
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

ML-LOO: Detecting Adversarial Examples with Feature Attribution

Puyudi Yang,1 Jianbo Chen,2 Cho-Jui Hsieh,3 Jane-Ling Wang,1 Michael I. Jordan2

1University of California, Davis
2University of California, Berkeley

3University of California, Los Angeles

Abstract

Deep neural networks obtain state-of-the-art performance on
a series of tasks. However, they are easily fooled by adding a
small adversarial perturbation to the input. The perturbation
is often imperceptible to humans on image data. We observe
a significant difference in feature attributions between adver-
sarially crafted examples and original examples. Based on
this observation, we introduce a new framework to detect ad-
versarial examples through thresholding a scale estimate of
feature attribution scores. Furthermore, we extend our method
to include multi-layer feature attributions in order to tackle
attacks that have mixed confidence levels. As demonstrated in
extensive experiments, our method achieves superior perfor-
mances in distinguishing adversarial examples from popular
attack methods on a variety of real data sets compared to state-
of-the-art detection methods. In particular, our method is able
to detect adversarial examples of mixed confidence levels, and
transfer between different attacking methods. We also show
that our method achieves competitive performance even when
the attacker has complete access to the detector.

Introduction

Deep neural networks have achieved state-of-the-art per-
formance on a variety of tasks, including image classifi-
cation, object detection, speech recognition and machine
translation. However, they have been shown to be vulner-
able to adversarial examples. This incurs a security risk
when DNNs are applied to sensitive areas such as finance,
medicine, criminal justice and transportation. Adversarial
examples are inputs to machine learning models that an at-
tacker constructs intentionally to fool the model (Goodfellow
et al. 2017). Szegedy et al. observed that a visually indis-
tinguishable perturbation in pixel space to the original im-
age can alter the prediction of a neural network. Later, a
series of papers (Goodfellow, Shlens, and Szegedy 2015;
Kurakin, Goodfellow, and Bengio 2017; Moosavi-Dezfooli,
Fawzi, and Frossard 2016; Carlini and Wagner 2017b;
Madry et al. 2018; Chen et al. 2017; Ilyas et al. 2018;
Brendel, Rauber, and Bethge 2018) designed more sophis-
ticated methods for the worst-case perturbation within a re-
stricted set, often a small Lp ball with p = 0, 2,∞.
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While a line of work tries to explain why adversarial
examples exist (Goodfellow, Shlens, and Szegedy 2015;
Tanay and Griffin 2016; Fawzi, Fawzi, and Frossard 2018),
a comprehensive analysis of underlying reasons has not yet
been attained, largely because deep neural networks have
complex functional forms such that mathematical character-
izations are difficult to obtain. On the other hand, there has
been a growing interest in developing tools for tackling the
black-box nature of neural networks, among which feature at-
tribution is a widely studied approach (Shrikumar, Greenside,
and Kundaje 2017; Bach et al. 2015; Simonyan, Vedaldi,
and Zisserman 2013; Ribeiro, Singh, and Guestrin 2016;
Li, Monroe, and Jurafsky 2016; Lundberg and Lee 2017;
Datta, Sen, and Zick 2016; Chen et al. 2019). Given a pre-
dictive model, such a method outputs, for each instance to
which the model is applied, a vector of importance scores
associated with the underlying features. Feature attribution
has been used to improve transparency and fairness of ma-
chine learning models (Ribeiro, Singh, and Guestrin 2016;
Datta, Sen, and Zick 2016).

In this paper, we investigate the application of feature at-
tribution to detecting adversarial examples. In particular, we
observe that the feature attribution map of an adversarial
example near the boundary always differs from that of the
corresponding original example. A motivating example is
shown in Figure 1, which demonstrates images in CIFAR-10
to be fed into a residual neural network and the corresponding
feature attribution from Leave-One-Out (LOO) (Li, Monroe,
and Jurafsky 2016). The latter interprets decisions from a neu-
ral model by observing the effects on the model of erasing
each pixel of input before and after the worst-case perturba-
tion by a C&W attack. While the perturbation on the original
image is visually imperceptible, the feature attribution is al-
tered drastically. We further observe that the difference can
be summarized by simple statistics that characterize feature
disagreement, which are capable of distinguishing adversar-
ial examples from natural images. We conjecture that this is
because adversarial attacks tend to perturb samples into an
unstable region on the decision surface.

The above observation led to an effective method for de-
tecting adversarial examples near the decision boundary. On
the other hand, there also exist adversarial examples in which
the model has high confidence (Carlini and Wagner 2017b).
Previous work has observed that several state-of-the-art de-
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tection methods are vulnerable to such attacks (Lu, Chen, and
Yu 2018; Athalye, Carlini, and Wagner 2018). However, we
observe an interesting phenomenon: middle layers of neural
networks still contain information on uncertainty even for
high-confidence adversarial examples. Based on this obser-
vation, we generalize our method to incorporate multi-layer
feature attribution, where attribution scores for intermediate
layers are computed without incurring extra model queries.

In numerical experiments, our method achieves supe-
rior performance in detecting adversarial examples gener-
ated from popular attack methods on MNIST, CIFAR-10
and CIFAR-100 among state-of-the-art detection methods.
The proposed method is also capable of detecting mixed-
confidence adversarial examples, transferring between adver-
sarial examples of different confidence levels, and adversarial
examples generated by various types of attacks. We further
show that the proposed method performs competitively un-
der the setting where the attacker has complete access to the
detector.

Related Work

In this section, we review related work in feature attribution,
adversarial attack, adversarial defense and detection.

Feature attribution A variety of methods have been pro-
posed to assign feature attribution scores. For each specific
instance where the model is applied, an attribution method
assigns an importance score for each feature, by approxi-
mating the target model via a linear model locally around
the instance. One popular class of methods assumes the dif-
ferentiability of the model, and propagates the prediction to
features through gradients. Examples include direct use of
gradient (Saliency Map) (Simonyan, Vedaldi, and Zisserman
2013), Layer-wise Relevance Propagation (LWRP) (Bach
et al. 2015) and its improved version DeepLIFT (Shriku-
mar, Greenside, and Kundaje 2017), and Integrated Gradients
(Sundararajan, Taly, and Yan 2017).

Another class is perturbation-based and thus model-
agnostic. Given an instance, multiple perturbed samples
are generated by masking different groups of features with
a pre-specified reference value. The feature attribution of
the instance is computed according to the prediction scores
of a model on these samples. Popular perturbation based
methods include Leave-One-Out (Zeiler and Fergus 2014;
Li, Monroe, and Jurafsky 2016), LIME (Ribeiro, Singh, and
Guestrin 2016) and KernelSHAP (Lundberg and Lee 2017).

It has been observed in Ghorbani, Abid, and Zou that
gradient-based feature attribution maps are sensitive to small
perturbations. Adversarial attack to feature attribution is de-
signed to characterize the fragility. On the contrary, robust-
ness of an attribution method has been observed on a robust
model. In fact, Yeh et al. observed that gradient based expla-
nations of an adversarially trained network are less sensitive,
and Chalasani et al. established theoretical results for the ro-
bustness of attribution map on an adversarially trained logis-
tic regression. These observations indicate that the sensitivity
of a feature attribution might be rooted in the sensitivity of

the model, instead of the attribution method. This motivates
the detection of adversarial examples via attribution methods.

Adversarial attack Adversarial attacks try to alter, with
minimal perturbation, the prediction of an original instance
from a given model, which leads to adversarial examples.
Adversarial examples can be categorized as targeted or un-
targeted, depending on whether the goal is to classify the
perturbed instance into a given target class or an arbitrary
class different from the correct one. Attacks also differ by
the type of distance they use to characterize minimal per-
turbation. �∞, �0, and �2 distances are the most commonly
used distances. Fast Gradient Sign Method (FGSM) by Good-
fellow, Shlens, and Szegedy is an efficient method to min-
imize the �∞ distance. Kurakin, Goodfellow, and Bengio
and Madry et al. proposed �∞-PGD (BIM), an iterative ver-
sion of FGSM, which achieves a higher success rate with a
smaller size of perturbation. DeepFool presented by Moosavi-
Dezfooli, Fawzi, and Frossard minimizes �2 distance through
an iterative linearization procedure. Carlini and Wagner pro-
posed effective algorithms to generate adversarial examples
for each of the three distances. In particular, Carlini and Wag-
ner proposed a loss function that is capable of controlling the
confidence level of adversarial examples. The Jacobian-based
Saliency Map Attack (JSMA) by (Papernot et al. 2016a) is
a greedy method for perturbation with �0 metric. Recently,
several black-box adversarial attacks that solely depend on
probability scores or decisions have been introduced. Chen
et al. and Ilyas et al.; Ilyas, Engstrom, and Madry introduced
score-based methods using zeroth-order gradient estimation
to craft adversarial examples. Brendel, Rauber, and Bethge
introduced Boundary Attack, as a black-box method to min-
imize the �2 distance, that does not need access to gradient
information and relies solely on the model decision. We
demonstrate in our experiments that our method is capable
of detecting adversarial examples generated by these attacks,
regardless of the distance, confidence level, or whether the
gradient information is used.

Adversarial defense and detection To improve the robust-
ness of neural networks, various approaches have been pro-
posed to defend against adversarial attacks, including ad-
versarial training (Goodfellow, Shlens, and Szegedy 2015;
Kurakin, Goodfellow, and Bengio 2017; Madry et al. 2018;
Tramèr et al. 2018; Liu and Hsieh 2019), distributional
smoothing (Miyato et al. 2016), defensive distillation (Pa-
pernot et al. 2016b), generative models (Song et al. 2018),
feature squeezing (Xu, Evans, and Qi 2018), randomized
models (Liu et al. 2018; Lecuyer et al. 2019; Liu et al.
2019), and verifiable defense (Wong and Kolter 2018;
Dvijotham et al. 2018). These defenses often involve modifi-
cations in the training process of a model, which often require
higher computational or sample complexity (Schmidt et al.
2018), and lead to loss of accuracy (Tsipras et al. 2018).

Complimentary to the previous defending techniques, an
alternative line of work focuses on screening out adversarial
examples in the test stage without touching the training of
the original model. Data transformations such as PCA have
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Figure 1: The first row shows the original CIFAR-10 exam-
ples and their corresponding feature attributions. The second
row shows the adversarial examples and their corresponding
feature attributions. The third row plots the histograms of the
original and adversarial feature attributions.

been used to extract features from the input and layers of
neural networks for adversarial detection (Li and Li 2017;
Bhagoji, Sitawarin, and Mittal 2018; Hendrycks and Gim-
pel 2017). Alternative neural networks are used to clas-
sify adversarial and original images (Grosse et al. 2017;
Gong, Wang, and Ku 2017; Metzen et al. 2017). Feinman et al.
proposed to use kernel density estimate (KD) and Bayesian
uncertainty (BU) in hidden layers of the neural network for
detection. Ma et al. observed Local Intrinsic Dimension (LID)
of hidden-layer outputs differ between the original and ad-
versarial examples. Lee et al. obtained the class conditional
Gaussian distributions with respect to lower-level and upper-
level features of the deep neural network under Gaussian dis-
criminant analysis, which result in a confidence score based
on the Mahalanobis distance (MAHA), followed by a logistic
regression model on the confidence scores to detect adversar-
ial examples. Through vast experiments, we show that our
method achieves comparable or superior performance than
these detection methods across various attacks. Furthermore,
we show that our method achieves competitive performance
for attacks with a varied confidence level, a setting where the
other detection methods fail to work (Lu, Chen, and Yu 2018;
Athalye, Carlini, and Wagner 2018).

Most related to our work, Tao et al. proposed to identify
neurons critical for individual attributes to detect adversarial
examples, but their method is restricted to models in face
recognition. Instead, our method is applicable across differ-
ent types of image data. Zhang et al. proposed to identify
adversarial perturbations by training a neural network on the
saliency map of inputs. However, their method depends on ad-
ditional neural networks, which are vulnerable to white-box
attacks when attackers perturb the image to fool the original
model and the new neural network simultaneously. As we
will show in experiments, our method achieves competitive
performance under white-box attacks.

Adversarial detection with feature attribution

We motivate our method by an observation on feature attri-
bution with and without adversarial perturbation. Then we
discuss metrics to quantify the dispersion in attribution. Fi-
nally, we extend our method to the multi-layer version for
detecting adversarial examples with mixed confidence levels.

Figure 2: Histogram of dispersion measures

Feature attribution before and after perturbation

Assume that the model is a function f : Rd → [0, 1]C which
maps an image x of dimension d = h × w × c to a proba-
bility vector f(x) of dimension C, where C is the number
of classes. A feature attribution method φ maps an input
image x ∈ R

d to an attribution vector of the same shape
as the image: φ(x) ∈ R

d, such that the i-th dimension of
φ(x) is the contribution of feature i in the prediction of the
model on the specific image x. We suppress the dependence
of φ on the model f for notational convenience. We focus on
the leave-One-Out (LOO) method (Zeiler and Fergus 2014;
Li, Monroe, and Jurafsky 2016) throughout the paper, which
assigns to each feature the reduction in the probability of the
selected class when the feature in consideration is masked by
some reference value, e.g. 0. Denoting the example with the
i-th feature masked by 0 as x(i), LOO defines φ as

φ(x)i := f(x)c−f(x(i))c, where c = argmax
j∈C

f(x)j . (1)

Adversarial attacks aim to change the prediction of a model
with minimal perturbation of a sample, so that human is not
able to detect the difference between an original image x and
its perturbed version x′. Yet we observed that φ is sensitive
to the small difference between x and x′. Figure 1 shows the
attribution maps φ(x), φ(x′) with the original image x and
its adversarially perturbed counterpart x′ by C&W attack.
Even with human eyes, we can observe an explicit differ-
ence in the attribution maps of the original and adversarial
images. In particular, adversarial images have a larger disper-
sion in its importance scores, as demonstrated in Figure 1. We
comment here that our proposed framework of adversarial
detection via feature attribution is generic to popular feature
attribution methods. As an example, we show the perfor-
mance of Integrated Gradients (Sundararajan, Taly, and Yan
2017) for adversarial detection in the supplementary material
at https://github.com/Jianbo-Lab/ML-LOO. LOO achieves
the best performance among all attribution methods across
different data sets.

Quantify the dispersion in feature attribution maps

Motivated by the apparent differences in the distributions
of importance scores between the original and adversarial
images, as demonstrated in Figure 1, we propose to use mea-
sures of statistical dispersion in feature attribution to detect
adversarial examples. In particular, we tried standard devia-
tion (STD), median absolute deviation (MAD), which is the
median of absolute differences between entries and their me-
dian, and interquartile range (IQR), which is the difference
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Figure 3: ROC curves of detection methods on CIFAR-10 with ResNet

between the 75th percentile and the 25th percentile among
all entries of φ(x) ∈ R

d:

IQR(φ(x)) = Qφ(x)(0.75)−Qφ(x)(0.25),

where Qφ(x)(p) : = min{β :
#{i : φ(x)i < β}

d
≥ p}.

We observe there is a larger dispersion, which we call fea-
ture disagreement, between feature contribution to a model
for an adversarially perturbed image. The difference is univer-
sal across different images. Figure 2 compares the histograms
of these three dispersion measures of feature attributions for
ResNet on natural test images from CIFAR-10 with those on
adversarially perturbed images, where the adversarial pertur-
bation is carried out by C&W Attack. We can see there is a
significant difference in the distributions of STD, MAD and
IQR between natural and adversarial images. A majority of
adversarially perturbed images have a larger dispersion in
feature attribution than an arbitrary natural image, besides the
corresponding original images. We propose to distinguish ad-
versarial images from natural images by thresholding the IQR
of feature attribution maps. In the supplementary material, we
show the ROC curves of adversarial detection using the three
dispersion measures on CIFAR-10 with ResNet across three
different attacks. All the three measures yield competitive
performance. We stick to IQR for the rest of the paper, which
is robust and has a slightly superior performance among the
three.

Extension to multi-layer LOO: detection of attacks
with mixed confidence levels

Carlini and Wagner proposed the following objective to gen-
erate adversarial images with small �2 perturbation.

min
w

‖x′ − x‖2 + αmax{F (x)ytrue − max
j �=ytrue

F (x′)j + c, 0},
(2)

where x′ = 0.5(tanh(w) + 1), F maps an image to logits,
ytrue = argmaxF (x) is the original label, and c is a hyper-
parameter for tuning confidence. Adversarial images with
high confidence can be obtained by assigning a large value
to c. The loss can be modified to generate �∞ constrained
perturbation at different confidence levels as well (Madry et
al. 2018). Recently, Lu, Chen, and Yu and Athalye, Carlini,
and Wagner observed that LID has a poor performance when
faced with adversarial examples at various confidence scales.
In our experiments, a similar phenomenon is observed for
several other state-of-the-art detection methods, including
KD+BU and MAHA, as is shown in Figure 4. This suggests
that characterization of adversarial examples in related work
may only hold true for adversarial examples near the deci-
sion boundary. IQR of feature attribution map, unfortunately,
suffers from the same problem.

To detect adversarial images with mixed confidence levels,
we generalize our method to capture dispersion of feature
attributions beyond the output layer of the model. For an ad-
versarial example within a small neighborhood of its original
example in the pixel space but achieving a high confidence at
the output layer in a different class from the original one, the
feature representation deviates away from that of its original
example gradually along the layers. Thus, we expect neurons
of middle layers contain uncertainty that can be captured by a
feature attribution map. We denote the map from input to an
arbitrary neuron n of an intermediate layer of the model by
fn : Rd → R. The feature attribution of neuron n is defined
as φfn(x) : Rd → R

d, such that the i-th entry quantifies
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Data Model Metric
Attacks

C&W �∞-PGD FGSM
KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO

MNIST CNN

AUC 0.893 1.000 0.957 1.000 0.766 0.902 0.736 1.000 0.744 0.780 0.967 1.000
TPR (FPR@0.01) 0.23 0.99 0.94 0.98 0.09 0.32 0.01 0.99 0.01 0.09 0.54 0.99
TPR (FPR@0.05) 0.46 0.99 0.94 0.98 0.28 0.58 0.12 0.99 0.15 0.23 0.92 0.99
TPR (FPR@0.10) 0.55 0.99 0.94 0.98 0.34 0.72 0.29 0.99 0.24 0.40 0.94 0.99

CIFAR10

ResNet

AUC 0.623 0.990 0.962 0.995 0.834 0.970 0.958 0.999 0.673 0.972 0.770 0.997
TPR (FPR@0.01) 0.01 0.55 0.57 0.86 0.54 0.52 0.41 0.96 0.04 0.29 0.04 0.82
TPR (FPR@0.05) 0.09 0.98 0.95 0.98 0.61 0.85 0.86 0.98 0.20 0.82 0.16 0.99
TPR (FPR@0.10) 0.22 0.99 0.95 0.99 0.62 0.91 0.91 0.98 0.29 0.93 0.38 0.99

DenseNet

AUC 0.679 0.958 0.966 0.977 0.955 0.952 0.768 0.997 0.790 0.706 0.829 1.000
TPR (FPR@0.01) 0.06 0.30 0.48 0.33 0.69 0.51 0.03 0.99 0.17 0.04 0.00 0.99
TPR (FPR@0.05) 0.13 0.79 0.91 0.84 0.74 0.84 0.23 0.99 0.28 0.12 0.29 0.99
TPR (FPR@0.10) 0.22 0.91 0.94 0.98 0.80 0.88 0.31 0.99 0.41 0.23 0.51 0.99

CIFAR100

ResNet

AUC 0.637 0.717 0.945 0.967 0.855 0.984 0.966 0.999 0.773 0.985 0.875 1.000
TPR (FPR@0.01) 0.07 0.00 0.00 0.33 0.59 0.69 0.48 0.94 0.39 0.48 0.12 0.99
TPR (FPR@0.05) 0.16 0.01 0.52 0.70 0.61 0.94 0.82 0.99 0.49 0.89 0.43 0.99
TPR (FPR@0.10) 0.29 0.01 0.80 0.92 0.64 0.96 0.92 0.99 0.56 0.99 0.57 0.99

DenseNet

AUC 0.567 0.727 0.916 0.958 0.549 0.732 0.947 0.971 0.577 0.751 0.951 0.974
TPR (FPR@0.01) 0.02 0.07 0.00 0.07 0.01 0.00 0.00 0.21 0.01 0.01 0.00 0.31
TPR (FPR@0.05) 0.17 0.15 0.61 0.66 0.14 0.01 0.70 0.75 0.17 0.06 0.77 0.81
TPR (FPR@0.10) 0.22 0.26 0.84 0.88 0.20 0.04 0.91 0.96 0.23 0.18 0.93 0.94

Data Model Metric
Attacks

JSMA DeepFool Boundary
KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO

MNIST CNN

AUC 0.886 1.000 0.976 1.000 0.901 1.000 0.869 1.000 0.905 1.000 0.991 1.000
TPR (FPR@0.01) 0.30 1.00 0.87 0.99 0.32 1.00 0.04 1.00 0.32 1.00 0.79 1.00
TPR (FPR@0.05) 0.46 1.00 0.94 1.00 0.43 1.00 0.36 1.00 0.45 1.00 0.98 1.00
TPR (FPR@0.10) 0.51 1.00 0.95 1.00 0.57 1.00 0.59 1.00 0.55 1.00 0.98 1.00

CIFAR10

ResNet

AUC 0.614 0.986 0.941 0.981 0.618 0.990 0.981 0.994 0.676 0.990 0.967 0.997
TPR (FPR@0.01) 0.01 0.49 0.45 0.46 0.01 0.57 0.60 0.89 0.03 0.64 0.60 0.92
TPR (FPR@0.05) 0.10 0.98 0.87 0.82 0.10 0.99 0.96 0.96 0.20 0.99 0.94 0.99
TPR (FPR@0.10) 0.21 0.99 0.90 0.99 0.24 0.99 0.96 0.99 0.38 0.99 0.94 0.99

DenseNet

AUC 0.645 0.937 0.947 0.964 0.646 0.976 0.977 0.976 0.700 0.983 0.981 0.980
TPR (FPR@0.01) 0.04 0.14 0.41 0.12 0.03 0.34 0.51 0.24 0.05 0.58 0.62 0.31
TPR (FPR@0.05) 0.10 0.67 0.68 0.72 0.09 0.90 0.95 0.82 0.12 0.93 0.91 0.89
TPR (FPR@0.10) 0.18 0.86 0.88 0.96 0.17 0.98 0.97 0.98 0.23 0.98 0.96 0.98

CIFAR100

ResNet

AUC 0.600 0.740 0.907 0.964 0.610 0.714 0.953 0.970 0.635 0.732 0.956 0.972
TPR (FPR@0.01) 0.00 0.01 0.00 0.42 0.06 0.00 0.00 0.41 0.07 0.01 0.00 0.49
TPR (FPR@0.05) 0.12 0.14 0.49 0.70 0.14 0.01 0.56 0.74 0.16 0.07 0.61 0.78
TPR (FPR@0.10) 0.27 0.24 0.77 0.91 0.29 0.01 0.87 0.94 0.30 0.15 0.94 0.93

DenseNet

AUC 0.567 0.727 0.916 0.958 0.549 0.732 0.947 0.971 0.577 0.751 0.951 0.974
TPR (FPR@0.01) 0.02 0.07 0.00 0.07 0.01 0.00 0.00 0.21 0.01 0.01 0.00 0.31
TPR (FPR@0.05) 0.17 0.15 0.61 0.66 0.14 0.01 0.70 0.75 0.17 0.06 0.77 0.81
TPR (FPR@0.10) 0.22 0.26 0.84 0.88 0.20 0.04 0.91 0.96 0.23 0.18 0.93 0.94

Table 1: Performance of detection methods on different data sets, models and attack methods.

the contribution of feature i to neuron n. For Leave-One-Out
(LOO), we have

φfn(x)i = fn(x)− fn(x(i)).

To coordinate the scale difference between different neu-
rons, we fit a logistic regression for the dispersion of feature
attribution from different neurons on a hold-out training set
to distinguish adversarial images from original images. The
multi-layer extension of our method is called ’ML-LOO’.

Experiments

We present an experimental evaluation of ML-LOO, and
compare our method with several state-of-the-art detection
methods. Then we consider the setting where attacks have
different confidence levels. We further evaluate the transfer-
ability of various detection methods on an unknown attack.
Finally, we evaluate the performance of our method under the
white-box attacker who knows the existence of our detector.
The code for ML-LOO is available at our Github page.

Known attacks

We compare our method with state-of-the-art detection al-
gorithms including LID (Ma et al. 2018), Mahalanobis
(MAHA) (Lee et al. 2018), and KD+BU (Feinman et al.

2017), on three data sets: MNIST, CIFAR-10 and CIFAR-
100, with the standard train/test split (Chollet and others
2015). We used a convolutional network composed of 32-
filter convolutional layers followed by a hidden dense layer
with 1024 units for MNIST. Each convolutional layer was
followed by a max-pooling layer. For both CIFAR-10 and
CIFAR-100, we trained a 20-layer ResNet (He et al. 2016)
and 121-layer DenseNet (Huang et al. 2017) respectively. For
each data set, we generated 2,000 adversarial examples from
correctly classified test images by each attacking method.
Among them, 1,000 adversarial images with the correspond-
ing 1,000 natural images were used for the training process
of LID, Mahalanobis and our method. Results are reported
for the other 1,000 adversarial images with the corresponding
natural images. We consider the following attacking methods,
grouped by the norms they are optimized for:

• L∞: FGSM (Goodfellow, Shlens, and Szegedy 2015), L∞-
PGD (Kurakin, Goodfellow, and Bengio 2017; Madry et
al. 2018).

• �2: C&W (Carlini and Wagner 2017b), Deep-
Fool (Moosavi-Dezfooli, Fawzi, and Frossard 2016),
Boundary Attack (Brendel, Rauber, and Bethge 2018).

• �0: JSMA (Papernot et al. 2016a).

Let true positive rate (TPR) be the proportion of adversarial
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Data Model Metric
Attacks

C&W MIX C&W LC C&W HC
KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO

CIFAR10 ResNet

AUC 0.620 0.649 0.640 0.840 0.623 0.445 0.641 0.711 0.829 0.816 0.966 0.988
TPR (FPR@0.01) 0.04 0.01 0.03 0.25 0.01 0.00 0.01 0.12 0.52 0.23 0.51 0.87
TPR (FPR@0.05) 0.17 0.06 0.14 0.42 0.09 0.06 0.10 0.21 0.59 0.43 0.90 0.94
TPR (FPR@0.10) 0.28 0.19 0.21 0.59 0.22 0.11 0.16 0.34 0.60 0.62 0.93 0.97

Data Model Metric
Attacks

�∞-PGD-MIX �∞-PGD-LC �∞-PGD-HC
KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO

CIFAR10 ResNet

AUC 0.753 0.812 0.813 0.953 0.606 0.578 0.578 0.767 0.834 0.935 0.962 0.996
TPR (FPR@0.01) 0.20 0.10 0.11 0.60 0.01 0.01 0.01 0.09 0.54 0.26 0.46 0.89
TPR (FPR@0.05) 0.37 0.36 0.45 0.77 0.12 0.07 0.04 0.23 0.61 0.67 0.89 0.98
TPR (FPR@0.10) 0.46 0.41 0.56 0.84 0.25 0.17 0.12 0.33 0.62 0.85 0.91 0.99

Table 2: Top: Performance of detection methods trained with C&W-MIX and tested on C&W-LC, C&W-HC and C&W-
MIX. Bottom: Performance of detection methods trained with �∞-PGD-MIX and tested on �∞-PGD-LC, �∞-PGD-HC and
�∞-PGD-MIX.

Figure 4: The left two figures plot the histogram of confidence levels of C&W-LC, C&W-HC, and C&W-MIX, and the
ROC curves of detection methods under C&W-MIX attack. The right two figures plot the histogram of confidence levels of
�∞-PGD-LC, �∞-PGD-HC, and �∞-PGD-MIX, and the ROC curves of detection methods under �∞-PGD-MIX attack.

images classified as adversarial, and false positive rate (FPR)
be the proportion of natural images classified as adversarial.
We report area under the curve (AUC) of the ROC curve as
the performance evaluation as well as the true positive rates
by thresholding FPR at 0.01,0.05 and 0.1, as it is practical to
keep misclassified natural images at a low proportion.

The results are reported in Table 1, and the ROC curves on
CIFAR-10 with ResNet are shown in Figure 3. The rest of the
plots can be found in the supplementary material. ML-LOO
shows superior performance over the other three detection
methods across different data sets, models for all attacks
optimized for �2 and �∞ distances. By controlling FPR at 0.1,
our method is able to find over 95% adversarial examples
generated by most existing attacks.

Attacks with varied confidence levels

Lu, Chen, and Yu and Athalye, Carlini, and Wagner observed
that LID fails when the confidence level of adversarial exam-
ples generated from C&W attack varies. We consider adver-
sarial images with varied confidence levels for both �2 and
�∞ attacks. We use C&W attack for optimizing �2 distance,
and adjust the confidence hyperparameter c in Equation (2)
to achieve mixed confidence levels. To achieve adversarial
examples optimized for �∞ distance, we use �∞-PGD for op-
timizing �∞ distance, and vary the constraint ε for different
confidence levels.

C&W Attack for optimizing �2 distance We consider
three settings for C&W attack, low-confidence (C&W-LC),
mixed-confidence (C&W-MIX) and high-confidence (C&W-
HC). We set the confidence parameter c = 0 for C&W-LC
and c = 50 for C&W-HC. For mixed-confidence C&W at-
tack, we generate adversarial images from C&W attack with
the confidence parameter in Equation (2) randomly selected
from {1, 3, 5, · · · , 29} when generating an adversarial image,
so that the distribution of confidence levels for adversarial
images is comparable with that of original images. The confi-
dence levels of images under the three settings, along with
confidence levels of original images are shown in Figure 4.
The confidence level in Figure 4 is defined as − log(1− p),
where p is the probability score of the predicted class.

We carried out the experiments on ResNet trained on
CIFAR-10 using 1, 000 adversarial images generated from
the mixed-confidence C&W attack, together with the cor-
responding original images, as the training data for LID,
Mahalanobis, KD+BU, and our method. We test the detec-
tion methods on a different set of original and adversarial
images generated from three versions: low-confidence C&W
attack (c = 0), high-confidence C&W attack (c = 50), and
the mixed-confidence C&W attack. Table 2 (Top) and Fig-
ure 4 (Left) show TPRs at different FPR thresholds, AUC,
and the ROC curve. Mahalanobis, LID and KD+BU fail to
detect adversarial examples of mixed-confidence effectively,
while our method performs consistently better for adversarial
images across the three settings.
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Data Model Metric
Attacks

�∞-PGD DeepFool FGSM JSAM Boundary
KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO KD+BU LID MAHA ML-LOO

CIFAR10 ResNet

AUC 0.753 0.763 0.818 0.879 0.618 0.990 0.962 0.992 0.673 0.610 0.730 0.796 0.614 0.984 0.957 0.984 0.676 0.991 0.964 0.994
TPR (FPR@0.01) 0.20 0.08 0.14 0.21 0.01 0.56 0.61 0.72 0.04 0.07 0.06 0.04 0.01 0.43 0.44 0.45 0.03 0.56 0.60 0.82
TPR (FPR@0.05) 0.37 0.35 0.45 0.48 0.10 0.96 0.94 0.96 0.20 0.17 0.22 0.14 0.10 0.93 0.91 0.91 0.20 0.99 0.95 0.97
TPR (FPR@0.10) 0.46 0.45 0.60 0.65 0.24 0.98 0.94 0.99 0.29 0.23 0.34 0.37 0.21 0.98 0.94 0.99 0.38 0.99 0.95 0.99

Table 3: Performance of detection methods trained with C&W and transferred to �∞-PGD, FGSM, JSMA, Boundary and
DeepFool.

Figure 5: Transferability of detection methods trained with C&W attack and tested on �∞-PGD, FGSM, JSMA, Boundary and
DeepFool.

Detector None SD ML-LOO(SD) ML-LOO(IQR)
Succ. rate on Model 100% 93% 52% 58%

Succ. rate on Detector N/A 100% 100% 78%
Succ. rate on Both 100% 93% 52% 36%

Avg. �2 distance 0.31 0.43 1.23 1.07

Table 4: Performance under the white-box attacks.

L∞-PGD for optimizing �∞ distance L∞-PGD (Madry
et al. 2018), also named as BIM (Kurakin, Goodfellow, and
Bengio 2017), searches for adversarial examples by itera-
tively updating the original image with the following:

xN+1 = Clipx,ε{xN + αsign(∇XJ(xN , ytrue))}, (3)

where ytrue is the original class, J is the cross-entropy
loss, and Clip operator clips an image elementwise to an
ε-neighborhood. For mixed-confidence �∞-PGD attack, we
generated adversarial images from �∞-PGD with different
confidence levels by randomly selecting the constraint ε in
Equation (3) from {1, 2, 3, 4, 5, 6, 7, 8}/255. The confidence
levels of images from mixed-confidence �∞-PGD attack are
shown in Figure 4.

We used 1, 000 adversarial images generated from the
mixed-confidence �∞-PGD, together with their correspond-
ing original images, as the training data for all detection
methods. We report the results on adversarial images gen-
erated from three versions: high-confidence �∞-PGD (ε =
0.03), low-confidence �∞-PGD (ε = 0.005), and the mixed-
confidence �∞-PGD that is used to generate the training data.
The corresponding original images are different from the
training images. Table 2 (Bottom) and Figure 4 (Right) show
TPRs at different FPR thresholds, AUC, and the ROC curve.
Mahalanobis, LID and KD+BU fail to detect adversarial ex-
amples of mixed-confidence effectively, while our method
performs significantly better across the three settings.

Transferability

In this experiment, we evaluate the transferability of different
methods by training detection methods on adversarial exam-
ples generated from one attacking method and carry out the

evaluation on adversarial examples generated from different
attacking methods. We trained all methods on adversarial
examples generated by C&W attack and carried out the eval-
uation on adversarial examples generated by the rest of the
attacking methods.

Experiments are carried out on MNIST, CIFAR-10, and
CIFAR-100 data sets. AUC and TPRs at different FPR thresh-
olds are reported in Table 3. All methods trained on C&W
attack are capable of detecting adversarial examples gen-
erated from an unknown attack, even when the optimized
distance is �∞, or the attack is not gradient-based. The same
phenomenon has been observed in Lee et al. as well. This
indicates attacks might share some common features. Our
method yields a slightly higher AUC consistently, and has
a significantly higher TPR when FPRs are controlled to be
small.

White-box evaluation

The previous experiments are carried out in a “gray-box”
threat model, where the attacker has access to the model
details such as gradients, but does not have access to the
design of the detector. The “white-box” setting assumes a
stronger threat model, where an attacker knows exactly how
our detector is constructed and its parameters. Such a setting
is often missing in previous study of adversarial detection.
Previous work such as LID and KD+BU has been shown to
fail under this setting (Carlini and Wagner 2017a; Athalye,
Carlini, and Wagner 2018). We evaluate the performance of
ML-LOO in this setting.

We carried out the white-box attack on CIFAR-10 with the
ResNet. The attacker aims to optimize the following objective

min
w

L(x′) = ‖x′ − x‖2 + c1LC&W(x′) + c2LDET(x
′),

where x′ = 0.5(tanh(w) + 1), the C&W loss LC&W =
max{F (x)ytrue , 0}, and LDET aims at controlling the statistic
used by the detector, which will be defined differently un-
der different scenarios below. For each image, we increase
c2 gradually until adversarial images cannot be detected (at
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FPR=0.05) at all. For each c2, c1 is selected via binary search.
The loss is minimized with Adam (Kingma and Ba 2014). Un-
der this scheme, the generated examples are expected to fool
the detector, and we aim to check whether it fools the origi-
nal model at an acceptable perturbation size as well. We will
evaluate three variants of ML-LOO, including the simplest
output layer standard deviation (SD) thresholding, ML-LOO
(SD), and ML-LOO (IQR). We measure the performance by
the success rate on the original model, the detector, and the
rate of fooling both simultaneously. We also report the aver-
age �2 distance between original and successful adversarial
images. The results are summarized in Table 4.

In the first scenario, we evaluate the robustness of the
single-layer variate of ML-LOO (SD) to demonstrate the
power of our attacker design, which only thresholds the SD
of the probability of the predicted class alone. We define the
detector loss as L1

DET := max{SD(φ(x′)) − τ, 0}, which
penalizes SD(φ(x′)) over attribution scores if it is larger than
τ . The threshold τ is chosen to keep the FPR at 0.05 when
detecting adversarial examples generated by gray-box C&W
attack from natural images. When LOO over all pixels is
intractable, we sample pixels to estimate the SD. The attacker
always fool the detector. However, the success rate of fooling
the original model decreases from 100% to 93%, and the
average distance increases from 0.31 to 0.43.

In the second scenario, We use ML-LOO (with SD) as
the detector (a Logistic Regression (LR) applied to SD of
multi-layer feature attributions). The white-box attack in the
first setting fails to fool this detector completely. Therefore,
we define the detector loss as

L2
DET := max{

∑
n
wnSD(φfn(x))− τ, 0},

where n loops over neurons of selected layers, φfn(x) is
the attribution score at neuron n, and wn is the corresponding
learned coefficients. The threshold τ is still chosen at FPR =
0.05. The success rate of fooling the model decreases from
100% to 52%, and the average distance increases to 1.23.

In the third scenario, we evaluate ML-LOO (IQR), which
is non-differentiable. However, there is an approximately
linear relationship between SD and IQR under the normality
assumption (Royston 1982), which suggests that we can apply
the same detector loss L2

DET with the transformed threshold
at FPR = 0.05, and the transformed coefficients learned in
ML-LOO (IQR). The attacker achieves worse performance.
In particular, only 78% generated images fool the detector,
with a 58% success rate of fooling the model (over all the
examples) and an average distance of 1.07.

We observe that ML-LOO (IQR) achieves competitive
performance even under the strongest white-box threat model.
The white-box attack fails to fool the model and the detector
simultaneously for 64% of test images. The average size of
successful perturbations also increases by over three times.
We expect ML-LOO works better under a white-box attack
for adversarially trained models with larger certified radii.

Discussion

In this paper, we introduce a new framework to detect ad-
versarial examples with multi-layer feature attribution, by

capturing the scaling difference of feature attribution scores
between the original and adversarial examples. We show that
our detection method outperforms other state-of-the-art meth-
ods in detecting various kinds of attacks. It also displays
strong performance in detecting adversarial examples of var-
ied confidence levels, in detecting transferred examples from
other attacks, and when an attacker has complete access to
the detector.

One limitation of ML-LOO is its query inefficiency. In the
detection stage, the number of queries scales with the number
of features for each input. Future work may address this issue
by randomly sampling pixels to compute feature attribution
scores.
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