vs-one de-
composition strategy to enable binary decomposition for
leaning from PL samples.

• SURE (Lei and An 2019): it learns a confidence matrix of
candidate labels with a self-training strategy and trains the
prediction model over the learned label confidence matrix.

Implementation Details

We used a three-layer neural network as the prediction net-
work for the proposed PL-BLC method. It uses the Leaky
ReLu activation function in the two middle layers and uses
softmax activation in the output layer. The two middle hid-
den layers have 512 and 256 hidden units respectively. The
Adam (Kingma and Ba 2014) optimizer is adopted for train-
ing and the mini-batch size m is set to 32. We set α, β in
Eq.(5) to 0.5 and 1 respectively. The learning rate, sharpen-
ing temperature T and the number of training iterations in
Algorithm 1 are set to 0.0002, 0.4 and 100×�n/32� respec-
tively. We selected the hyperparameter η from {0.001, 0.01,
0.1, 0.3, 0.5, 1, 10} based on the classification loss value
Lc in the training objective function; that is, the η value that
leads to the smallest training Lc loss will be chosen. In terms
of the EMA decay γ, we used γ = 0.99 during the ramp-up
phase (for the first 20×�n/32� iterations in our experiment),
and γ = 0.999 for the rest of training, since the student model
improves quickly in the early phase. In the testing stage, we
used the teacher model for prediction.

Results on Synthetic PL Datasets

On each PL dataset, we performed ten-fold cross-validation
and report the average test accuracy results. First we study
the comparison results under different groups of PL configu-
rations. Figure 1 presents the results of all comparison meth-
ods for the configuration group I, where p increases from 0.1
to 0.7 with r = 1. In this setting, a candidate label set con-
tains the ground-truth label and exactly one extra randomly
chosen noisy label. Figure 2 presents the comparison results
for the configuration group IV, where ε increases from 0.1
to 0.7 with p = 1 and r = 1. From both sets of figures, we
can see that the proposed PL-BLC outperforms all the other
comparison methods in most cases, which is not easy given
the comparison methods have different strengths across dif-
ferent datasets. Especially, the performance gains yield by
PL-BLC on the datasets of vehicle, segment, and satimage
are quite remarkable under both settings I and IV. We ob-
tained similar positive results for configuration group II and
III. Due to the page limit, we do not include the figures but
report the statistical results over all configurations below.

To statistically compare PL-BLC with the other compar-
ison methods, we conducted pairwise t-test at 0.05 signifi-
cance level on the ten-fold cross-validation results over all

the 224 PL datasets obtained for all different configuration
settings. The win/tie/loss counts between PL-BLC and each
comparison method are reported in Table 3. From the 224
statistical tests, we can see that: 1) None of the compari-
son method outperform PL-BLC significantly in any con-
trolled parameter configuration and on any UCI dataset.
2) Comparing to the averaging-based disambiguation meth-
ods, PL-BLC significantly outperforms PL-KNN, CLPL and
PALOC in 69.6%, 72.7% and 66.9% of the cases respec-
tively, and produces ties in the other cases. 3) Comparing to
the identification-based disambiguation methods, PL-BLC
significantly outperforms SURE and PL-SVM in 36.6% and
69.1% of cases and achieves comparable performance in the
remaining 63.4% and 30.8% cases respectively. In summary,
these results on the controlled UCI datasets clearly demon-
strate the effectiveness of PL-BLC approach for partial label
learning under different settings.

Results on Real-World PL Datasets

We conducted experiments on the six real-world PL datasets
in a similar way with ten-fold cross-validation. Here we
also compared to the results from the partial label learning
method, PL-LE, in (Xu, Lv, and Geng 2019). Table 4 reports
the mean test accuracy as well as the standard deviation re-
sults for all the comparison methods on these real-world PL
datasets. In addition, we also conducted statistical pairwise
t-test at 0.05 significance level based on the ten-fold cross-
validation results, while the test outcomes between PL-BLC
and the other comparison methods are recorded and indi-
cated in Table 4 as well. From Table 4 we can observed that:
1) PL-BLC produces the best results on all the 6 datasets,
and outperforms the other methods with remarkably perfor-
mance gains. For example, PL-BLC outperforms the best
alternative comparison methods by 3.7%, 2.6% and 2.6%
on MSRCv2, Lost and Yahoo! News respectively. 2) Out of
30 cases (5 other comparison methods (except PL-LE) × 6
datasets), PL-BLC significantly outperforms all the compar-
ison methods in 76.7% cases, and achieves competitive per-
formance in 23.3% cases. 3) It is worth noting that PL-BLC
is not significantly outperformed by any other comparison
methods. These results on the real-world PL datasets again
demonstrate the effectiveness of PL-BLC approach.

Ablation Study

The proposed PL-BLC contains three components that con-
tribute to PL learning: label correction, data enhancement
with MixUp and teacher model based consistency regular-
ization loss. To assess the importance of these components,
we conduct an ablation study to compare PL-BLC with the
following ablation variants: 1) CLS-MC, which drops the
label correction; 2) CLS-LC, which drops the MixUp data
enhancement; 3) CLS-LM, which drops the teacher model
based prediction consistency loss; 4) CLS, which only uses
the classification loss by dropping all the three components
of label correction, data enhancement, and consistency reg-
ularization loss. It is a baseline variant. The comparison re-
sults are reported in Table 5. We can see that comparing to
the full model, all four variants produced inferior results.
Among the three variants, CLS-MC, CLS-LC and CLS-LM,
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(a) glass (b) ecoli (c) deter (d) vehicle

(e) segment (f) satimage (g) usps (h) letter

Figure 1: Test accuracy of each comparison method changes as p (proportion of partially labeled examples) increases from 0.1
to 0.7 (with one false positive candidate label [r = 1]).

(a) glass (b) ecoli (c) deter (d) vehicle

(e) segment (f) satimage (g) usps (h) letter

Figure 2: Test accuracy of each comparison method changes as ε (co-occurring probability of the coupling label) increases from
0.1 to 0.7 (with 100% partially labeled examples [p = 1] and one false positive candidate label [r = 1]).

we observe that CLS-MC, which drops the label correction
component, produces more inferior results, which suggests
the label correction is more critical for the proposed model
on addressing partial label learning. On the other hand, all
the three variants, CLS-MC, CLS-LC and CLS-LM, outper-
form the baseline variant CLS across all the six real-world

PL datasets, which suggests label correction, data enhance-
ment and prediction consistency regularization all contribute
to the proposed PL model. Overall, the ablation results sug-
gest the proposed PL-BLC model is effective in integrating
these components to address PL problems.
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Table 3: Win/tie/loss counts of pairwise t-test (at 0.05 significance level) between PL-BLC and each comparison approach.

PL-BLC vs –
SURE PALOC CLPL PL-SVM PL-KNN

varying p [r = 1] 22/34/0 40/16/0 42/14/0 42/14/0 41/15/0
varying p [r = 2] 20/36/0 36/20/0 40/16/0 39/17/0 38/18/0
varying p [r = 3] 18/38/0 36/20/0 40/16/0 36/20/0 38/18/0
varying ε [p, r = 1] 22/34/0 38/18/0 41/15/0 38/18/0 39/17/0
Total 82/142/0 150/74/0 163/61/0 155/69/0 156/68/0

Table 4: Test accuracy (mean±std) of each comparison method on the real-world PL datasets. •/◦ indicates whether PL-BLC
is statistically superior/inferior to the comparison algorithm on each dataset (pairwise t-test at 0.05 significance level).

FG-NET Lost MSRCv2 BirdSong Soccer Player Yahoo! News
PL-BLC 0.087±0.034 0.806±0.032 0.536±0.037 0.746±0.017 0.540±0.008 0.679±0.005
SURE 0.068±0.032 0.780±0.036 0.481±0.036• 0.728±0.024 0.533±0.017• 0.644±0.015•
PL-LE 0.082±0.023 0.773±0.043 0.499±0.037 0.730±0.013 0.536±0.020 0.653±0.006
PALOC 0.064±0.019 0.629±0.056• 0.479±0.042• 0.711±0.016• 0.537±0.015 0.625±0.005•
CLPL 0.063±0.027 0.742±0.038• 0.413±0.041• 0.632±0.019• 0.368±0.010• 0.462±0.009•
PL-SVM 0.063±0.029 0.729±0.042• 0.461±0.046• 0.660±0.037• 0.464±0.011• 0.629±0.010•
PL-KNN 0.038±0.025• 0.424±0.036• 0.448±0.037• 0.614±0.021• 0.497±0.015• 0.457±0.004•

Table 5: Comparison results of PL-BLC and its four ablation variants.

FG-NET Lost MSRCv2 BirdSong Soccer Player Yahoo! News
PL-BLC 0.087±0.034 0.806±0.032 0.536±0.037 0.746±0.017 0.540±0.008 0.679±0.005
CLS-MC 0.065±0.029 0.616±0.038 0.442±0.057 0.637±0.015 0.481±0.012 0.529±0.013
CLS-LC 0.080±0.031 0.741±0.042 0.529±0.145 0.663±0.188 0.537±0.011 0.674±0.014
CLS-LM 0.076±0.025 0.773±0.033 0.506±0.045 0.706±0.017 0.536±0.010 0.658±0.008
CLS 0.060±0.030 0.562±0.042 0.414±0.059 0.620±0.032 0.470±0.009 0.525±0.012

Figure 3: Parameter sensitivity analysis for PL-BLC on the
Lost and MSRCv2 datasets.

Parameter Sensitivity Analysis

We also conducted parameter sensitivity analysis for the
trade-off hyperparameter η of the proposed PL-BLC, which
controls the weight of the prediction consistency loss, on two
real-world PL datasets, Lost and MSRCv2. With the same
experimental setting as above, we tested different η values
from {0.001, 0.01, 0.1, 0.3, 0.5, 1, 10}. The test classifi-
cation accuracy results (mean and standard deviations) for
different η values are reported in Figure 3. We can see that

when η is very small, the prediction consistency loss cannot
contribute much. With the increase of η, the classification
accuracy increases as the prediction consistency loss begins
to contribute to the PL model, which suggests this regular-
ization loss term is useful within a reasonable range of η
values, e.g., η ∈ [0.3, 0.5]. However, when η is overly large
(≥ 1), the performance degrades dramatically as the predic-
tion consistency loss dominates. This is reasonable since the
prediction consistency loss is expected to assist the predic-
tion network, rather than dominate the learning.

Conclusion

In this paper, we proposed a novel batch-based label correc-
tion approach, LP-BLC, for partial label learning. Specifi-
cally, the proposed approach tackles partial label learning by
dynamically updating the label confidence values of candi-
date labels following the identification-based strategy. Based
on corrected label confidence values of the candidate labels,
the proposed LP-BLC implements data enhancement by us-
ing MixUp which improves the model’s robustness against
irrelevant noisy labels. In addition, a teacher model is in-
troduced to ensure the prediction network’s stability with a
consistency loss. The proposed approach is trained by batch-
based stochastic gradient descent. Extensive experiments on
synthesized and real-world datasets demonstrate that the
proposed approach significantly outperforms the state-of-
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the-art partial label learning approaches.
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