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Abstract

Imitation learning refers to the problem where an agent learns
to perform a task through observing and mimicking expert
demonstrations, without knowledge of the cost function. State-
of-the-art imitation learning algorithms reduce imitation learn-
ing to distribution-matching problems by minimizing some
distance measures. However, the distance measure may not
always provide informative signals for a policy update. To this
end, we propose the variational adversarial kernel learned imi-
tation learning (VAKLIL), which measures the distance using
the maximum mean discrepancy with variational kernel learn-
ing. Our method optimizes over a large cost-function space and
is sample efficient and robust to overfitting. We demonstrate
the performance of our algorithm through benchmarking with
four state-of-the-art imitation learning algorithms over five
high-dimensional control tasks, and a complex transportation
control task. Experimental results indicate that our algorithm
significantly outperforms related algorithms in all scenarios.

Introduction

Reinforcement learning (RL) has made significant progress
over a wide range of domains, ranging from Atari games
(Mnih et al. 2016; 2015), traffic control (Li, Lv, and Wang
2016; Yang, Vereshchaka, and Dong 2018), to robotic control
tasks (Andrychowicz et al. 2017; Kahn et al. 2018) through
optimizing over predefined reward functions. However, de-
signing an appropriate reward function for complex and not
well-specified tasks is notoriously difficult (Li, Song, and
Ermon 2017; Hadfield-Menell et al. 2017).

Rather than optimizing over predefined reward functions,
imitation learning (IL) has the potential to close the gap
by learning how to perform tasks through observing and
mimicking expert demonstrations. Behavior cloning (BC)
(Sammut and Webb 2011) is a classical imitation learning
approach which directly learns the mapping from state to
action through supervised learning. However, this method
fails to learn a good policy in complex environments due to
error compounding. Apprenticeship learning (AL) (Abbeel
and Ng 2004) seeks to learn a policy that performs no worse
than the expert policy. However, it assumes a restrictive class
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of cost functions – a linear combination of feature vectors.
Generative adversarial imitation learning (GAIL) (Ho and
Ermon 2016) reduces imitation learning to the problem of
matching the state-action distribution of the learned policy
to that of the expert policy. However, similar to generative
adversarial networks (GAN) (Goodfellow et al. 2014), GAIL
measures the distance between the distributions using the
Jensen-Shannon (JS) divergence, which does not always pro-
vide informative signals to optimize the policy, leading to
gradient vanishing.

Different approaches have been proposed to improve the
training. Variational adversarial imitation learning (VAIL)
(Peng et al. 2018) adopted a variational information bottle-
neck to introduce noise into the discriminator, which regu-
lates the information flow and updates the policy using more
useful features. (Kim and Park 2018) introduces generative
moment matching imitation learning (GMMIL), where the
cost function class is defined as the unit ball of a reproduc-
ing Hilbert kernel space (RKHS). The goal of GMMIL is to
match the state-action distribution by minimizing the maxi-
mum mean discrepancy (MMD) with a pre-defined kernel.

To provide more informative signals for policy optimiza-
tion, and to further improve the performance of a learned
policy, we develop a new imitation learning algorithm, called
the variational adversarial kernel learned imitation learning
(VAKLIL). This algorithm follows the paradigm of formu-
lating imitation learning as distribution matching, but with a
novel distance measure defined as the MMD with variational
kernel learning (MMD-VKL). VAKLIL has the following
appealing properties: (1) It optimizes over a more expres-
sive class of cost functions, which provides more informative
and discriminative features for policy optimization. (2) It is
sample efficient and is robust to overfitting.

The contributions of the paper are summarized as follows:
(1) We develop an imitation learning algorithm with a more
expressive class of cost functions, and reduce the imitation
learning problem to state-action distribution matching. (2)
We introduce a new distance measurement between distribu-
tions, the MMD-VKL, which is sample efficient and robust
to overfitting. (3) We apply the new distance measurement
to the proposed imitation-learning paradigm and develop
VAKLIL, an imitation-learning algorithm that optimizes the
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policy with more informative signals, and which is sample
efficient and robust. (4) To develop closed-form solutions,
we provide two parameterizations of the kernel learning in
VAKLIL, a Gaussian kernel, and a random Fourier kernel.
(5) We analyze the theoretical properties of our method and
compare the empirical performance of our algorithm with
the aforementioned state-of-the-art algorithms such as AL,
GAIL, VAIL, and GMMIL. Experimental results indicate
that our algorithm significantly outperforms all algorithms in
all scenarios.1

Background

MDP and Imitation Learning

Learning the policy through interacting with the environ-
ments can be modeled as a Markov decision process (MDP).
Formally, a MDP is defined as a tuple 〈S,A, P, c, γ〉, where S
represents the state space with st ∈ S being the state at time
t; A is the action space with at ∈ A being the action taken at
time t; P is the transition kernel of states P (st+1|st, at); c is
the cost function with c(st, at) evaluating the immediate cost
at time t; and γ ∈ [0, 1) is a discount factor. The policy π is
defined as a mapping from a state st to an action at = μ(st)
(deterministic policy) or a conditional distribution parameter-
ized by θ, i.e., π = p(at|st; θ) (stochastic policy).

Given a cost function, the objective of policy learning
can be formulated as minimizing the expected future costs:
J(c, π) = Eπ [

∑
t γ

tc(st, at)]. For any policy π, there is
one-to-one correspondence between the policy and its oc-
cupancy measure (Puterman 2014), which is also called the
state-action visitation distribution ρπ(s, a) =

∑
t γ

tp(st =
s, at = a). It can be shown that

J(c, π) = Eρπ [c(s, a)] =
∑
s,a

ρπ(s, a)c(s, a) .

Recent approaches in IL (Ho and Ermon 2016) consider
first applying inverse RL to find a cost function to best fit
expert demonstrations, and then applying standard RL to
optimize a policy under such a cost function. The objective
is thus

IL(πE) = minπmaxc∈CEρπ [c(s, a)]− EρπE
[c(s, a)]

−ψ(c)−H(π)
(1)

where ψ(c) and H(π) are the regularizations for the cost
function and policy, respectively. This method can be viewed
as minimizing the distance between the occupancy measure
of the agent and that of the expert, where different IL al-
gorithms use different measurement of the distance. For ex-
ample, GAIL adopts the Jensen-Shannon divergence with
an objective: IL(πE) = arg minπmaxDEρπ [log (D(s, a))]+
EρπE

[log (1−D(s, a))]−λH(π); and GMMIL uses MMD
with a pre-defined kernel

IL(πE) = minπmaxc∈CM2
k (ρπ, ρπE ) .

1The appendix, codes and data used in this paper can be found
in https://bit.ly/37rescf

Maximum Mean Discrepancy

Distinguishing two distributions by finite samples is known
as Two-Sample Test in statistics. One way to achieve this
is to evaluate via MMD (Gretton et al. 2012), which can be
viewed as feature matching in a RKHS. More details about
RKHS can be found in (Berlinet and Thomas-Agnan 2011)
and Appendix. Given two distributions p and q, and a kernel
k, let Hk denote the RKHS induced by kernel k. The square
of MMD is defined as

M2
k (P,Q) = Ex,x′∼P [k(x, x′)] + Ey,y′∼Q [k(y, y′)]

−2Ex∼P,y∼Q [k(x, y)]

In practice the MMD is estimated with finite samples. Let
samples {x1, ..., xn} ∼ p, {y1, ..., yn} ∼ q, the empirical
estimation of M2

k (p, q) is M̃2
k (p, q) = 1

n2

∑
i,j k(xi, xj) +

1
n2

∑
i,j k(yi, yj) − 2

n2

∑
i,j k(xi, yj). Because of the sam-

pling variance, M2
k (p, q) may be small even when p and q

differs significantly. To have a stronger signal of the distance
measurement, (Li et al. 2019) proposed an improvement of
MMD by parameterizing the kernel with the following objec-
tive:

maxψ,ϕM2
ψ,ϕ(P,Q)

� maxψ,ϕEx,x′∼P [kψ,ϕ(x, x
′)] + Ey,y′∼Q [kψ,ϕ(y, y

′)]
−2Ex∼P,y∼Q [kψ,ϕ(x, y)]

(2)
where kψ,ϕ(x, x′) = Eν [e

ihψ(ν)
T (fϕ(x)−fϕ(x′))], and ν ∼

N (0, I) is a standard Gaussian. Consequently, this solution
consists of learning the base kernel hψ(ν) and the injected
function fϕ(x). Recent works showed that MMD GANs with
a learned kernel via minθmaxψ,ϕM2

ψ,ϕ(p, qθ) achieves better
performance than that of using a fixed kernel (Li et al. 2017;
Bellemare et al. 2017; Bińkowski et al. 2018).

The Proposed Method

In this section, we develop an IL framework with a more
expressive class of cost functions, and formulate IL as the
problem of state-action distribution matching. We propose
a new distance measure, denoted as MMD with variational
kernel learning (MMD-VKL), and apply it to the proposed IL
paradigm, resulting in variational adversarial kernel learned
imitation learning (VAKLIL). We also propose two ways of
parameterizing a kernel in VAKLIL, e.g., via a Gaussian ker-
nel and a random Fourier kernel. All proofs and derivations
are postponed to the appendix.

Imitation Learning with a Broader Class of Cost
Functions

The cost function in existing IL algorithms are defined in
a restricted function class. For example, AL considers cost
functions to be linear combinations of pre-defined features;
VAIL and GAIL define a sophisticated penalty over the cost
function; GMMIL defines the cost function as a unit ball
of a pre-defined RKHS. Intuitively, with a wider range of
cost-function class, more flexible policies could be learned.
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To learn over a more expressive class of cost functions, we
consider the cost function class over a series of RKHS spaces:

CHkψ,ϕ
=

{
c(s, a) =

〈
c, φkψ,ϕ(s, a)

〉
Hkψ,ϕ

| ∀ψ, ϕ
}

(3)

where φkψ,ϕ(s, a) is the feature vector, defined in a RKHS
induced by kernel kψ,ϕ. Instead of defining the cost function
in a fixed RKHS, our method spans the cost function over all
RKHS spaces induced by a kernel kψ,ϕ, ∀ψ, ϕ.
Theorem 1 (Bochner’s theorem (Rudin 1962)). A contin-
uous, real valued, symmetric and shift-invariant function
k on R

d is a positive definite kernel if and only if there
is a positive finite measure pk(ω) such that k(x − x′) =

Eω∼pk(ω)[e
iωT (x−x′)].

Denote a state-action pair (s, a) as x, and further introduce
a standard quadratic regularizer for the cost function ψ(c) =
1
2 ‖ c ‖2Hkψ,ϕ

. The IL objective (1) becomes

IL(πE) (4)
=minπmaxc,ψ,ϕ〈c,Ex∼ρπφkψ,ϕ(x)− Ex∼ρπE φkψ,ϕ(x)〉Hkψ,ϕ

− 1

2
‖ c ‖2Hkψ,ϕ −H(π)

=minπmaxψ,ϕEx,x′∼ρπ
[
kψ,ϕ(x, x

′)
]
+Ex,x′∼ρπE

[
kψ,ϕ(x, x

′)
]

− 2Ex∼ρπ,x′∼ρπE
[
kψ,ϕ(x, x

′)
]−H(π)

=minπmaxψ,ϕM2
ψ,ϕ(ρπ, ρπE )−H(π)

As a result, we reduce the standard IL with a cost function
defined in (3) to the occupancy measure matching problem,
using the evaluation metric of MMD with kernel learning
(MMD-KL). MMD-KL is an improvement over MMDs that
simultaneously learns a kernel that maximizes the MMD.
Compared to GMMIL, which measures the distance using
MMD with a fixed kernel, MMD-KL is shown to produce
larger distance measurement between ρπ and ρπE , hence a
stronger signal to train the policy π. For more details, please
see (Fukumizu et al. 2009).

The objective (4) is optimized by
• (1) Learning the kernel kψ,ϕ to obtain the best measure of

the distance maxψ,ϕM2
ψ,ϕ(ρπ, ρπE );

• (2) Optimizing the policy π to minimize the distance.
In kernel learning, we fix the policy π and update the param-
eters ψ,ϕ using gradient ascent

ψ = ψ +∇ψM
2
ψ,ϕ(ρπ, ρπE )

ϕ = ϕ+∇ϕM
2
ψ,ϕ(ρπ, ρπE )

until converged. In policy optimization, we firstly obtain the
optimal cost function through

c∗ = Ex∼ρπφkψ,ϕ(x)− Ex∼ρπEφkψ,ϕ(x) ,

then optimize the policy according to

arg minπEx∼ρπ [ĉ(x)]−H(π) ,

which can be solved using any maximum entropy RL
algorithms with cost ĉ(x) = Ex′∼ρπ [kψ,ϕ(x, x

′)] −

Ex′∼ρπE [kψ,ϕ(x, x
′)]. In practice, we evaluate the expecta-

tion with samples, e.g., given two sets of samples {xi}Ni=1 ∼
ρπ and {yi}Ni=1 ∼ ρπE , M2

ψ,ϕ(ρπ, ρπE ) is approximated as

M̃2
ψ,ϕ(ρπ , ρπE ) =

1

N2

∑

i,j

kψ,ϕ(xi, xj) +
1

N2

∑

i,j

kψ,ϕ(yi, yj)

− 2

N2

∑

i,j

kψ,ϕ(xi, yj) .

Similarly, the cost is calculated as c̃(x) =
1
N

∑
i kψ,ϕ(x, xi)− 1

N

∑
i kψ,ϕ(x, yi).

Sample Efficient and Robust Imitation Learning

The above procedure of optimizing M2
ψ,ϕ(ρπ, ρπE ) with ker-

nel learning involves repeatedly (1) sampling data from dis-
tributions ρπ, ρπE , and (2) updating kernel parameters ψ, ϕ
with gradient ascent (Li et al. 2017). However, there is a trade-
off in kernel learning. On the one hand, collecting trajectory
samples through interacting with an environment is typically
time consuming and expensive (Jeon, Seo, and Kim 2018).
One way to alleviate this is to reuse the samples. On the other
hand, if samples are reused, repeated updating the kernel
kψ,ϕ with the same samples would lead to overfitting. As a
result, the optimal cost function induced from the learned
kernel would not provide good signals to learn a policy. To
provide a sample efficient training paradigm and to impose
a regularization to penalize overfitting, we propose a novel
general kernel-learning scheme within the IL framework.

MMD with variational kernel learning We consider a
general kernel learning problem where one learns a kernel
kψ,ϕ to maximize maxψ,ϕM2

ψ,ϕ(p, q) between two distribu-
tions p and q. To avoid overfitting, inspired by the informa-
tion bottleneck (Peng et al. 2018; Alemi et al. 2016), we
constrain the information flow through the kernel. Specifi-
cally, we introduce an encoder E that maps a sample x to a
stochastic encoding z ∼ E(z | x), and the goal is to learn
an encoding z that is maximumly informative about the tar-
get maxψ,ϕM2

ψ,ϕ(p, q), and meanwhile being maximumly
compressive about the input samples x. The proposed kernel
learning objective is thus

maxE,ψ,ϕM2
E,ψ,ϕ(p, q)− βI(X,Z) (5)

We refer to (5) the MMD with variational kernel learning,
where

M2
E,ψ,ϕ(p, q) = Ex,x′∼pEz∼E(z|x),z′∼E(z′|x′)[kψ,ϕ(z, z

′)]

+ Ey,y′∼qEz∼E(z|y),z′∼E(z′|y′)[kψ,ϕ(z, z′)]

− 2Ex∼p,y∼qEz∼E(z|x),z′∼E(z′|y)[kψ,ϕ(z, z′)] ,

and I(X,Z) is the mutual information between the original
samples x and the encoding z; and β ≥ 0 is a coefficient.
Intuitively, the first term M2

E,ψ,ϕ(p, q) encourages z to max-
imize the distance between p and q, and the second term
βI(X,Z) encourages z to ignore as much information flow-
ing through as possible, where β controls the tradeoff. When
trained adversarially, this will make the encoding z to only
keep the most useful and common pattern from x that can be
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used to distinguish p and q. Essentially, it learns an encoding
z as a minimal sufficient statistics of the input samples x
to maximize the distance between p and q, thus is robust to
overfitting. In practice, we define the encoder as

E(z | x) = N (μE(x),ΣE(x)) .

An encoding z is sampled using the reparameterization trick
z = μE(x) + εΣ

1/2
E (x), where ε ∼ N (0, I) is a standard

Gaussian.
It is worth noting that not all MMD with kernel learn-

ing can provide a good measurement of the distance. (Li
et al. 2019; Arbel et al. 2018) showed that the MMD
with kernel learning needs to be weak (i.e. p D→ q ⇔
maxψ,ϕM2

ψ,ϕ(p, q) → 0) to provide informative indica-
tor of the distance. We prove that the proposed MMD
with variational kernel learning is weak over the encod-
ings z under mild assumptions used in (Li et al. 2017;
Arjovsky, Chintala, and Bottou 2017).
Theorem 2. Assume 1) the function fϕ(x) is bounded
and has a common Lipschitz constant supϕ ‖ fϕ(x) ‖L≤
Lϕ < ∞; 2) the variance of function hψ(ν) is bounded
Eν

[‖ hψ(ν) ‖2] < ∞; 3) and the kernel is bounded
supxkψ,ϕ(x, x) < ∞. Let p′ and q′ be the encoding dis-
tributions, i.e., p′(z) = E(z | x), x ∼ p, and q′(z) = E(z |
x), x ∼ q, then maxE,ψ,ϕM2

E,ψ,ϕ(p, q) is continuous in the
weak topology for the encodings z:

maxE,ψ,ϕM2
E,ψ,ϕ(p, q) → 0 ⇐⇒ p′ D→ q′

Theorem 2 shows that maxE,ψ,ϕM
2
E,ψ,ϕ(p, q) provides a

informative indicator of the distance in the encoding z. In
practice, we incorporate Lipschitz constraints ‖ E ‖L≤ 1, ‖
fφ ‖L≤ 1, and penalize Eν

[‖ hψ(ν) ‖2] to accommodate
the assumptions in Theorem 2. Let λh ≥ 0 be the penaliz-
ing coefficient, the MMD with variational kernel learning is
formulated as

maxE,ψ,ϕ:‖E‖L≤1,‖fϕ‖L≤1M
2
E,ψ,ϕ(ρπ, ρπE )

−βI(X,Z)− λhEν
[‖ hψ(ν) ‖2] (6)

Variational adversarial kernel learned imitation learning
Incorporating (6) into the IL objective (4) gives the objective
of the proposed VAKLIL framework:

IL(πE) = min
π

max
E,ψ,ϕ:‖E‖L≤1,‖fϕ‖L≤1

M2
E,ψ,ϕ(ρπ, ρπE )

− βI(X,Z)− λhEν
[‖ hψ(ν) ‖2]−H(π) (7)

Here, the terms I(X,Z),Eν
[‖ hψ(ν) ‖2] , ‖ E ‖L≤ 1, ‖

fϕ ‖L≤ 1 can be viewed as the regularizations for the encod-
ing E and the functions hψ, fϕ.
Theorem 3. Solving the IL problem described by (7) is equiv-
alent to solving a regularized IL problem with a cost function
defined over the stochastic encoding z ∼ E(z | s, a), with
the cost function class being

CHkψ,ϕ
=

{
c(s, a) = Ez∼E(z|s,a) [c(z)]

=
〈
c,Ez∼E(z|s,a)φkψ,ϕ(z)

〉
Hkψ,ϕ

| ∀ψ,ϕ
}
,

and the regularizations being I(X,Z) ≤ Ic,Eν [‖ hψ(ν) ‖2
] <∞, ‖ E ‖L≤ 1, ‖ fϕ ‖L≤ 1.

Theorem 3 draws a connection between (7) and the cost
function class CHkψ,ϕ

, where the cost function class spans
over a class of RKHS induced by all shift-invariant kernels
kψ,ϕ, and the cost function is a stochastic function defined
over the encoding z. It implies that solving a regularized imi-
tation learning problem with a stochastic cost function given
in Theorem 3 would, as discussed in previous sections, re-
duce overfitting of the kernel learning. Furthermore, it could
provide better signals for policy optimization.

We solve (7) by alternating between kernel learning with
parameters (E,ψ, ϕ) and policy optimization. The algorithm
is given as Algorithm 1, and a flow diagram is shown in
Figure 1. More detailed descriptions of the optimization
are provided in the Appendix. Denote a state-action pair
(s, a) as x, we again adopt a Gaussian encoder E(z | x) =
N (μE(x),ΣE(x)) and use the reparameterization trick to
reparameterize the encoding. In the algorithm, spectral nor-
malization (Miyato et al. 2018) is used to satisfy the Lipschitz
constraints ‖ E ‖L≤ 1, ‖ fϕ ‖L≤ 1, and samples estima-
tions are used to approximate expectations in the MMD.

Algorithm 1: Variational adversarial kernel learned imi-
tation learning

Input :Expert dataset of trajectories
DπE =

{(
sEi , a

E
i

)}N
i=1

, initial policy π, initial
kernel parameters E,ψ, ϕ, coefficient β, λh

Output :Learned policy π
for iter = 0, 1, ... do

Sample trajectories Dπ = {(si, ai)}Mi=1 by
executing π, sample M state-action pairs from
DπE , labeling them i = 1, ..,M :

{(
sEi , a

E
i

)}M
i=1

for ik = 0, 1, ... do
Update kernel parameters E,ψ, ϕ with gradient
ascent to maximize the objective
J =M2

E,ψ,ϕ(ρπ, ρπE )− βI(X,Z)−
λhEν

[‖ hψ(ν) ‖2]
end
Compute the cost function ĉ(s, a) =
Es′,a′∼ρπ,z′∼E(z′|s′,a′) [kψ,ϕ(μE(s, a), z′)]−
Es′′,a′′∼ρπE ,z′′∼E(z′′|s′′,a′′) [kψ,ϕ(μE(s, a), z′′)]

Update policy π using TRPO with the above cost
function.

end

Theorem 4. Let the policy πθ be parameterized by θ, and
ε ∼ N (0, I). The gradient of the policy optimization in
VAKLIL has the form

∇θ
(
Ex∼ρπθ [ĉ(x)] −H(πθ)

)

=∇θEx∼ρπθ ,x′∼ρπθ ,ε
〈
φkψ,ϕ

(μE(x
′
) + εΣ

1/2
E

(x
′
)),

φkψ,ϕ
(μE(x))

〉
Hkψ,ϕ

− ∇θEx∼ρπθ ,x′′∼ρπE ,ε
〈
φkψ,ϕ

(μE(x
′′
) + εΣ

1/2
E

(x
′′
)),
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Expert trajectories

Sample trajectories Goal:�Update policy  by TRPO 
to minimize 

Generated
policy 

RKHS

Expert 
policy 

Goal:�Learn kernel parameters�
 to�maximize 

Figure 1: VAKLIL flow diagram. Given expert data DπE , a VAKLIL learns a policy πθ through iteratively: (1) Collecting sample
trajectories Dπθ from executing policy πθ; (2) Applying a stochastic encoding E(z | x) to the samples, and then projecting the
encodings z to a feature vector φkψ,ϕ(z) in a RKHS; (3) Kernel learning with parameters (E,ψ, ϕ) to maximize the distance
M2
E,ψ,ϕ(ρπ, ρπE ) between the generated samples and that of expert in the RKHS; (4) Updating the policy πθ by TRPO to

minimize the cost function c∗ induced by the learned kernel kψ,ϕ.

VAKLIL-F (ours)Expert VAKLIL-G (ours) GMMIL VAIL GAIL AL

Figure 2: Learning curves of our algorithm, VAKLIL, and other algorithms.

φkψ,ϕ
(μE(x))

〉
Hkψ,ϕ

− ∇θH(πθ) .

Theorem 4 indicates that the gradient of
the policy drives to maximize a inner product,〈
φkψ,ϕ(μE(x

′′) + εΣ
1/2
E (x′′)), φkψ,ϕ(μE(x))

〉
Hkψ,ϕ

,

in a RKHS. This drives the generated samples x ∼ ρπθ
towards the expert samples x′′ ∼ ρπE through matching the
features, φkψ,ϕ(μE(x)), of the generated samples to that
of the expert samples in a RKHS, which is expressed as
φkψ,ϕ(μE(x

′′) + εΣ
1/2
E (x′′)). Here μE(x

′′) + εΣ
1/2
E (x′′)

is the stochastic (Gaussian) output from the encoder.
Meanwhile, the gradient also drives to minimize the inner
product〈

φkψ,ϕ(μE(x
′) + εΣ

1/2
E (x′)), φkψ,ϕ(μE(x))

〉
Hkψ,ϕ

,

which pushes the generated samples x ∼ ρπθ far away

from other generated samples x′ ∼ ρπθ through maximiz-
ing the distance between the features of the generated sam-
ples φkψ,ϕ(μE(x)) to that of the other generated samples
repersented as φkψ,ϕ(μE(x

′) + εΣ
1/2
E (x′)).

Kernel Parameterizations

The kernel in our algorithm takes the form
kψ,ϕ(x, x

′) = Eν

[
eihψ(ν)

T (fϕ(x)−fϕ(x′))
]

, which
involves complex exponential. To provide closed form kernel
evaluations, we propose two ways of parameterizing the
kernel kψ,ϕ(x, x′): a Gaussian kernel, and a random Fourier
kernel.

Theorem 5. Let pk(ω) = p(hψ(ν)) be the spectral distribu-
tion.

• 1) If pk(ω) is fixed to be (2π)−
D
2 e−

‖ω‖2
2 , the kernel

kψ,ϕ(x, x
′) becomes a Gaussian kernel kϕ(x, x′) =
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Environment HalfCheetah Ant Walker2D Humanoid HumanoidFlagrun
Expert 2501.5±14.3 2433.9±17.2 971.6±1.2 232.2±1.6 281.0±2.1

VAKLIL-G 2234.0±313.4 2302.2±124.0 711.4±234.9 188.2±33.7 217.6±23.2
VAKLIL-F 2339.5±153.5 2348.8±136.4 735.2±154.7 198.7 ±40.9 262.8±31.6

AL 1145.3±1155.0 752.4±701.0 138.4±306.8 79.2±69.0 36.7±30.6
GAIL 2214.6±196.6 1780.0±597.0 476.8±326.7 78.7±64.2 34.2±37.0
VAIL 2197.8±113.5 2015.6±280.2 257.1±236.3 120.2±40.3 158.6±31.5

GMMIL 2099.1±366.1 2127.1±106.7 706.0±184.9 94.6±16.2 111.9±11.7

Table 1: The mean and standard deviation of the reward of the learned policy for different algorithms.

e−
(fϕ(x)−fϕ(x′))2

2 .
• 2) If the kernel is estimated using random sam-

ples ωi ∼ pk(ω) and the complex exponential is
replaced with cosine, then it becomes a random
Fourier kernel kψ,ϕ(x, x′) = κ(x)κ(x′), where κ(x) =√

1
D

[
cos

(
hψ(ν1)

T fϕ(x) + b1
)
, ..., cos

(
hψ(νD)

Tfϕ(x)+

bD
)]′

.

Theorem 5 draws a connection among a shift-invariant
kernel in the general form, a Gaussian kernel, and a random
Fourier kernel. Kernel learning with a Gaussian kernel is
equivalent as learning a shift-invariant kernel with injected
function fϕ(x) while fixing the base kernel hψ(ν). A random
Fourier kernel uses an empirical estimation of the spectral
distribution with samples ω ∼ pk(ω). Kernel learning with
a random Fourier kernel implies learning both the injected
function fϕ(x) and the base kernel hψ(ν). We will demon-
strate the performance of VAKLIL with these two forms of
kernel parameterizations in the experiments.

Connections to Existing Works

Apprenticeship learning (AL) (Abbeel and Ng 2004) defines
a cost function as a linear combination of pre-defined fi-
nite dimensional features c(s, a) = wφ(s, a). Optimizing
the policy under such cost function is equivalent to feature
matching. In our method, we use a more expressive class of
cost functions defined in a series of RKHS, which implies
infinite-dimension feature matching.

GAIL (Ho and Ermon 2016) and VAIL (Peng et al. 2018)
match the occupancy measure of the agent to that of the ex-
pert using the JS divergence, which endows some difficult op-
timization problems such as gradient vanishing. Our method
uses the distance measurement of MMD-VKL, which pro-
vides better signals for the policy updating. Moreover, GAIL
and VAIL adopted a sophisticated constraint on cost function
specially designed for deriving a GAN-like objective. While
the cost function constraint in our method is more natural,
and the cost function class is more expressive in the sense
that it spans over all possible RKHS spaces defined by all
shift-invariant kernels.

GMMIL (Kim and Park 2018) matches the state-action
distribution of an agent to that of an expert using MMD with
a pre-defined Gaussian kernel. In our algorithm, we match
the distribution using MMD with variational kernel learning,
which could provide better signal for policy optimization.

Experiments

To demonstrate the performance of our algorithm, we first
benchmark our algorithm against other state-of-the-art im-
itation learning algorithms over five high-dimensional con-
trol problems, integrated in OpenAI Gym (Brockman et al.
2016): Ant, HalfCheetah, Humanoid, HumanoidFlagrun, and
Walker2D (Schulman et al. 2017). We then test our algo-
rithm on a more complicated traffic control problem in a
transportation system (Yang, Liu, and Dong 2019),

All the environments considered come with true reward
(negative of cost) functions. We create the expert data through
executing the trust region policy optimization (TRPO) (Schul-
man et al. 2015) algorithm over the true reward function, and
then collect the expert trajectories through sampling actions
from the expert policy and interacting with the environments.
Detailed descriptions of the environments and the experi-
mental setup, and additional experiments are given in the
Appendix.

Continuous Control

For this set of experiments, we implement two instantiations
of the procedure in Algorithm 1, a VAKLIL with a Gaussian
kernel parameterization (VAKLIL-G), and a version using a
random Fourier kernel (VAKLIL-F). We benchmark against
four mainstream IL algorithms: apprenticeship learning (AL)
(Abbeel and Ng 2004), generative adversarial IL (GAIL) (Ho
and Ermon 2016), variational adversarial IL (VAIL) (Peng
et al. 2018), and generative moment matching IL (GMMIL)
(Kim and Park 2018). The policy networks in all algorithms
are implemented with the same neural network structure.

The learning curves are plotted in Figure 2, and the statis-
tics are summarized in Table 1. The performance is re-
ported with the best performing parameters of each algorithm
through grid searches. The empirical results show that our
algorithm achieves the best performance in all scenarios, and
converges faster than other algorithms. Our algorithms per-
form slightly better than other benchmarking algorithms in
low dimensional control tasks such as HalfCheetah. However,
in high dimensional control such as Walker2d and Humanoid-
Flagrun where the reward function is harder to learn, our
algorithms perform much better. VAKLIL-F is slightly better
than VAKLIL-G because VAKLIL-F enjoys more freedom
in kernel learning, which leads to policy optimization over
a wider reward function class. AL performs the worst be-
cause it has a strict assumption of the reward function classes.
VAKLIL-F and VAKLIL-G outperform GAIL, VAIL, and
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Metrics TRPE (×104) ↑ VOR ↓ VAH ↑ VAW ↑ VOT ↑
Expert 90.68±5.32 5.21±3.48 49.86±20.03 64.77±4.15 57.3±0.47

VAKLIL-F 79.45±16.06 1.15±2.67 9.85±9.74 69.39±7.48 74.8±1.04
GAIL 56.70±2.69 0.49±1.17 59.92±12.10 37.76±4.64 31.7±0.85

Table 2: Comparisons in terms of total reward per episode (TRPE), number of vehicles on road per unit time (minutes) (VOR),
number of vehicles at home after work hours per unit time (VAH), number of vehicles at work during work hours per unit time
(VAW), and the number of vehicles arriving at work on time (VOT).

GMMIL because we use an MMD with variational kernel
learning to measure the distance, which is more stable and
can provide better signals to train the policy than using the
JS distance or an MMD with a fixed kernel.

Traffic Control

The traffic control problem in a complex transportation sys-
tem contains 101 state variables and 200 action variables.
Through controlling the movement of vehicles, the goal is
to let people driving in a more efficient manner, such as
spending less time on the road, arriving at work on time, and
spending more time at work during work hours.

We apply VAKLIL-F and GAIL to the traffic control task.
The results are summarized in Table 2, which indicate that
the learned policy of VAKLIL-F achieves higher scores in
temrs of TRPE, VAW, and VOT than GAIL. By inspecting
the scores, it is interesting to find that VAKLIL-F learns a
policy that guides vehicles to work locations on time, and to
stay at work during work hours; while GAIL learns a policy
that suggests most of the vehicles staying at home.

Conclusion

In this paper, we developed VAKLIL, an imitation learning
algorithm which optimizes the policy with more informative
signals by defining the cost function in a learnable RKHS,
and is more sample efficient and robust to overfitting. We
benchmark VAKLIL against existing state-of-the-art algo-
rithms on five OpenAI Gym environment and a complex
transportation environment. Empirical results showed that
our algorithm outperforms related algorithms in all scenarios.
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