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Abstract

Deep convolutional neural network (DNN) has demonstrated
phenomenal success and been widely used in many com-
puter vision tasks. However, its enormous model size and
high computing complexity prohibits its wide deployment
into resource limited embedded system, such as FPGA and
mGPU. As the two most widely adopted model compression
techniques, weight pruning and quantization compress DNN
model through introducing weight sparsity (i.e., forcing par-
tial weights as zeros) and quantizing weights into limited bit-
width values, respectively. Although there are works attempt-
ing to combine the weight pruning and quantization, we still
observe disharmony between weight pruning and quantiza-
tion, especially when more aggressive compression schemes
(e.g., Structured pruning and low bit-width quantization) are
used. In this work, taking FPGA as the test computing plat-
form and Processing Elements (PE) as the basic parallel com-
puting unit, we first propose a PE-wise structured pruning
scheme, which introduces weight sparsification with consid-
ering of the architecture of PE. In addition, we integrate it
with an optimized weight ternarization approach which quan-
tizes weights into ternary values ({−1, 0,+1}), thus con-
verting the dominant convolution operations in DNN from
multiplication-and-accumulation (MAC) to addition-only, as
well as compressing the original model (from 32-bit float-
ing point to 2-bit ternary representation) by at least 16 times.
Then, we investigate and solve the coexistence issue be-
tween PE-wise Structured pruning and ternarization, through
proposing a Weight Penalty Clipping (WPC) technique with
self-adapting threshold. Our experiment shows that the fusion
of our proposed techniques can achieve the best state-of-the-
art ∼ 21× PE-wise structured compression rate with merely
1.74%/0.94% (top-1/top-5) accuracy degradation of ResNet-
18 on ImageNet dataset.

Introduction

In the last couple of years, the climate of Artificial In-
telligence, especially deep learning, has swept various do-
mains owing to its prominent performance over traditional
methods (LeCun and others 2015). Nowadays, Deep Neu-
ral Networks (DNNs) grow into more complex structures
consisting of deeper layers, larger model size, and denser
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Table 1: Comparison of DNN compression techniques.
Comp. and Acc. are abbreviation of Compression and Ac-
curacy. Specific values are reported in Table 6.

Structured
sparsity

Quantized
weight

Comp.
rate

Acc.
drop

Group-Lasso pruning � � Low Low
Weight ternarization � � Moderate Low
Naive combination � � Moderate Moderate

This work � � High Low

connections. However, from the perspectives of hardware
acceleration, DNNs still suffer from the obstacle of light-
weight hardware deployment owing to the massive cost
in both computation and storage. For instance, VGG-16
(Sung, Shin, and Hwang 2015) from ImageNet (ILSVRC
2014) requires 552MB parameters and 30.8 GFLOP per im-
age, which is difficult to deploy in resource-limited mobile
systems. Many recent works have been proposed to com-
press large DNNs, mainly including network quantization
(Hubara et al. 2017), low-rank approximation (Denton and
others 2014), weight pruning (Han et al. 2015) and knowl-
edge distillation (Hinton and others 2015).

Weight pruning reduces model size via making partial
weights as zero-value. Previous studies of weight pruning
can be generally put into two categories: non-structured
pruning (Han et al. 2015; Han, Mao, and Dally 2015) and
structured pruning (Lebedev and Lempitsky 2016; Liu et al.
2015; Wen et al. 2016). The main difference between these
two counterparts is the regularity of sparse weight pattern af-
ter pruning. The non-structured pruning attempts to generate
highly irregular sparse weight pattern, targeting to achieve
highest sparsity, which makes it extremely difficult to en-
code sparse weight efficiently due to the sparse indexing.
Even though the non-structured pruning normally shows less
compression accuracy degradation owing to its relatively
higher pruning flexibility, its performance improvement on
hardware deployment is not quite tempting. In contrast to
that, the structured pruning introduces weight sparsification
in a regular fashion (e.g., kernel-wise/channel-wise (Wen et
al. 2016)), which makes it more hardware friendly for hard-
ware deployment.
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In addition, weights quantization is to quantize the
weights of DNN into multiple discrete levels, where those
quantized levels can be represented by the bit-width limited
binary string. Different from weight pruning which requires
crafting hardware for efficient DNN inference, quantization
of weight is more straight-forward and easy to implement.
In this work, we adopt the ternary value ({−1, 0,+1}) as
the quantization scheme, to simplify the convolution compu-
tation complexity from MAC operations to add/sub-only
and reduce the model size. In order to enjoy the benefits of
both pruning and quantization, there are related works (Han,
Mao, and Dally 2015) have shown the combination of them
can achieve negligible accuracy degradation, but with mod-
erate compression rate (e.g., 8-bit quantization bit-width) on
highly redundant DNN architectures (e.g., AlexNet). Thus,
those previous works fail to provide detailed insight for more
aggressive compression method on the state-of-the-art DNN
architectures.

In order to achieve a ternarized DNN with structured
sparse weight pattern, the straightforward method is to com-
bine the pruning and ternary quantization. However, when
using the popular Group Lasso based pruning method, we
found that a naive combination causes non-negligible accu-
racy loss. From weight pruning side, the group lasso regula-
tion iteratively shrinks the weight distribution, meaning de-
crease of mean and variance of weights during training (Wen
et al. 2016). However, weight ternarization prefers to loose
the weight distribution (He 2019). This mismatch between
weight ternarization and pruning makes network training
difficult to reach optimum.

In this work, our objective is to effectively integrate the
structured weight pruning and ternarization to boost the per-
formance of DNN inference on hardware platform, with
ultra-small accuracy degradation. Since we expect the im-
provement is maximized and valid both theoretically and ap-
plicable on practical hardware implementation, we conduct
the hardware/software co-design to address various techni-
cal issues. For clarification, we summarize our main contri-
butions in a Problem&Solution format as follows:

• Problem 1: The structured pruning is decoupled from
the hardware architecture of DNN accelerator. Most
of the previous works perform the structured pruning in
the kernel-wise/channel-wise fashion (Wen et al. 2016).
In our work, in order to maximize the efficiency on
hardware-based DNN accelerator, we propose the pro-
cessing element-wise (PE-wise) structured pruning (i.e.,
length of a group of weights to be pruned is identical
to the capacity of PE), which is the computation core in
hardware platform (i.e. FPGA, ASIC). Thus, some PEs
can be easily skipped without internal modification.

• Problem 2: There is disharmony between structured
pruning and ternarization on weights of DNN, where
the naive combination shows severe accuracy degra-
dation. For structured pruning, we adopt PE-wise group-
Lasso as the weight penalty in the loss function, which
tends to make entire group of weights approach to
zero. For weight ternarization, the quantizer will make
the close-to-zero weights tend to zero, while push-

Figure 1: Stitched ternarized kernel (each kernel is in 3× 3)
of the first layer of ResNet-20 (He et al. 2016) on CIFAR-10,
with (left) non-structured and (right) structured pruning. Pat-
terns in {white,grey,black} denotes {-1,0,+1} respectively.

ing the other weights close to positive/negative one (-
1/+1) against zero. Such opposite weight evolution trend
leads to a convergence dilemma. As the countermea-
sure, we propose the Self-Adjustable Weight Penalty
Clipping (SA-WPC) which dynamically suspends penalty
for weights with large absolute values. Therefore, we
achieve a harmonious coexistence of structured pruning
and ternarization, achieving best state-of-the-art perfor-
mance. Moreover, we evaluate the performance of our
proposed algorithm on both software and hardware.

Background and Related Works

Pruning

Pruning is one of the most well-known neural network com-
pression techniques, which enforces partial of weights be
zero for both model size reduction and computation sim-
plification (Han et al. 2015). According to the shape of
weight sparsity pattern, the existing pruning technique can
be generally categorized into two branches: non-structured
(Han et al. 2015; Han, Mao, and Dally 2015; Srinivas
and Babu 2015; Molchanov, Ashukha, and Vetrov 2017;
Louizos, Welling, and Kingma 2017) and structured (Li et
al. 2016; Liu et al. 2017; Lebedev and Lempitsky 2016;
Wen et al. 2016; Alvarez and Salzmann 2016; He, Zhang,
and Sun 2017). As the example shown in Fig. 1, structured
pruning method leads to sparsity patterns (color in grey)
with highly regular shapes. The division of aforementioned
pruning methods are mainly hardware-oriented, where the
DNN inference hardware (e.g., GPU/FPGA accelerators)
can barely benefit from the random sparse pattern ( Fig. 1
left) of structured pruned DNN. On the contrary, the struc-
ture pruning is a more feasible solution for hardware in-
ference acceleration, through leveraging the regular sparsity
pattern (Fig. 1 right).

Non-structured pruning. The study of non-structured
pruning is originated from optimal brain damage/surgeon
(LeCun, Denker, and Solla 1990; Hassibi and Stork 1993),
which further explored by Han et al. in (Han et al. 2015;
Han, Mao, and Dally 2015) on DNN. A simple pruning
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Figure 2: Sample weight distribution of ResNet-20 (He et al. 2016) layer under different training configurations, with mean
(μ) and standard deviation (σ). Baseline: Full-precision model without compression; Group-Lasso prune: structured weight
pruning utilizing group Lasso technique (Wen et al. 2016); Weight tern.: weight ternarization with method introduced in (He
2019); Naive combine: Naively combining the aforementioned pruning and ternarization; This work: Combining pruning and
ternarization with proposed weight penalty clipping technique.

strategy is adopted in (Han et al. 2015; Han, Mao, and
Dally 2015), which iteratively removes weights (i.e., con-
vert weight to zero) with their magnitude below a pre-set
threshold and fine-tune the weights for accuracy recovery. In
(Srinivas and Babu 2015), Srinivas et al. propose a data-free
pruning algorithm to remove redundant neurons iteratively
by wiring similar neurons together. The variational dropout
technique is utilized in (Molchanov, Ashukha, and Vetrov
2017) redundant weights pruning. In (Louizos, Welling, and
Kingma 2017), DNN learns its sparse weights through the
L0-norm regularization based on stochastic gate.

Structured Pruning As the structured counterpart, vari-
ous sparsity pattern in shape of channel/kernel/customized-
group are explored in different works (Li et al. 2016; Liu
et al. 2017; Lebedev and Lempitsky 2016; Wen et al. 2016;
Alvarez and Salzmann 2016; He, Zhang, and Sun 2017). In
(Li et al. 2016), the unimportant filters are directly pruned
based on its L1-norm. Liu et al. (Liu et al. 2017) intro-
duce L1 regularization on the scaling coefficient of batch
normalization layers as a penalty term, where the channels
with small scaling coefficient will be removed. In contrast
to the aforementioned two works, all the structured pruning
methods in (Lebedev and Lempitsky 2016; Wen et al. 2016;
Alvarez and Salzmann 2016; He, Zhang, and Sun 2017)
share the identical core technique: group Lasso.

Group Lasso is initially introduced in (Yuan and Lin
2006), then Wen et al. (Wen et al. 2016) append it as addi-
tional term in the loss function when training the DNN with
back-propagation for learning the structured sparse weight
pattern. The loss function can be formalized as:

L̂ = L(f(x; {Wl}Ll=1), t) + λ

L∑
l=1

Gl∑
i=1

Intra-group L2-norm︷ ︸︸ ︷
P(Wl,i)

︸ ︷︷ ︸
Inter-group L1-norm

(1)

where f(x; {Wl}Ll=1) computes the outputs of DNN param-
eterized by {Wl}Ll=1 w.r.t the input x. L(·, ·) is the objec-
tive function of DNN (e.g., cross-entropy loss in this work).
P(Wl,i) = ||Wl,i||2 calculates the Euclidean norm of the
indexed weight group Wl,i. The second term in the R.H.S
of Eq. (1) is the L1-norm of {P(Wl,i)} (aka. group Lasso

(Yuan and Lin 2006)), which acts as the group-wise weight
penalty for improving the group-wise sparsity during the op-
timization. Gl is the number of groups in l-th layer, and λ is
the hyper-parameter to be tuned based on the dataset.

Weight Quantization

Besides pruning, weight quantization is another popular
model compression technique. The main idea of weight
quantization is to reduce the bit-width of weight representa-
tion format (e.g., 32-bit floating-point to 8-bit integer (Han,
Mao, and Dally 2015)). A significant amount of research ef-
forts (Leng et al. 2018; He 2019) have been invested on this
topic to achieve similar goal: compressing DNN to lower
bit-width (i.e., higher compression rate) while minimizing
the accuracy degradation in comparison to its full-precision
baseline.

In this work, we follow the weight ternarization method
introduced in (He 2019) as low bit-width quantization base-
line, which is briefly introduced as follow. Given the weights
Wl in l-th layer of DNN, the weight ternarization function
can be expressed as:

ŵl,i = Tern(wl,i,Δl) = αl ·
⎧⎨
⎩
+1 wl,i > Δl

0 −Δl ≤ wl,i ≤ Δl

−1 wl,i < −Δl

(2)

αl = E(|{wl,i}|), ∀{i∣∣|Wl,i| > Δl} (3)

where ŵl,i is the i-th ternarized weight element in l-th
layer. αl is the layer-wise scaling coefficient (i.e., quantized
value). The threshold Δl = 0.05·max(|Wl|). As other quan-
tization work, the Straight-Through Estimator (STE) (Ben-
gio, Léonard, and Courville 2013) method is used as the
countermeasure against non-differential issue of staircase
quantization function (Eq. (2)). Thus, with the given vec-
torized input x and target t, the optimization of ternarized
DNN can be written as

min
{Wl}L

l=1

L(f(x; {Ŵl}Ll=1), t)

s.t. {Ŵ }Ll=1 = Tern({W }Ll=1)

(4)

where this equation uses the identical notations as in Eq. (1).
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Figure 3: The overview of weight penalty clipping with self-
adapting threshold.

Methodology

Problem formalization

As described in the related work section, both group-lasso
based structured pruning and weight ternarization show
great performance in compressing the model while main-
taining the inference accuracy w.r.t the full-precision base-
line. For maximizing the model compression rate and enjoy-
ing the benefits from both methods, we first naively combine
them together, where the DNN training process can be de-
scribed as minimizing the following loss function:

L̂ = L(f(x;Tern{Wl}Ll=1), t) + λ

L∑
l=1

Gl∑
i=1

P(Wl,i) (5)

Nevertheless, such naive combination leads to severe accu-
racy degradation without significantly improving the com-
pression rate.

In order to identify the problem, we examine the weight
distribution of different training configurations, where the
corresponding histograms are depicted in Fig. 2. The results
show that the group Lasso based structure pruning still acts
like a normal regularization term which forces the entire
weights toward smaller values (i.e., small standard devia-
tion σ with zero mean μ), in comparison to the full-precision
baseline. On the contrary, weight ternarization makes negli-
gible change on σ w.r.t the baseline. We also observe that,
naively combining the structured pruning and ternarization
method leads the σ converge to some value between Group-
Lasso and weight ternarization counterparts. Such observa-
tion inspires us about the potential cause of accuracy degra-
dation when naively combining two methods:

• Is that applying the group Lasso (i.e., weight penalty)
upon entire weights contradictory to the weight ternariza-
tion method?

• Whether maintaining the weight distribution close to the
original ternary counterpart helpful to mitigate the accu-
racy degradation?

Based on those inspirations, we propose a Weight Penalty
Clipping (WPC) technique with self-adapting threshold as
the countermeasure to address the coexistence issue be-
tween group Lasso based structure pruning and ternariza-
tion, which is specified in the following subsection.

Filter pruning Channel pruning PE-wise pruning

Reshape

Compute Engine
PE

PE

PE

PE

PE

Figure 4: PE-wise pruning

Weight Penalty Clipping with self-adapting
threshold

To address above discussed issue, further adjustment is made
on the intra-group L2-norm term in Eq. (1), thus the Eq. (5)
can be rewritten as:

L̂ = L(f(x;Tern{Wl}Ll=1), t)

+ λ
L∑

l=1

Gl∑
i=1

min
(||Wl,i||2; δl

)
︸ ︷︷ ︸
Weight Penalty Clipping

(6)

δl = a · 1

Gl

Gl∑
i=1

||Wl,i||2 (7)

where δl denotes the layer-wise self-adapting clipping
threshold, which is utilized to mitigate the intra-group L2-
norm penalty on large weights, and a is scaling coefficient.
Note that, once the intra-group L2-norm penalty of Wl,i is
clipped, the inter-group L1-norm penalty is clipped as well.
We name such method as the weight penalty clipping. Fig. 3
shows the processing of WPC. In each training iteration,
the updated weights are used to the loss function as shown
in Eq. (7). Then after intra-group L2-norm calculation, by
comparing with a threshold δl, WPC will decide whether the
corresponding ||Wl,i||2 will be used on loss function and go
backward. Considering two cases:

• When ||Wl,i||2 ≥ δl, it indicates that weights in Wl,i are
relatively large (i.e., important) which are not supposed to
be pruned by the group-Lasso term in 6. Then, the weight
penalty clipping is performed which replaces the weight
penalty of ||Wl,i||2 in L̂ with δl. Hereby, we have to high-
light that δl is treated as a constant, where its calculation
is removed from the backward computation graph.

• When ||Wl,i||2 < δl, we keep the weight penalty of
||Wl,i||2 in its original value, thus the group Lasso term
can continuously affect Wl,i and prune the weights in
group-wise fashion.

Our simulation in the later sections will show that the pro-
posed WPC with self-adapting threshold is helpful to miti-
gate the disharmony between structured pruning (i.e., group
Lasso) and weight ternarization.

PE-wise structured pruning

The performance (e.g., accuracy) of DNN pruned by
group Lasso based method highly relies on the defined

6626



group shape, where various group shape (e.g., chan-
nel/filter/depth/etc.) has been explored in (Wen et al. 2016).
Normally, using large group capacity (i.e., number of
weights per group) leads to either low group sparsity or low
inference accuracy. Meanwhile, using small group capacity
will be beneficial to both group sparsity and accuracy, how-
ever the pruned DNN may hardly be accelerated by targeted
hardware. For balancing the DNN performance after struc-
tured pruning and inference efficiency on targeted hardware,
we propose to make the group shape identical to the Process-
ing Element (PE) of target hardware. PE is defined as the
basic computing unit in modern DNN accelerator (FPGA,
ASIC or GPU). Through proper hardware design, DNN ac-
celerator can efficiently utilize the PE-wise sparsity pattern,
and further speed up is observed by our later experiments.

Due to the limited hardware resource, fully paralleled
computation can hardly be achieved. For PE-wise struc-
tured pruning, we define the group size equals to the capac-
ity of one PE. In a standard convolution layer, weights are
stored in a 4-D tensor W ∈ R

N×C×Kh×Kw , where N , C,
Kh, Kw denotes the output channel, input channel, kernel
height and width in current layer, respectively. As shown in
Fig. 4, the size of the PE-wise pruning is between the filter
(C ×Kh ×Kw) pruning and channel (N ) pruning. In addi-
tion, in the terms of hardware deployment, the high dimen-
sional convolution operation is often reduced to matrix mul-
tiplication, which reshapes the 4D weight tensor to 2D ma-
trix with the size of (N,C×Kh×Kw). Thus, defining struc-
tured sparsity groups in channel-wise (C) and shape-wise
(Kh ×Kw) does not match well with the practical hardware
implementation. We choose the capacity of PE as the group
to perform group-wise pruning, with size of Cg ×Kh ×Kw.
Cg can be divided by C. In this case, one PE could do com-
putation between one group of weight and corresponding
partial feature maps vector with size of Cg ×H ×W .

Experiment and Discussion

Experiment setup

Dataset and network structure In this work, we take the
classic image classification task as example to examine the
performance of our proposed technique. Two dataset are
used in this work, which are CIFAR-10 (Krizhevsky and
Hinton 2009) and ImageNet (Deng et al. 2009). CIFAR-10
contains 50K training samples and 10K test samples with
32 × 32 image size. For CIFAR-10, we adopt the ResNet-
20/32/44/56 (He et al. 2016). We train the network using
momentum SGD optimizer, where the initial learning rate
is 0.1, which scaled by 0.1 at epoch 80 and 120 respec-
tively. The data argumentation is identical as the configu-
ration adopted in (He et al. 2016).

In addition, ImageNet contains 1.2 million training im-
ages and 50 thousands validation images, which are labeled
with 1000 categories. For the data pre-processing, we choose
the scheme adopted by ResNet (He et al. 2016). We adopt
the ResNet-18 and AlexNet. We train the network using
Adam optimizer, where the initial learning rate is 0.0001,
which scaled by 0.2 at epoch 30, 40, 45 respectively. Similar
with other quantization works, such as (Lin, Zhao, and Pan

Table 2: Inference accuracy (%) of ResNets on CIFAR-10

ResNet-20 ResNet-32 ResNet-44 ResNet-56

FP 91.7 92.36 92.47 92.68
Ours 90.89 91.62 91.76 92.05
Gap -0.81 -0.74 -0.71 -0.63

2017; He 2019; Rastegari and others 2016), we keep the first
and last layer in full precision(i.e. 32-bit float).

Experiment platform Our algorithm is conducted on the
Pytorch deep learning platform with 4-way NVIDIA Ti-
tan XP GPUs. Moreover, in order to examine the perfor-
mance of PE-wise structured pruning, we properly design
a FPGA-based DNN accelerator. The FPGA platform is
Xilinx PYNQ-Z1 board supported by PYNQ open-source
framework. It uses a Xilinx Zynq-7000 SoC containing an
XC7Z020 FPGA alongside an ARM Cortex-A9 embedded
processor.

Compression rate definition To fully utilize structured
pruning in hardware perspective, we could use a binary in-
dexer to index which PE group are all zeros values. By do-
ing this, we just need to store the particular weight groups
that have non-zeros values in memory. Also, the size of
the binary indexer is negligible comparing with the size of
weights. Thus, we formulate the compression rate of weight
C as:

C =
32

(1−Gs) · n (8)

where Gs means the group sparsity which is the fraction of
number of groups with all zero values over layers and n is
the bit-width of model which should be 2 in here since we
encode weights in binary format. 32 represents the bit-width
of the full precision. It is worthy noting that for calculating
the compression rate, we only consider group sparsity, since
this matrix that we can real implementation in the hardware.
In addition, all the compression rate of our method shown
below are defined by the Eq. (8).

Results

CIFAR-10 Experiment The proposed method is tested
on ResNet-20/32/44/56. The size of PE group is set to be
16 × 3 × 3 for all layers of all kinds of networks. From
the result of inference accuracy which are listed in Table 2,
it can be seen that all these four kinds of ResNet models
achieves less than 1% accuracy loss comparing with floating
point baseline. Also, it shows that a more compact neural
network, like ResNet-20, is more likely to encounter accu-
racy loss, owing to the network capacity is hampered by this
aggressive model compression.

ImageNet Experiment Our proposed method is evaluated
on ResNet18 and AlexNet. The size of PE group is setted to
be 64× 3× 3 for all convolutional layers.
AlexNet. To better show the effectiveness of our method,
besides comparing with non-structured ternarization method
as mentioned above, we also compare with related structured
pruning work (Wen et al. 2016). However, the enhancement
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Table 3: Simulation result of structured pruning for AlexNet (Krizhevsky, Sutskever, and Hinton 2012) on ImageNet dataset. FP.
indicates full-precision (32-bit floating-point) and Tern. indicates ternary weights. Note that, Acc. and Comp. are abbreviation
of accuracy and compression.

Method Weight
format

Top-1 Acc.
gap (%)

Sparsity
metrics

Layer index Comp. rate

Conv1 Conv2 Conv3 Conv4 Conv5 Conv2-5

SSL
(Wen et al. 2016)

Floating-
point

(32-bit)
2.06

Column (%) 0.0 63.2 76.9 84.7 80.7 -
∼ 6.4×Row (%) 9.4 12.9 40.6 46.9 0.36

Layer (%) 9.4 68.8 86.3 91.9 80.8 84.4

This
work

Ternary
(2-bit) 3.23

Group (%) 24.3 36.5 47.3 45.0 24.2 35.46
In-group (%) 13.2 59.5 48.6 41.7 36.1 ∼ 24.7×Layer (%) 34.3 80.2 72.9 67.9 51.6 68.2

Table 4: Inference accuracy (%) of ResNet18 on ImageNet

Quan First Last Accuracy Comp.
scheme layer layer (top1/top/5) rate

Baseline - FP FP 69.75/89.07 1×
BWN Bin. FP FP 60.8/83.0 ∼ 32×

ABC-Net Bin. FP FP 68.3/87.9 ∼ 6.4×
ADMM Bin. FP FP 64.8/86.2 ∼ 32×
TWN Tern. FP FP 61.8/84.2 ∼ 16×
TTN Tern. FP FP 66.6/87.2 ∼ 16×

ADMM Tern. FP FP 67.0/87.5 ∼ 16×
(He 2019) Tern. FP FP 67.95/88.0 ∼ 16×

Ours Tern. FP FP 68.01/88.13 ∼ 21.3×

of accuracy of vanilla AlexNet causes these two works have
different baselines (i.e., 61.78%, 57.4%). Thus, to conduct a
relatively fair comparison, we indicate the accuracy loss as
listed in Table 3. Since 4D weight tensor is reduced to ma-
trix in real hardware implementation, column sparsity and
row sparsity here represent filter-wise (C × Kh × Kw) and
shape-wise(Kh×Kw) sparsity respectively. Layer sparsity is
the overall sparsity which combines column and row in cur-
rent layer. Different from SSL (Wen et al. 2016), we define
the PE-wise(Cg × Kh × Kw) sparsity based on computa-
tion capacity of PE which is a straightforward concept that
means the sparsity rate in a single group. As the simulation
results listed in Table 3, we have relative 1.17% accuracy
degradation and 16.2% sparsity reduction in comparison to
SSL (Wen et al. 2016), but with a much higher compression
rate.

ResNet we compare our work with existing non-structured
weight quantization(i.e. binarization and ternarization)
works. The inference accuracy results are listed in Table 4.
Comparing with ABC-Net which uses multiple binariza-
tion approximation techniques, we could achieve almost the
same accuracy with much higher compression rate. In addi-
tion, comparing with (He 2019) which uses the same non-
structured ternarization method with our work, we achieve
1.35× compression rate with even a little accuracy enhance-
ment.

Table 5: Ablation study on CIFAR-10

Tern Pruning Naive combine Ours
ResNet-20 91.62 91.1 90.01 90.89

Overall sparsity 49 61 70 50
Group sparsity - 44 18 25

Comp. rate ∼ 16× ∼ 1.78 ∼ 19.5× ∼ 19.5
ResNet-32 92.48 91.88 90.68 91.64

Overall sparsity 48 40 74 58
Group sparsity - 34 28 43

Comp. rate ∼ 16× ∼ 1.5 ∼ 22.2× ∼ 28.1
ResNet-44 92.71 92.29 91.15 91.98

Overall sparsity 55 58 80 64
Group sparsity - 46 21 44

Comp. rate ∼ 16× ∼ 1.85 ∼ 20.2× ∼ 28.6
ResNet-56 93.1 92.86 92.01 92.85

Overall sparsity 52 67 82 67
Group sparsity - 28 42 55

Comp. rate ∼ 16× ∼ 1.39 ∼ 27.6× ∼ 35.6

Ablation study and discussion

As proposed method is a combination of these two different
compression techniques, to better evaluate the effectiveness,
we do comparison with three different cases: weight ternar-
ization, Group-Lasso pruning and directly combining these
two techniques (naive combine) on both Cifar-10 and Ima-
geNet dataset respectively. The results are shown in Table 5
and Table 6. Overall sparsity means the ratio of the individ-
ual zero values within the whole weight tensors. Differently,
group sparsity represents the ratio of the number of PE-wise
groups that are all zeros. We observe that when comparing
with naive combine, our method achieves smaller overall
sparsity, but larger useful group sparsity. This result demon-
strates the effectiveness of the proposed method. By using
weight penalty clipping with self-adapting threshold, only
part of the weight groups which has smaller norm values
will be regularized and rest of the weight groups keeps un-
changed. focuses on the prune of unimportant weight groups
and keeps rest of the weight groups unchanged.

Evolution of clipping threshold In this work, the value
of clipping threshold and sparsity are two important fac-
tors which both are dynamic during the whole training pro-
cessing. Fig. 5 shows the dynamics of sparsity and clipping
threshold during training. It can be seen that the sparsity in-
creases greatly at the first 80 epochs and then becomes cov-
eraged. Meanwhile, the dynamic of clipping threshold has
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Figure 5: Evolution of clipping threshold and sparasity

Table 6: Ablation study of ResNet-18 (He et al. 2016) on
ImageNet.

Acc Overall sparsity Group sparsity Comp. rate

FP 69.75 - - 1.0
Pruning 68.0 43 38 ∼ 1.6×

Tern 67.95 60 - ∼ 16×
Naive combine 65.12 75 18 ∼ 19.5×

Ours 68.01 70 25 ∼ 21.3×

the similar pattern, the only difference is its value becomes
smaller. It is because that the initial learning rate is large,
which makes the Group Lasso regularizer have a strong ef-
fect on the weights. Moreover, we observe that later layers
have larger sparsity than front layers.

PE capacity vs. structured sparsity ratio To evaluate the
effectiveness of PE-group size, we select 5 different PE sizes
on ResNet-20 (eg., PE-8 means the PE-size is 8×Kh×Kw),
which are trained with the same hyper-parameter setting. As
shown in Table 7, it can be seen that smaller PE-size is easier
to be regularized which leads to larger sparsity and more
accuracy loss under the same hyper-parameter setting.

Table 7: PE capacity versus structured sparsity ratio of
ResNet-20 trained on CIFAR-10 dataset.

PE-16 PE-8 PE-4 PE-2 PE-1
Accuracy (%) 90.89 90.56 90.29 89.93 89.66

Overall sparsity (%) 50 70.75 78.65 81.97 84.95
Group sparsity (%) 25 35.6 42.8 50.07 63.18

Relation to the norm based criterion (He et al. 2019)
mentioned there are two requirements should be met for
pruning: (1) the norm deviation of the filters should be large;
(2) the minimum norm of the filters should be small. As
shown in Fig.6, comparing with naive combine, norm dis-
tribution of our method has larger norm deviation, which
means the norm distribution becomes suitable for pruning
gradually during training. Obviously, it’s easier to separate
the important and unimportant weight groups according the

Figure 6: Norm based criterion on ResNet20 for CIFAR-
10 dataset. (Top) is the conv8 layer and (Bottom) is conv15
layer.

absolute value of the norm for our method.

FPGA implementation

To evaluate the performance of our proposed method in
the real-word inference hardware accelerator, we deploy
three representative convolutional layers of ResNet20 into
a FPGA board. We compare our method with weight-
ternarization-only method which also replaces MAC to
add/sub operations, but without PE-wise pruning. To fairly
compare, the bit-width of feature map is 16-bit fixed point
number for both methods. The detailed setup and speedup is
shown in Table 8. It is obvious that great speed-up is mea-
sured in real FPGA hardware implementation with our pro-
posed PE-wise structured ternary network compared with
non-structured ternary network.
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Table 8: Convolutional layer implementation setup and
speed up on FPGA

Layer Weight PE Non-sparsity Speedup
size size groups

Stage 1 (16, 16, 3, 3) 16× 3× 3 9 1.56×
Stage 2 (32, 32, 3, 3) 16× 3× 3 33 1.69×
Stage 3 (64, 64, 3, 3) 16× 3× 3 119 1.73×

Conclusions

In this paper, we aim to integrate the Group Lasso based
pruning and ternarization to maximum the efficiency of
DNN hardware deployment. We firstly define the PE-wise
sparsity, then based on the observation of the disharmony
between these two methods, a new method is proposed,
named weight penalty clipping with adjustable threshold to
solve this problem. Moreover, comparing with related works
in weight pruning and ternarization, we could achieve best
state-of-the-art accuracy with a much higher compression
rate.
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