
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Dynamical System Inspired Adaptive Time
Stepping Controller for Residual Network Families

Yibo Yang,1,2,∗ Jianlong Wu,2,3,∗ Hongyang Li,2 Xia Li,2,4 Tiancheng Shen,1,2 Zhouchen Lin2,5,†
1Center for Data Science, Academy for Advanced Interdisciplinary Studies, Peking University

2Key Laboratory of Machine Perception (MOE), School of EECS, Peking University
3School of Computer Science and Technology, Shandong University

4Key Laboratory of Machine Perception, Shenzhen Graduate School, Peking University
5Samsung Research China – Beijing (SRC-B)

{ibo, jlwu1992, lhy ustb, ethanlee, tianchengshen, zlin}@pku.edu.cn

Abstract

The correspondence between residual networks and dynam-
ical systems motivates researchers to unravel the physics of
ResNets with well-developed tools in numeral methods of
ODE systems. The Runge-Kutta-Fehlberg method is an adap-
tive time stepping that renders a good trade-off between the
stability and efficiency. Can we also have an adaptive time
stepping for ResNets to ensure both stability and perfor-
mance? In this study, we analyze the effects of time stepping
on the Euler method and ResNets. We establish a stability
condition for ResNets with step sizes and weight parameters,
and point out the effects of step sizes on the stability and per-
formance. Inspired by our analyses, we develop an adaptive
time stepping controller that is dependent on the parameters
of the current step, and aware of previous steps. The con-
troller is jointly optimized with the network training so that
variable step sizes and evolution time can be adaptively ad-
justed. We conduct experiments on ImageNet and CIFAR to
demonstrate the effectiveness. It is shown that our proposed
method is able to improve both stability and accuracy without
introducing additional overhead in inference phase.

Introduction

Currently, the structure of neural network is mainly de-
veloped by hand-crafted design (Simonyan and Zisserman
2015; Szegedy et al. 2015) or neural architecture searching
(Baker et al. 2017). A theoretical guidance is still lacking for
understanding deep network behaviors. One of the most suc-
cessful architectures, residual network (ResNet) (He et al.
2016), introduces identity mappings to enable training a very
deep model. ResNets are also used as the base model for a
series of computer vision tasks such as scene segmentation
(Chen et al. 2017), and action recognition (Tran et al. 2018).
Despite the huge success, the understanding of ResNets is
mainly supported by empirical analyses and experimental
evidences, other than some attempts from an optimization
view (Li et al. 2018). Recently, the connection between
ResNet and dynamical system has inspired researchers to
unravel the physics of residual networks using the rich
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theories and techniques in differential equations (E 2017;
Haber and Ruthotto 2017).

In (E 2017), it is noted that the Euler method for ordi-
nary differential equations (ODEs) has the same formulation
as ResNet iterative updates, and ResNet is viewed as a dis-
crete dynamical system. In this way, the parameter learning
in neural networks is translated into its continuous coun-
terpart as an optimal control problem (Chen et al. 2018;
Li and Hao 2018; Li et al. 2017; Behrmann, Duvenaud, and
Jacobsen 2019). Based on the Euler method, some stud-
ies introduce multi-step or higher-oder discretization (Lu
et al. 2018; He et al. 2019), and fractional optimal control
(Jia et al. 2019) to construct more powerful network struc-
tures for different tasks. Other studies analyze the stability
of residual networks and propose more stable and robust
structures (Haber and Ruthotto 2017; Chang et al. 2018a;
Ruthotto and Haber 2018; Haber et al. 2019).

An appropriate time stepping for discretization methods
of ODEs is crucial for the stability and efficiency (Ascher
and Petzold 1998). A small step size is able to render an ac-
curate solution, but requires more steps for a fixed evolution
time. Chang et al. adopt a multi-level strategy to adjust the
time step size for ResNet training (Chang et al. 2018b). In
a recent study, a small step size is suggested for more sta-
ble and robust ResNets (Zhang et al. 2019). However, an
overly small step size would smooth the feature learning.
From a dynamical system view, the evolution time for net-
work with a fixed depth and a small step size is too short for
the system to evolve from the initial state to the final linearly
separable state. In numerical methods for ODEs, adaptive
time stepping strategies, such as the Runge-Kutta-Fehlberg
(RKF) method (Hairer, Nørsett, and Wanner 1991) as shown
in Figure 1, are able to attain a good trade-off between sta-
bility and cost. Can we also design an adaptive time stepping
for ResNets to ensure both stability and performance?

In this study, we analyze the effects of time stepping on
the stability and performance of residual networks, and point
out that each step size should be aware of previous steps
and the weight parameters in the current step. We develop
an adaptive controller, which connects different steps as an
LSTM, and takes the parameters of each step as input, to
output a set of coefficients that decide the current step size.
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Figure 1: An initial value problem with different discretiza-
tion step sizes h. The RKF method is able to attain a good
trade-off between stability and efficiency, offering a stable
solution, while using a small number of steps.

In doing so, the network is trained with variable step sizes
and evolution time, so that our time stepping is optimized
jointly to render the network a better stability and perfor-
mance. More importantly, because the controller is data-
independent, our performance gains come with no additional
cost in inference phase.

The contributions of this study can be listed as follows:
• We analyze the correspondence between ODEs and

ResNets, establish a stability condition for ResNets with
step sizes and weight parameters, and point out the effects
of step sizes on the stability and performance.

• Based on our analyses, we develop a self-adaptive time
stepping controller to enable optimizing variable step
sizes and evolution time jointly with the network training.

• Experiments on ImageNet and CIFAR demonstrate that
our method is able to improve both stability and accuracy.
The improvements come with no additional cost in infer-
ence phase. We also test the application of our method to
two non-residual network structures.

View ResNet as a Dynamical System

The forward propagation in a residual network block (He et
al. 2016) can be written as:

yj+1 = yj + hF(yj ,Wj), j = 0, 1, ..., D − 1, (1)

where F is the residual function for each step, and D is the
network depth. Here we add the h > 0 in a multiplicative
way with the residual branch. Usually a unit of F has the
form of F = σ(BN(Wjyj)), where σ is the non-linear
activation. When h = 1, it reduces to the original form of
ResNets. Regarding h as a fixed step size, we see that Eq. (1)
can be interpreted as the forward Euler method discretiza-
tion for the following initial value problem (IVP) (E 2017;
Haber and Ruthotto 2017):

ẏ(t) = F(y(t),W(t)), y(0) = y0, (2)

where features y(t) and parameters W(t) are viewed in
their continuous limit as a function of time t ∈ [0, T ]. The

evolution time T corresponds to the network depth D. In
doing so, residual networks are interpreted as the discrete
counterpart of dynamical systems, and parameter learning
is equivalent to solving an optimal control problem with
respect to the ODE system in Eq. (2) (Chen et al. 2018;
Li and Hao 2018; Haber et al. 2018). Related studies use the
stability condition of the forward Euler method to analyze
the stability of ResNets and propose better structures (Chang
et al. 2018a; Haber et al. 2019). We show that time stepping
is crucial for the stability and performance of ResNets.

Time Stepping for the Euler method

Given a linear problem ẏ(t) = λy(t), t ∈ [0, T ], we have
its forward Euler’s discretization as yj+1 = yj + hλyj , j =
0, ..., N − 1, where h is the fixed step size and T = Nh.
Assuming that yε0 = y0 + ε is the initial value suffered from
a perturbation ε > 0, we have:

|yεN − yN | = |1 + hλ|N ε, (3)

which indicates that when N → ∞, the perturbation is con-
trollable if |1+hλ| ≤ 1. As a more general case, the forward
Euler method for non-linear system Eq. (2) is stable when
the following condition holds (Ascher and Petzold 1998):

max |1 + hλi(J(t))| ≤ 1, (4)

where λi denotes the i-th eigenvalue of the Jacobian ma-
trix defined as J(t) = ∇yF(y(t),W(t)). From the stability
condition, we can see that a small step size h is required
to obtain a stable solution. In practical implementations, the
step size h should satisfy a stable solution, while being as
large as possible to reduce the amount of iterative steps for a
fixed evolution time T . Thus, the choice for a time stepping
scheme is crucial for both stability and efficiency.

The Runge-Kutta-Fehlberg (RKF) method (Hairer,
Nørsett, and Wanner 1991) as an adaptive time stepping
is able to attain a good trade-off between the stability and
efficiency. It uses the p-th (usually p=4) order Runge-Kutta
method to compute the current solution yj+1, and the local
truncation error is:

|yj+1 − y(tj+1)| = O(Δtp+1
j ), (5)

where Δtj is the current step size. The y(tj+1) is approxi-
mated by the p+1-th order form, denoted as ŷj+1. Then the
new step size can be adjusted as:

Δtj+1 = k ×Δtj ×
(

Tol

|yj+1 − ŷj+1|
)1/(p+1)

, (6)

where k is a factor and Tol is a tolerance error. The method
adaptively increases or reduces the next step size according
to the agreement between yj+1 and ŷj+1.

As a simple example, we consider the problem , ẏ(t) =
−4y(t), y(0) = 1, whose analytical solution can be easily
derived as y(t) = exp(−4t). As shown in Figure 1, the
adaptive method RKF is able to offer a stable solution, but
requires significantly less number of steps than a small step
size for the evolution period. If we use a large step size to
reduce the number of steps, the solution will be unstable.
Thus, an adaptive time stepping scheme is crucial for the
stability and efficiency of solution to ODE systems.
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Time Stepping for ResNets

As a discrete counterpart of dynamical systems, ResNet has
similar behaviors to the discretization method for ODEs. We
show that time stepping causes similar effects on the stability
and performance of ResNets.
Proposition 1 Consider a ResNet with D residual blocks
and variable step sizes Δtj for each step. Let ε be the
perturbation coming from noise or adversary and satisfies
||yε

0 − y0|| = ε. We have:

||yε
D − yD|| ≤ ε ·

D−1∏
j=0

(1 + ||Wj ||2Δtj), (7)

where ||Wj ||2 denotes the spectral norm of weight matrix in
each residual block.

Proof 1 See Appendix A for its proof. �
We note that the robustness of ResNets to perturbation

is affected by the network depth, spectral norm of each
weight matrix, and each step size. Eq. (7) shows that the
stability of ResNets is conditioned on each layer in a stack-
ing way, which is consistent with previous findings (Veit,
Wilber, and Belongie 2016). For each layer, it is suggested
that the weight matrix should have a small spectral norm.
Since ||Wj ||22 ≤ ||Wj ||2F , weight decay that regularizes the
Frobenius norm is effective to train models with robustness
to input perturbations. However, it shrinks the weight matrix
in all directions, and discards information of input features.
Some studies propose spectral norm regularizer (Yoshida
and Miyato 2017; Miyato et al. 2018) or Jacobian regular-
izer (Sokolić et al. 2017) to improve the stability.

The term in Eq. (7) has a similar form to Eq. (4), and also
indicates that a small step size Δtj should be chosen for
ResNets’ stability. Nevertheless, as pointed out by (Zhang et
al. 2019), an overly small step size would smooth the fea-
ture learning. Denoting loss function as L, in ResNets with
variable step sizes Δt, we have the gradient backpropagated
to layer yn as:

∂L

∂yn
=

∂L

∂yD

[
1+

∂

∂yn

D−1∑
i=n

F(yi,Wi)Δti

]
, (8)

which shows that the backpropagated information for each
layer comes from two terms. When the step size Δti is too
small, the second term would vanish, and gradients for each
layer would be the same as ∂L

∂yD
. This would make the net-

work inefficient and lacking in representation power. From
the dynamical system perspective, if the network with a
fixed depth has a small step size, its corresponding optimal
control problem would have a short period of evolution time,
which increases the difficulty of transforming the data space
from the initial state to the expected linearly separable state.

Therefore, similar to the discretization for ODE systems,
ResNets also need an adaptive time stepping to enable a
good trade-off between the stability and performance. A re-
lated study (Zhang and Laura 2018) proposes to optimize
step sizes Δtj as explicit parameters. We note that inde-
pendent step sizes are not self-aware and cannot be ad-
justed adaptively. Inspired by our analyses, we propose a

self-adaptive time stepping controller that is dependent on
the weight matrices and aware of previous steps.

Proposed Methods

In this section, we first introduce our design in the optimal
control view, and then describe the components of our self-
adaptive time stepping controller. Finally, we analyze the
complexity of our method and show implementation details.

The Optimal Control View

In our analyses, we note that the product of step size and
spectral norm of weight matrix in each layer decides the
stability. Directly calculating the spectral norm requires the
SVD decomposition, which makes the training inefficient.
Here we introduce a controller that outputs the current step
size Δtj dependent on the convolution parameters wj in this
layer. Besides, similar to the design of RKF method, the new
step size should remember previous step sizes to avoid sharp
increment or reduction. In line with these views, denoting
the controller as Θ parameterized by {θd}D−1

d=1 , we have the
corresponding optimal control problem as:

min
w,θ

J =
1

S

S∑
s=1

Φ(ys(T ),y
∗
s) +

D−1∑
d=1

R(w(td), θ(td)),

(9)
s.t. ys(td+1) = ys(td) + F (ys(td),w(td))Δtd

Δtd = Θ(w(td);Δt1, ...,Δtd−1; θ(td))

t0 = 0, td+1 = td +Δtd, ys(0) = ys

T = tD =

D−1∑
d=0

Δtd, d = 0, 1, ..., D − 1

where Φ is the loss function, R is the regularization, y∗
s is

the label of input image ys, and S is number of samples.
The optimal control problem in discrete time (Kwakernaak
and Sivan 1972) looks for the best control parameters {w, θ}
for this dynamical system that aims to minimize the cost
J . From Eq. (9) we can see that, the system has variable
step sizes Δtj and evolution time T . In implementations,
the controller is jointly optimized with the network training,
so that an optimal time stepping can be searched to render
the network better stability and performance.

Self-adaptive Time Stepping Controller

Since the time stepping controller takes the convolution
parameters as input and is aware of previous steps, we
parametrize the controller as an LSTM that connects dif-
ferent steps. In implementations, we split the step size as
a vector Δt with the same channel number as the feature in
current step. The product between residual branch and step
size is replaced with a channel-wise multiplication. We find
this helps to improve the training stability and accuracy.

An illustration of our method is shown in Figure 2. De-
note the convolution parameters of the d-th layer as wd ∈
R

k1×k2×C1×C2 , where k1, k2 are the kernel sizes, and C1,
C2 are the number of channels for the input and output, re-
spectively. In order to acquire representative information of
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Figure 2: An illustration of our proposed time stepping con-
troller, which is dependent on the convolution parameters,
and connects different steps to be aware of previous steps.

the residual function, we average wd by projecting along the
input dimension and get w̄d ∈ R

k1k2C2 after reshaping. We
concatenate them if there are multiple convolution layers in
the residual branch. The w̄d first goes through a transforma-
tion layer to reduce the dimension into a reduction of r of
the channels in the current layer:

xd = gin(Win · w̄d + bin) ∈ R
C2
r , (10)

where gin refers to the ReLU function, Win is the transfor-
mation matrix, bin is the bias vector, and xd is the input for
LSTM. The hidden unit of LSTM has the same dimension
as xd, i.e. hl−1 ∈ R

C2
r . The interaction between inner states

and gates at d-th layer goes through the following steps:

id = σ (Wi · [hd−1,xd] + bi) ,

fd = σ (Wf · [hd−1,xd] + bf ) ,

gd = tanh (Wg · [hd−1,xd] + bg) ,

od = σ
(
Wo ·

[
hd−1,xd

]
+ bo

)
,

cd = fd � cd−1 + id � gd,

hd = od � tanh (cd) ,

(11)

where σ refers to the sigmoid function and � denotes
element-wise multiplication. After the above processes, an-
other fully connected layer transforms the hidden unit hd

into the step size vector Δtd:

Δtd = gout(Wout · hd + bout), (12)

where Wout ∈ R
C2×C2

r , bout ∈ R
C2 , and gout denotes the

non-linear sigmoid function that restricts the elements in the
current step size between range (0, 1). The forward propa-
gation in the current step is:

yd+1 = yd + F(yd,wd)⊗Δtd, (13)

where ⊗ represents the channel-wise multiplication. We
have one controller for each size stage in ResNet, and all
parameters above keep shared in the same size stage.

We note that the channel-wise attention technique (Hu,
Shen, and Sun 2018) has a similar formulation to Eq. (13).
Our method differs from theirs in that our controller is data
independent and does not rely on the feature space. What
our time stepping aims to optimize is part of the structural
information. When training finishes, our method discards the
controller and has no considerable addition cost in inference

Table 1: Parameter complexity introduced by the three meth-
ods in training and inference phases. k1 and k2 denote the
kernel sizes of the convolution parameters.

Methods Training Inference
TSCindp

∑B
b=1 LbCb

∑B
b=1 LbCb

TSC2fc

∑B
b=1 Lb

C2
b

r (1 + k1k2)
∑B

b=1 LbCb

TSCLSTM

∑B
b=1

C2
b

r (1 + 8
r + k1k2)

∑B
b=1 LbCb

phase (except a little calculation of multiplying step sizes).
This cannot be realized by attention methods that are feature
dependent. Besides, our experiments show that our method
is compatible with the attention method.

Complexity Analysis

We denote the time stepping controller using LSTM as
TSCLSTM . In addition to this structure, we also consider
two other versions as its counterparts. We analyze their com-
plexities in this subsection and compare their performance
in experiments. The first one removes the LSTM layers Eq.
(11), and only keeps the input and output transformation lay-
ers but does not share their parameters. It is similar to the
two fully-connected layers module in (Hu, Shen, and Sun
2018). We denote this version as TSC2fc. This structure is
dependent on the convolution parameters but not aware of
previous steps. The other one does not use a controller, and
only introduces the step sizes {Δtd}D−1

d=0 as explicit param-
eters that are independent of weight matrices and previous
steps. This version is denoted as TSCindp.

When training finishes, only the optimized step sizes
should be stored and the controller can be removed, which
leads to little additional cost in inference phase. As for train-
ing complexity, TSCindp has the same cost since it does not
have a controller. As for TSCLSTM and TSC2fc, TSCLSTM

consumes less parameters because of the weight-sharing in
LSTM, while TSC2fc consumes less computation because it
does not have the LSTM layers in Eq. (11). Assuming that
the network has B feature size stages (as an example, B = 3
for CIFAR and 4 for ImageNet). There are Lb layers in the
b-th stage, and Cb is the number of channels per layer. We
compare the three methods’ parameter complexity of train-
ing and inference phase in Table 1. We will compare their
performance and overhead in experiments.

Implementations

In experimental section, we test our proposed methods on
the ResNet and its variants. Here we show the details of our
implementation. For ResNets structures without bottleneck,
there are two convolution layers in each residual block, and
we have k1 = k2 = 3 for the kernel sizes. We concate-
nate these two parts of projected parameters in layer d by
w̄d = [w̄

(1)
d , w̄

(2)
d ] ∈ R

2k1k2C2 , where C2 denotes the out-
put channels in this layer. For ResNets structures with bot-
tleneck, there are three convolution layers in each residual
block, and the kernel size is 1 for the first and third lay-
ers, and 3 for the bottleneck layer. We only concatenate the
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Table 2: Comparison between different controllers on Ima-
geNet. They are all based on ResNet-50 structure. Our meth-
ods do not have much additional cost in inference phase.

Methods top-1 Params(M) GFLOPs
(err.) (train / infer) (train / infer)

ResNet (reported) 24.70 25.56 3.86
ResNet (ours) 24.42 25.56 3.86
TSCindp-ResNet 24.12 25.57/25.57 3.86/3.86
TSC2fc-ResNet 23.90 31.58/25.57 3.88/3.86
TSCLSTM -ResNet 23.63 27.83/25.57 3.89/3.86

first and third projected parameters by w̄d = [w̄
(1)
d , w̄

(3)
d ] ∈

R
C2+C2/4, where C2/4 is the number of bottleneck chan-

nels. We set the reduction r to 4 for ResNets without bottle-
neck, and 8 for ResNets with bottleneck. An illustration of
our method on ResNet-34 (without bottleneck) and ResNet-
50 (with bottleneck) is shown in Appendix B.

Experiments

We conduct experiments on CIFAR-10, CIFAR-100, and
ImageNet to validate our time stepping controller on ResNet
and its variants. We also test the application of our method
to two non-residual network structures.

Datasets and Training Details

Datasets For training sets of the ImageNet dataset, we
adopt the standard data augmentation scheme (He et al.
2016). A 224× 224 crop is randomly sampled from the im-
age or its horizontal flip. The input images are normalized by
mean and standard deviation for each channel. All models
are trained on the training set and we report the single cen-
ter crop error rate on the validation set. For CIFAR-10 and
CIFAR-100, we adopt a standard data augmentation scheme
by padding the images 4 pixels filled with 0 on each side and
then randomly sampling a 32× 32 crop from each image or
its horizontal flip. The images are normalized by mean and
standard deviation.

Training Details We train our models using stochastic
gradient descent (SGD) with the Nesterov momentum 0.9
and weight decay 10−4. The parameters are initialized fol-
lowing (He et al. 2015). For the ImageNet dataset, we train
for 100 epochs with an initial learning rate of 0.1, and drop
the learning rate every 30 epochs. A mini-batch has 256 im-
ages among 8 GPUs. For CIFAR-10 and CIFAR-100, we
train for 300 epochs with a mini-batch of 64 images. The
learning rate is set to 0.1 and divided by 10 at 50% and 75%
of the training procedure. For our results on CIFAR, we run
for 3 times with different seeds and report mean values.

Ablation Study

In order to test the effectiveness of our proposed LSTM time
stepping controller TSCLSTM , we conduct experiments on
ImageNet and compare with the two counterparts, TSCindp

and TSC2fc. We perform our methods with ResNet-50. As
shown in Table 2, our re-implementation has a slightly bet-
ter performance than reported. When armed with TSCindp,

Figure 3: Top-1 error rate training curves of the baseline
ResNet-50 and our TSCLSTM -ResNet-50 on ImageNet.

ResNet has a small performance improvement, due to the
introduced step sizes as explicit parameters. It reveals that a
trainable step size benefits the ResNet performance. TSC2fc

and TSCLSTM have larger improvements, which shows that
the controller dependent on the convolution parameters con-
tributes to a better performance. TSCLSTM is further aware
of previous steps, because of the memory brought by LSTM,
and has an improvement of 0.79% top-1 accuracy than base-
line. The training curves of our TSCLSTM and baseline are
compared in Figure 3. It is shown that our method has a su-
periority during the whole training procedure. The ablation
study demonstrates the effectiveness of our design that the
step sizes should be dependent on convolution parameters
and aware of previous steps. We use the LSTM controller
TSCLSTM for our later experiments.

Besides, the optimized step sizes belong to part of the
structural information and are not data dependent. Thus,
when training finishes, only the step sizes should be stored,
and the additional overhead introduced by our controller can
be spared in inference. As shown in Table 2, compared with
baseline, these three methods have little additional cost in in-
ference. For training, TSCindp has the same parameters and
computation as inference because it does not use a parame-
terized controller. TSCLSTM consumes less parameters but
more computation than TSC2fc in training. It is consistent
with our analysis in prior section.

Improving the Performance

We add our time stepping controller on ResNet families with
different depths and different variants, including ResNeXt
(Xie et al. 2017) and SENet (Hu, Shen, and Sun 2018), to
validate the ability of improving performance. As shown in
Table 3, for fair comparison, we re-implement the baseline
methods and most of our re-implementation performance are
superior to the reported numbers.

When armed with our time stepping controller, it is
shown that ResNets in different depths consistently have
a 0.6%-0.8% improvement on performance. ResNet-50 has
the largest accuracy gain. We see that our methods introduce
a small number of parameters and computation for training,
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Table 3: Top-1 error rates on ImageNet with and without our proposed time stepping controller. The numbers in brackets show
the performance improvement over the re-implemented baselines. The left and right numbers of Params or GFLOPs columns
show the overhead of our methods during training and inference phase respectively. All baseline methods are not able to reduce
the overhead during inference phase, so there is a single value on the corresponding columns.

Models
re-implementation with our time stepping controller

Error. (%) Params(M) GFLOPs Error. (%) Params(M) GFLOPs
(gain) (train / infer) (train / infer)

ResNet-18 29.41 11.69 1.81 28.80 (0.61) 13.52 / 11.69 1.81 / 1.81

ResNet-34 26.03 21.80 3.66 25.39 (0.64) 23.63 / 21.80 3.66 / 3.66

ResNet-50 24.42 25.56 3.86 23.63 (0.79) 27.83 / 25.57 3.89 / 3.86

ResNet-101 22.94 44.55 7.58 22.24 (0.70) 46.82 / 44.58 7.64 / 7.58

ResNeXt-50 22.84 25.03 3.77 22.23 (0.61) 27.30 / 25.04 3.80 / 3.77

ResNeXt-101 21.88 44.18 7.51 21.17 (0.71) 46.45 / 44.21 7.57 / 7.51

SENet-50 23.27 28.09 3.87 22.75 (0.52) 30.36 / 28.10 3.90 / 3.87

SENet-101 22.37 49.33 7.60 21.82 (0.55) 51.60 / 49.36 7.66 / 7.60

and nearly no considerable extra cost for inference.
We also add our time stepping controller on ResNet vari-

ants to test the scalability. The implementation of ResNeXt
is similar to ResNet. It is shown that our method is also
effective to ResNeXts. For ResNeXt-50, it has a top-1 ac-
curacy improvement of 0.61%, while ResNeXt-101 has a
larger gain of 0.71%.

Compared with feature operating modules, such as the
channel-wise attention in SENet, our method may not have
strong advantages for improving the performance, because
the attention methods are data dependent, while ours are
searching for adaptive step sizes, which are independent
from features and belong to structural information. In spite
of this, we note that TSC-ResNet-101 (22.24% top-1 error
rate) has surpassed the performance of SENet-101 (22.37%
top-1 error rate) using less parameters and computation. Our
performance gain has little extra cost in inference, which
cannot be realized by the feature dependent method SENet.
We also show that our time stepping controller is compatible
with SENets, even if they share a similar propagation formu-
lation as Eq. (13). Our method reduces a top-1 error rate of
0.52% for SENet-50, and 0.55 % for SENet-101.

From Table 3, we observe that a deeper model benefits
more from our time stepping controller in general. We be-
lieve that the reason is that a deeper network suffers more
from the effects of step sizes. As indicated by Eq. (7), when
depth increases, the cumulative influence of the spectral
norm of weight matrices and step sizes become larger. In
this case, an inappropriate step size would heavily impede
the stability and performance of the network. It is in line
with our intuition that deeper networks have more difficul-
ties of training. Our method has an adaptive time stepping
controller to adjust the steps sizes jointly with the network
training, and thus helps more for deeper networks.

Improving the Stability

In order to test the ability of our time stepping controller
to improve the stability, we conduct experiments to show
the controller’s robustness to perturbations and increasing
depths.

Figure 4: Under different noise level, the inference accuracy
and loss of ResNets with step sizes 1, 0.01, and our time
stepping controller (TSC) on CIFAR-10 test set.

We train ResNet-56 on CIFAR-10 with different step sizes
(0.01 and 1), and our time stepping controller. After training,
we inject different level Gaussian noise to the input for in-
ference on the test set. The level of perturbation is decided
by the standard deviation of the synthetic Gaussian noise. As
shown in Figure 4, when the noise level increases, the accu-
racies of Δt = 0.01 and Δt = 0.01 both drop quickly. The
loss of Δt = 1 has a sharp increment compared with that of
Δt = 0.01. It is in line with our analysis in Eq. (7) that a
small step size in each layer helps to bound the adverse ef-
fect caused by perturbations. However, the performance of
Δt = 0.01 is significantly worse than Δt = 1. As a compar-
ison, our time stepping controller offers adaptive step sizes.
It is shown that TSC has a moderate loss increment with
the noise level rising. Although TSC has a higher loss than
Δt = 0.01 when noise level is larger than 0.5, the accuracies
of TSC are consistently better than Δt = 1 and Δt = 0.01.
This demonstrates that our stepping controller improves the
ResNet robustness to perturbations, and offers a good trade-
off between the stability and performance.
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Figure 5: Comparison of ResNets and TSC-ResNets on
CIFAR-10 and CIFAR-100 with increasing depths (32, 56,
110, 146, 290, 362 and 506 layers).

We further test the robustness of our method to increas-
ing depths. As shown in Figure 5, we train ResNet and
TSC-ResNet with different depths on the CIFAR-10 and
CIFAR-100 datasets. For shallow residual networks, TSC-
ResNet and ResNet have similar performances. When depth
increases, the accuracies of ResNets approach a plateau, and
then have a drop for very deep networks. A similar result is
also reported in (Zhang et al. 2019). As a comparison, the
performance of TSC-ResNet is more stable. It keeps a slow
increment in accuracy for large depths. We note that the per-
formance gap between TSC-ResNet and ResNet is larger for
deeper networks in general, which is consistent with our ob-
servation on the ImageNet experiments in the prior section.
This demonstrates our analysis that deeper networks suffer
from an accumulated instability, and thus gain more benefits
from our adaptive time stepping controller.

Analysis

As shown in Table 4, we average the optimized time step size
vectors of TSC-ResNet-50 and TSC-ResNet-101 in different
layers. We found that the step sizes in shallow layers of both
TSC-ResNet-50 and TSC-ResNet-101 are centered around
0.5. For the layers in the last size stage (Conv-5 1, 5 2, 5 3),
the step sizes are approaching 1. Conv-3 1 and 4 1 keep the
initial state and are mildly affected by our method, because
each of our time stepping controller consider previous steps
but they correspond to the first time step in each size stage.
Besides, the shallow layers should have small step sizes to
avoid accumulated instability. But for layers Conv-5 1, 5 2,
and 5 3, they should enlarge step sizes to achieve strong fea-
ture transformations for the final representation.

We also observe that, deeper layers in Conv-5 1, 5 2,
and 5 3 converge to larger step sizes. For the same lay-

Table 4: The final optimized time step sizes (averaged
along the channel dimension) of TSC-ResNet-50 and TSC-
ResNet-101 in different layers. “C-3 1” denotes the first
residual block in the Conv-3 size stage.
Models C-3 1 C-4 1 C-4 2 C-5 1 C-5 2 C-5 3
TSC-50 0.510 0.500 0.731 0.835 0.901 0.926
TSC-101 0.508 0.513 0.657 0.854 0.927 0.950

ers in Conv-5 1, 5 2, and 5 3, TSC-ResNet-101 converges
to a larger step size. It reveals that deeper layer or deeper
model requires a larger step size. It is in line with our exper-
imental results that deeper models gain more benefits from
our method in general. We believe that the reason lies in
that deeper network corresponds to longer evolution time
and suffer more from inappropriate time stepping. We also
conjecture that our adaptive time stepping’s effects on shal-
low layers mainly ensure stability, while the adjustments for
deep layers contribute to the performance gains.

Extension to Non-residual Networks

Our analyses and the development of our time stepping con-
troller are based on the correspondence between residual
networks and discrete dynamical systems. In order to test
the scalability of our method to other networks, we add the
controller to two non-residual network structures, DenseNet
(Huang et al. 2017) and CliqueNet (Yang et al. 2018). The
results are shown in Appendix C.

Conclusion

In this study, we use the correspondence between resid-
ual networks and discrete dynamical systems to unravel the
physics of ResNets. We analyze the stability condition of
the Euler method and ResNet propagation, and point out
the effects of step sizes on the stability and performance of
ResNets. Inspired by the adaptive time stepping in numeri-
cal methods of ODEs, we develop an adaptive time stepping
controller that is dependent on the parameters of the net-
work and aware of previous steps to adaptively adjust the
step sizes and evolution time. Experiments on ImageNet,
CIFAR-10, and CIFAR-100 show that our method is able to
improve both performance and stability, without introducing
much overhead in inference phase. Our method can also be
applied to other non-residual network structures.
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