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Abstract

Clustering multi-view data has been a fundamental research
topic in the computer vision community. It has been shown
that a better accuracy can be achieved by integrating infor-
mation of all the views than just using one view individu-
ally. However, the existing methods often struggle with the
issues of dealing with the large-scale datasets and the poor
performance in reconstructing samples. This paper proposes
a novel multi-view clustering method by learning a shared
generative latent representation that obeys a mixture of Gaus-
sian distributions. The motivation is based on the fact that the
multi-view data share a common latent embedding despite
the diversity among the various views. Specifically, benefit-
ting from the success of the deep generative learning, the pro-
posed model can not only extract the nonlinear features from
the views, but render a powerful ability in capturing the cor-
relations among all the views. The extensive experimental re-
sults on several datasets with different scales demonstrate that
the proposed method outperforms the state-of-the-art meth-
ods under a range of performance criteria.

Introduction

Image clustering is one of the fundamental research topics,
which has been widely studied in computer vision and ma-
chine learning (Caron et al. 2018; Chang et al. 2017). As
well, as a class of unsupervised learning methods, cluster-
ing has attracted significant attention from various applica-
tions. With the advance of information technology, in many
real-world scenarios, many heterogeneous visual features,
such as HOG (Dalal and Triggs 2005), SIFT (Deng et al.
2009) and LBP (Ojala, Pietikainen, and Maenpaa 2002), can
be readily acquired and form a new type data, i.e., multi-
view data. These features are collected from different do-
mains or generated from various sensors. Therefore, to effi-
ciently capture the consistency and complementary informa-
tion among different views, multi-view clustering has gained
considerable attention in the recent years (Sun 2013; Xu,
Tao, and Xu 2013). In essence, multi-view clustering seeks
to partition data points based on multiple representations by
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assuming that the same cluster structure is shared across all
the views (Gao et al. 2015; Wang, Nie, and Huang 2013;
Yin et al. 2019). It is crucial for learning algorithm to in-
corporate the heterogeneous view information to enhance its
accuracy and robustness. As well, the effectiveness has been
empirically validated under different multi-view scenarios.

In general, multi-view clustering can be roughly separated
into two classes, i.e., similarity-based and feature-based.
The former aims to construct an affinity matrix whose el-
ements define the similarity between each pair of samples.
In light of this, multi-view subspace clustering is one of
the most famous similarity-based methods, which purses
a latent subspace shared by multiple views, assuming that
each view is built from a common subspace (Chaudhuri et
al. 2009; Gao et al. 2015; Yin et al. 2019; Zhang et al.
2015). However, these methods often suffer scalability is-
sue due to super-quadratic running time for computing spec-
tra (Jiang et al. 2017). While for the feature-based methods,
they seek to partition the samples into K clusters so as to
minimize the within-cluster sum of squared errors, such as
multi-view K-means clustering (Cai, Nie, and Huang 2013;
Xu et al. 2017). It is clear that the selection of feature space
is vital as the clustering with Euclidean distance on raw pix-
els is somehow ineffective.

Inspired by the recent amazing success of deep learn-
ing in feature learning (Hinton and Salakhutdinov 2006), a
surge of multi-view learning based on deep neural networks
(DNN) are proposed (Ngiam et al. 2011; Wang et al. 2015;
Xu et al. 2018). First, Ngiam et al. (Ngiam et al. 2011)
explored extracting shared representations by training a bi-
modal deep autoencoders. Next, by extending canonical cor-
relation analysis (CCA), Wang et al. (Wang et al. 2015)
proposed a novel deep canonically correlation autoencoders
(DCCAE), which introduces an autoencoders regularization
term into deep CCA. However, unfortunately the aforemen-
tioned can only be feasible to the two-view case, failing to
handle the multi-view one. To explicitly summarize the con-
sensus and complementary information in multi-view data, a
Deep Multi-view Concept learning (DMCL) (Xu et al. 2018)
is presented by performing non-negative factorization on ev-
ery view hierarchically.

Though these methods perform well in multi-view clus-
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tering, the generative process of multi-view data cannot be
modeled such that they can be used to generate samples ac-
cordingly. To this end, benefiting from the success of ap-
proximate Bayesian inference, the variational autoencoders
(VAE) have been the most popular algorithm under the
framework that combines differentiable models with varia-
tional inference (Kingma and Welling 2014; Pu et al. 2016).
By modeling the data generative procedure with a Gaussian
Mixture Model (GMM) model and a neural network, Jiang
et al. (Jiang et al. 2017) proposed a novel unsupervised gen-
erative clustering approach within the framework of VAE,
namely Variational Deep Embedding (VaDE). Although it
has shown great advantages in clustering, it is not able to be
applied directly to multi-view learning.

Targeting for classification and information retrieval, Sri-
vastava et al. (Srivastava and Salakhutdinov 2014) presented
a deep Boltzmann machine for learning a generative model
of multi-view data. Until recently there was no successful
multi-view extension to clustering yet. The main obstacle is
how to efficiently exploit the shared generative latent repre-
sentation across the views in unsupervised way. To tackle
this issue, in this paper, we propose a novel multi-view
clustering by learning a shared generative latent representa-
tion that obeys a mixture of Gaussian distributions, namely
Deep Multi-View Clustering via Variational Autoencoders
(DMVCVAE). In particular, our motivation is based on the
fact that the multi-view data share a common latent embed-
ding despite the diversity among the views. Meanwhile, the
proposed model benefits from the success of the deep gen-
erative learning, which can capture the data distribution by
neural networks.

In summary, our contributions are as follows.
• We present to learn a shared generative latent representa-

tion for multi-view clustering. Specifically, the generative
approach assumes that the data of different views share
a commonly conditional distribution of hidden variables
given observed data and the hidden data are sampled in-
dependently from a mixture of Gaussian distributions.

• To better exploit the information from multiple views,
we introduce a set of non-negative combination weights
which will be learned jointly with the deep autoencoders
network in a unified framework.

• We conduct a number of numerical experiments showing
that the proposed method outperforms the state-of-the-art
clustering models on several famous datasets including
large-scale multi-view data.

Related Works

In literature, there are a few studies on clustering using
deep neural networks (Ji et al. 2017; Peng et al. 2016;
Tian et al. 2014; Xie, Girshick, and Farhadi 2016; Yang
et al. 2017). In a sense, the algorithms are roughly divided
into two categories, i.e., separately and jointly deep cluster-
ing approaches. The earlier deep clustering algorithms (Ji
et al. 2017; Peng et al. 2016; Tian et al. 2014) often work
in two stages: firstly, extracting deep features and perform-
ing traditional clustering successively, such as the K-means
and spectral clustering, for the final segmentation. Yet the

separated process does not help learn clustering favourable
features. To this end, the jointly feature learning and clus-
tering methods (Xie, Girshick, and Farhadi 2016; Yang et
al. 2017) are proposed based on deep neural networks. In
(Xie, Girshick, and Farhadi 2016), Xie et al. presented Deep
Embedded Clustering (DEC) to learn a mapping from the
data space to a lower-dimensional feature space, where it
iteratively optimizes a Kullback-Leibler (KL) divergence
based clustering objective. In (Yang et al. 2017), Yang et al.
proposed a dimensionality reduction jointly with K-means
clustering framework, where deep neural networks are ap-
plied to dimensionality reduction.

However, due to the limitation of the similarity measures
in the aforementioned methods, the hidden, hierarchical de-
pendencies in the latent space of data are often not able
to be captured effectively. Instead, deep generative models
were built to better handle the rich latent structures within
data (Jiang et al. 2017). In essence, deep generative models
are utilized to estimate the density of observed data under
some assumptions about its latent structure, i.e., the hidden
causes. Recently, Jiang et al. (Jiang et al. 2017) proposed a
novel clustering framework, by integrating VAE and a GMM
for clustering tasks, namely Variational Deep Embedding
(VaDE). Unfortunately, as this method mainly focuses on
single-view data, the complementary information from mul-
tiple heterogeneous views cannot be efficiently exploited. In
other words, the existing generative model cannot deal with
the shared latent representations for modeling the generative
process of each view data.

The Proposed Method

The Architecture

Given a collection of multi-view data set {X(v) ∈ R
dv×n}

(v = 1, 2, ...,m), totally m views, it is reasonable to as-
sume that the i-th sample of the v-th view x

(v)
i ∈ R

dv is
generated by some unknown process, for example, from an
unobserved continuous variable z ∈ R

d. The variable z is
a common hidden representation shared by all views. Fur-
thermore, in a typical setting, each sample x(v) of a view is
assumed to be generated through a two-stage process: first
the hidden variable z is generated according to some prior
distribution and then the observed sample x(v) is yielded by
some conditional distributions pθ(v)(x(v)|z). Usually, due to
the unknown of the z and parameters θ, the prior pθ(z) and
the likelihood pθ(v)(x(v)|z) are hidden.

For clustering tasks, it is desired that the observed sam-
ple is generated jointly according to the latent variable z
and an assumed clustering variable c. However, the most
existing variational autoencoders are not suitable for clus-
tering tasks by design, even to say nothing of multi-view
clustering. Therefore, we are motivated to present a novel
multi-view clustering under the VAE framework, by incor-
porating clustering-promoting objective intuitively. Ideally
we shall assume that the sample generative process is given
by the new likelihood pθ(v)(x(v)|z, c), conditioned on both
the hidden variable z and the cluster label c. However for
simplicity we break the direct dependence of x(v) on c con-
ditioned on an assumed Gaussian mixture variable z. The
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proposed framework is shown in the right panel of Figure 1.
In this architecture, multi-view samples {x(v)} are generated
by using DNN f(·) to decode the common hidden variable
z, which is sampled by GMM as we assumed. To efficiently
infer the posterior of both z and c from the information of
multiple views, a novel weighted target distribution is intro-
duced, based on individual variational distribution of z from
each view. In order to optimize the evidence lower bound
(ELBO), similar to VAE, we use DNN g(·) to encode ob-
served data and incorporate the distribution of multiple em-
beddings to infer the shared latent representation z.

The Objective

For the sake of simplicity, we express a generic multiview
variable as {x(v)} := {x(1), ..., x(v), ..., x(m)} where x(v)

is the general variable of the v-th view. Consider the la-
tent variables z and the discrete latent variable c (c =
1, 2, · · · ,K). Without loss of generality, in light of clus-
tering task under the framework of VAE, we aim to com-
pute the common probabilistic cluster assignment of {x(v)}
shared across views, denoted by p(z, c|{x(v)}). By the
Bayes theorem, the corresponding posterior of z and c given
{x(v)} is computed as follow.

p(z, c|{x(v)}) = p({x(v)}|z, c)p(z, c)∫
z

∑
c p({x(v)}|z, c)p(z, c)dz

, (1)

where we assume the views are independent, i.e.,
p({x(v)}|z, c) = ∏m

v=1 p(x
(v)|z, c)1.

As the integral is intractable, it is hard to calculate
the posterior. Inspired by the principle of VAE (Kingma
and Welling 2014), we turn to compute an appropriate
posterior q(z, c|{x(v)}) to approximate the true posterior
p(z, c|{x(v)}) by minimizing the following KL divergence
between them

DKL(q(z, c|{x(v)})||p(z, c|{x(v)})

=

∫
z

∑
c

q(z, c|{x(v)}) log q(z, c|{x(v)})
p(z, c|{x(v)})dz

= −Eq(z,c|{x(v)})

[
log

p({x(v)}, z, c)
q(z, c|{x(v)})

]
+ log p({x(v)}),

(2)

where

LELBO({x(v)}) �
= Eq(z,c|{x(v)})

[
log

p({x(v)}, z, c)
q(z, c|{x(v)})

]
(3)

is called the evidence lower bound (ELBO) and
log p({x(v)}) is log-likelihood.

Minimizing KL divergence is equivalent to maximizing
the ELBO. Often q(z, c|{x(v)}) is assumed to be a mean-
field distribution and can be readily factorized by

q(z, c|{x(v)}) = q(z|{x(v)})q(c|{x(v)}). (4)

Due to the powerfulness of DNN to approximate non-
linear function, we here introduce a neural network g(·)

1Hereafter the model parameter θ(v) is omitted.

to infer q(z|{x(v)}), with parameters {φ(v)}mv=1. That is,
DNN is utilized to encode observed view data into latent
representation. Meanwhile, to incorporate multi-view infor-
mation, we propose a combined variational approximation
q(z|{x(v)}). Considering the importance of different views,
we introduce a weight vector w = [w1, w2, ..., wm]T (wv ≥
0,
∑

wv = 1 ) to fuse the distribution of hidden variables, so
that the consistency and complementary of multi-view data
can be better exploited. In particular, we assume the varia-
tional approximation to the posterior of latent representation
z to be a Gaussian by integrating information from multiple
views as follows.

[μ̃(v); log(σ̃(v))2] = g(x(v);φ(v)), (5)

μ̃ =
m∑
i=1

wiμ̃
(i), (6)

σ̃2 =

m∑
i=1

(wiσ̃
(i))2, (7)

q(z|{x(v)}) = N (z|μ̃, σ̃2I), (8)

where I is an identity matrix with suitable dimension. In the
standard VAE, each pair of μ̃(v) and (σ̃(v))2 defines a Gaus-
sian for latent variable z in the v-th view. We have fused the
information in Eqs. (5) - (8).

Furthermore, ELBO can be rewritten by

LELBO({x(v)})

= Eq(z,c|{x(v)})

[
log

p({x(v)}, z, c)
q(z, c|{x(v)})

]

=

∫
z

q(z|{x(v)}) log p({x(v)}|z)p(z)
q(z|{x(v)}) dz

−
∫
z

q(z|{x(v)})DKL(q(c|{x(v)})||p(c|z))dz, (9)

Hence, we set DKL(q(c|{x(v)})||p(c|z)) ≡ 0 to maximize
LELBO({x(v)}), due to the first term has no relationship
with c and the second term is non-negative. As a result, we
use the following equation to compute q(c|{x(v)}), i.e.,

q(c|{x(v)}) = p(c|z) ≡ p(c)p(z|c)∑
c p(c)p(z|c)

. (10)

This means we are proposing a mixture model for the la-
tent prior p(z). Particularly we implement the latent prior
p(z) as a Gaussian mixture as follows,

p(c) = Cat(c|π), p(z|c) = N (z|μc, σ
2
cI),

where Cat(c|π) is the categorical distribution with param-
eter π = (π1, ..., πK) ∈ R

K
+ ,

∑
πc = 1 such that πc

(c = 1, ...,K) is the prior probability for cluster c, and both
μc and σ2

c (c = 1, ...,K) are the mean and the variance of
the c-th Gaussian component, respectively.

Once the latent variable z is produced according to the
GMM prior, the multi-view data generative process will de-
fined by, for the binary observed data,

μθ(v) = f(z; θ(v)), p(x(v)|z) = Ber(x(v)|μθ(v)),

6690



Figure 1: The architecture of the proposed multi-view model (Best seen on screen.). The data generative process under the
deep autoencoders framework is performed in three steps. (a). A cluster c is first picked from the categorical distribution; (b).
A shared latent representation z is sampled by GMM model coresponding to the prior picked cluster; (c). DNN f(z; θ(v))
decodes the latent embedding into an observable x(v). In the inference process, the encoder network g(·) and weighted fusion
to variational distribution are applied to infer the posterior of both z and c from the information of multiple views.

where f(z; θ(v)) is a deep neural network whose input
is z parameterized by θ(v), and Ber(μθ(v)) is multivariate
Bernoulli distribution parameterized by μθ(v) . Or for the
continuous data,

μθ(v) = f1(z; θ
(v)), (11)

log(σ2
θ(v)) = f2(z; θ

(v)), (12)

p(x(v)|z) = N (x(v)|μθ(v) , σ2
θ(v)), (13)

where f1(·) and f2(·) are all deep neural networks with ap-
propriate parameters θ(v), producing the mean and variance
for the Gaussian likelihoods. The generative process is de-
picted in the right part of Figure 1.

For the v-th view, since x(v) and c are independent con-
ditioned on z, the joint probability p({x(v)}, z, c) can be de-
composed by,

p({x(v)}, z, c) == p({x(v)}|z)p(z|c)p(c). (14)

Next, to use the Stochastic Gradient Variational Bayes
(SGVB) (Kingma and Welling 2014), by using the reparam-
eterization trick,the objective function of our method can be
formulated by,

LELBO({x(v)}) =
K∑

c=1

γc log
πc

γc
+

1

2

J∑

j=1

(1 + log σ̃2|j)

+
1

L

m∑

v=1

L∑

ι=1

D∑

i=1

x
(v)
i log μθ(v) |li + (1− x

(v)
i ) log(1− μθ(v) |li)

− 1

2

K∑

c=1

γc

J∑

j=1

(log σ2
c |j +

σ̃2|j
σ2
c |j

+
(μ̃|j − μc|j)2

σ2
c |j

), (15)

where μθ(v) is outputs of the DNN f(·), L denotes the num-
ber of Monte Carlo samples in the SGVB estimator and is
usually set to be 1. The dimension for x(v) and μθ(v) is D

while the dimension for μc, μ̃, σ
2
c and σ̃2 is J . x(v)i denotes

the i-th element of x(v), ∗|li represents l-th sample and i-th
element of ∗, and ∗|j means the j-th element of ∗. γc denotes
q(c|{x(v)}) for simplicity.

For the continuous data, the objective function is rewritten
as:

LELBO({x(v)}) =
K∑
c=1

γc log
πc

γc
+

1

2

J∑
j=1

(1 + log σ̃2|j)

+
1

L

m∑
v=1

L∑
ι=1

D∑
i=1

−1

2
log 2πσ2

θ(v) |li −
(x

(v)
i − μθ(v) |li)2
2σ2

θ(v) |li

− 1

2

K∑
c=1

γc

J∑
j=1

(log σ2
c |j +

σ̃2|j
σ2
c |j

+
(μ̃|j − μc|j)2

σ2
c |j

),

(16)

where μθ(v) and σ2
θ(v) can be obtained by Eq. (11) and Eq.

(12), respectively. Intuitively, the third term of Eq. (16) is
used for reconstruction, and the rest is the KL divergence
from the Gaussian mixture prior p(z, c) to the variational
posterior q(z, c|{x(v)}). As such, the model can not only
generate the samples well, but make variational inference
close to our hypothesis.

Remark: Note that although our model is also equipped
with VAE and GMM, it is distinct from the existing work
(Du, Du, and He 2017; Jiang et al. 2017). Our model focuses
on multi-view clustering task by simultaneously learning the
generative network, inference network and the weight of
each view.

By a direct application of the chain rule and estimators,
similar to the work (Du, Du, and He 2017; Jiang et al. 2017),
the gradients of the loss for Eq. (15) is calculated readily.
To train the model, the estimated gradients in conjunction
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Table 1: Dataset Summary

Datasets # of samples # of views # of classes
UCI digits 2,000 6 10
Caltech-7 1,474 6 7

ORL 400 3 40
NUS-WIDE-Object 30,000 5 31

with standard stochastic gradient based optimization meth-
ods, such as SGD or Adam, are applied. Overall, the pro-
posed model can be trained with reparameterization trick for
back-propagation through the mixed Gaussian latent vari-
ables. After training, the shared latent representation z is
achieved for each sample xi(i = 1, 2, ..., n). Finally the final
cluster assignment is computed by Eq. (10).

Experimental Results

Datasets

To evaluate the performance of the proposed DMVCVAE,
we select four real-world datasets including digits, object
and facial images. A summary of the dataset statistics is also
provided in Table 1.

• UCI digits2 consists of features of handwritten digits of
0 to 9 extracted from UCI machine learning repository.
It contains 2000 data points with 200 samples for each
digit. These digits are represented by six types of features,
including pixel averages in 2 × 3 windows (PIX) of di-
mension 240, Fourier coefficients of the character shapes-
dimension 76, profile correlations (FAC) of dimension
216, Zernike moments (ZER) of dimension 47, Karhunen-
Loeve coefficients (KAR) of dimension 64 and morpho-
logical features (MOR) of dimension 6.

• Caltech 101 is an object recognition dataset (Li, Fergus,
and Perona 2004) containing 8677 images of 101 cate-
gories. We chose 7 classes of Caltech 101 with 1474 im-
ages, i.e., Face, Motorbikes, Dolla-Bill, Garfield, Snoopy,
Stop-Sign and Windsor-Chair. There are six different
views, including Gabor features of dimension of 48,
wavelet moments of dimension 40, CENTRIST features
of dimension 254, histogram of oriented gradients(HOG)
of dimension 1984, GIST features of dimension 512, and
local binary patterns (LBP) of dimension 928.

• ORL contains 10 different images from each of 40 dis-
tinct subjects. For some subjects, the images were taken
at different times with varying lighting, facial expressions
and facial details. It consists of three types of features:
intensity of dimension 4096, LBP features of dimension
3304 and Gabor features of dimension 6750.

• NUS-WIDE-Object (NUS) is a dataset for object recog-
nition which consists of 30000 images in 31 classes. We
use 5 features provided by the web-site, i.e. 65 dimen-
sion color Histogram (CH), 226 dimension color mo-
ments (CM), 145 dimension color correlation (CORR),
74 dimension edge distribution and 129 wavelet texture.

2https://archive.ics.uci.edu/ml/datasets/Multiple+Features

Experiment Settings

In our experiments, the fully connected network and same
architecture settings as DEC (Xie, Girshick, and Farhadi
2016) are used. More specifically, the architectures of
g(x(v);φ(v)) and f(z; θ(v)) are dv-500-500-200-10 and 10-
2000-500-500-dv , respectively, where dv is input dimen-
sionality of each view. Here, other architectures such as
Convolutional Neural Network (CNN) and Deep Belief Net-
work (DBN) are also viable options. We use Adam optimizer
(Kingma and Ba 2015) to maximize the objective function,
and set the learning rate to be 0.0001 with a decay of 0.9 for
every 10 epochs.

Initializing the parameters of the deep neural network is
usually utilized to avoid the problem that the model might
get stuck in a undesirable local minima or saddle points.
Here, we use layer-wise pre-training method (Bengio et al.
2007) for training DNN g(·) and f(·). After pre-training, the
network g(·) is adopted to project input data points into the
latent representation z, and then we perform K-means to z
to obtain K initial centroids of GMM μc(c ∈ {1, · · · ,K}).
Besides, the weights w of Eqs. (6) and (7) are initialized to
1
m for each view and the parameter of GMM πk is initialized
to 1

K .
Three popular metrics are used to evaluate the cluster-

ing performance, i.e. clustering accuracy (ACC), normalized
mutual information (NMI) and adjusted rand index (ARI), in
which the clustering accuracy is defined by

ACC = max
m∈M

∑N
i=1 1{li = m(ci)}

N
,

where li is the ground-truth label, ci is the cluster assign-
ment obtained by the model, and M ranges over all possible
one-to-one mappings between cluster assignment and labels.
The mapping m(·) can be efficiently fulfilled by the Kuhn-
Munkres algorithm (Chen, Donoho, and Saunders 2001).
NMI indicates the correlation between predicted labels and
ground truth labels. ARI scales from −1 to 1, which mea-
sures the similarity between two data clusterings, higher
value usually means better clustering performance. As each
measure penalizes or favors different properties in the clus-
tering, we report results on all the measures for a compre-
hensive evaluation.

Baseline Algorithms

We compare the proposed DMVCVAE with the following
clustering methods including both shallow models and deep
models.

• Single View: Choosing the single view of the best cluster-
ing performance using the graph Laplacian derived from
and performing spectral clustering on it.

• Feature Concatenation (abbreviated to Feature Concat.):
Concatenating the features of all views and conducting
spectral clustering on it.

• Kernel Addition: Building an affinity matrix from every
feature and taking an average of them, then inputting to a
spectral clustering algorithm.
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• MultiNMF (Liu et al. 2013): Multi-view NMF applies
NMF to project each view data to the common latent sub-
space. This method can be roughly considered as one-
layer version of our proposed method.

• LT-MSC (Zhang et al. 2015): Low-rank tensor constrained
multi-view subspace clustering proposes a multi-view
clustering by considering the subspace representation ma-
trices of different views as a tensor.

• SCMV-3DT (Yin et al. 2019): Low-rank multi-view clus-
tering in third-order tensor space via t-linear combination
using t-product based on the circular convolution to re-
construct multi-view tensorial data by itself with sparse
and low-rank penalty.

• DCCA (Andrew et al. 2013): Providing flexible nonlinear
representations with respect to the correlation objective
measured on unseen data.

• DCCAE (Wang et al. 2015): Combining the DCCA ob-
jective and reconstruction errors of the two views.

• VCCAP (Wang et al. 2016): Using a deep generative
method to achieve a natural idea that the multiple views
can be generated from a small set of shared latent vari-
ables.

Performance Evaluation

We first compare our method with six shallow models on
the chosen test datasets. The parameter settings for the com-
pared methods are done according to their authors’ sugges-
tions for their best clustering scores. The clustering perfor-
mance of different methods are achieved by running 10 tri-
als and reporting the average score of the performance mea-
sures, shown in Table 2. The bold numbers highlight the best
results.

As can be seen, except for the Single View, the other
methods exploit all of views data with an improved perfor-
mance than using a single view.In terms of all of these evalu-
ation criteria, our proposed method consistently outperforms
the shallow models for UCI digits and Caltech-7 datasets.
In particularly, for Caltech-7, our method outperforms the
second best algorithm in terms of ACC and NMI by 17.7%
and 25.0%, respectively. While for ORL dataset, LT-MSC
and SCMV-3DT achieves the best result in terms of NMI
and ARI, respectively. This may be explained by the small
size of ORL dataset, since large-scale datasets often lead to
better performance for deep models. The results also verify
that our model DMVCVAE significantly benefits from deep
learning.

To further verify the performance of our approach among
the deep models, we report the comparisons between the
deep models, given in Table 3. Since these three models can
only handle two views data, we tested all the two view com-
bination and the best clustering score is reported finally. The
hyper-parameters of the compared models are suggested by
their papers. Specifically, FAC and KAR features are cho-
sen in UCI digits, GIST and LBP features for Caltech-7, and
LBP and Gabor features for ORL. For fair comparison, we
perform the proposed model on the same views. From Ta-

Table 2: Clustering performance comparison between the
propose model and shallows methods.

Methods UCI-digits Caltech-7 ORL
ACC NMI ARI ACC NMI ARI ACC NMI ARI

BestView 0.6956 0.6424 0.7301 0.4100 0.4119 0.2582 0.6700 0.8477 0.5676
Feature Concat. 0.6973 0.6973 0.6064 0.3800 0.3410 0.2048 0.6700 0.8329 0.5590
Kernel Addition 0.7700 0.7456 0.3700 0.3936 0.2573 0.6570 0.6000 0.8062 0.4797

MultiNMF 0.7760 0.7041 0.6031 0.3602 0.3156 0.1965 0.6825 0.8393 0.5736
LT-MSC 0.8422 0.8217 0.7584 0.5665 0.5914 0.4182 0.7587 0.9094 0.7093

SCMV-3DT 0.9300 0.8608 0.8459 0.6246 0.6031 0.4693 0.7947 0.9088 0.7381

Ours 0.9570 0.9166 0.9107 0.8014 0.8538 0.7048 0.7975 0.9013 0.7254

Table 3: Clustering performance comparison among the
deep models.

Methods UCI-digits Caltech-7 ORL
ACC NMI ARI ACC NMI ARI ACC NMI ARI

DCCA 0.8195 0.8020 0.7424 0.8242 0.6781 0.7131 0.6125 0.8094 0.4699
DCCAE 0.8205 0.8057 0.7458 0.8462 0.7054 0.7319 0.6425 0,8115 0.5048
VCCAP 0.7480 0.7320 0.6277 0.8372 0.6301 0.7206 0.4150 0.6440 0.2418

Ours 0.8875 0.8076 0.7765 0.8568 0.7386 0.7826 0.6950 0.8356 0.5643

ble 3, it is observed that our proposed method significantly
outperforms others on all criteria.

Relation of our work to VaDE

Our work is inspired by the Variantional Deep Embedding
(VaDE) (Jiang et al. 2017), which mainly focuses the clus-
tering for single-view data. However, VaDE cannot be di-
rectly utilized for multi-view data given its natural structure.
Thus in this subsection, we will comprehensively compare
ours with VaDE on the datasets, by applying VaDE to sin-
gle view and concatenated feature respectively. In particu-
lar, applying VaDE to single view is to use each view as
input, while the concatenated feature is attained by stacking
all views to be one long vector, such that the task is per-
formed by single-view clustering. The results are reported
in Tables 4- 6. As can be seen, our method achieves the
best performance in terms of all measures. For UCI-digits
dataset, the score of VaDE with PIX in Single View is the
second best. Note that PIX view represents the pixel values
of raw images. The similar cases are HOG for Caltech-7 and
Intensity feature for ORL respectively. Meanwhile, the per-
formance of Feature Concatenation is even worse than that
of using single view. This demonstrates that it is not a feasi-
ble way to directly apply VaDE to multi-view clustering. A
superior approach is verified to be fully aware of consistency
and complementary information from all views.

Visualizations

In Figure 2, we visualize the latent space on Caltech-7
dataset by various deep models. t-SNE (Maaten and Hin-
ton 2008) is applied to reducing the dimensionality to 2-
dimensional space. It can be observed that the embed-
ding learned by DMVCVAE is better than that by DCCAE
and VCCAP. Figure 3 shows the learned representations of
DMVCVAE on UCI digits dataset. Specifically, we see that,

Table 4: Clustering performance for VaDE on UCI-digits.

UCI-digits PIX FOU FAC ZER KAR MOR Feat. Ours
ACC 0.8341 0.3741 0.7961 0.3385 0.4321 0.2891 0.8055 0.9570

NMI 0.7211 0.2233 0.6771 0.1748 0.2547 0.4958 0.7454 0.9166

ARI 0.6765 0.1498 0.6081 0.1062 0.1735 0.2545 0.6682 0.9107
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(a) DCCAE (b) VCCAP (c) DMVCVAE

Figure 2: Visualization to show the latent subspaces of Caltech-7 dataset.

(a) Epoch 10 (b) Epoch 40 (c) Epoch 70 (d) Epoch 100

Figure 3: Visualization to show the latent subspaces of UCI digits by DMVCVAE visualization from epoch 10 to 100.

Table 5: Clustering performance for VaDE on Caltech-7.

Caltech-7 Gabor wavelet CENT. HOG GIST LBP Feat. Ours
ACC 0.3868 0.4981 0.4825 0.6078 0.4954 0.4689 0.5752 0.8014

NMI 0.4262 0.5440 0.5270 0.6427 0.5447 0.5220 0.6143 0.8538

ARI 0.3130 0.3934 0.3666 0.4979 0.4026 0.3884 0.4620 0.7048

as training progressing, the latent feature clusters become
more and more separated, suggesting that the overall archi-
tecture motivates seeking informative representations with
better clustering performance.

Experiment on large-scale multi-view data

With the unprecedentedly explosive growth in the volume
of visual data, how to effectively segment large-scale multi-
view data becomes an interesting but challenging problem
(Li et al. 2015; Zhang et al. 2019). Therefore, we further
test our model on the large-scale dataset, i.e., NUS-WIDE-
Object. As the aforementioned compared methods cannot
handle the large-scale data, we compare with the recent
work, such as Large-Scale Multi-View Spectral Clustering
(LSMVSC) (Li et al. 2015) and Binary Multi-View Clus-
tering (BMVC) (Zhang et al. 2019). In this experiment, we
replace the ARI measure with PURITY such that the com-
parison will be fair3. By the similar settings, the clustering
results are reported in Table 7. As can be seen, our proposed
approach achieved better clustering performance against the
compared ones and verified the strong capacity on handling
large-scale multi-view clustering.

Conclusions

In this paper, we proposed a novel multi-view clustering al-
gorithm by learning a shared latent representation under the
VAE framework. The shared latent embeddings, multi-view

3Here we presented the best reported results from their original
papers.

Table 6: Clustering performance for VaDE on ORL.

ORL Intensity LBP Gabor Feat. Ours
ACC 0.5250 0.4175 0.3260 0.4845 0.7975

NMI 0.7081 0.5612 0.5058 0.6958 0.9013

ARI 0.4127 0.3650 0.2486 0.3725 0.7254

Table 7: Clustering performance for large-scale dataset.

Methods NUS-WIDE-Object
ACC NMI PURITY

LSMVSC – 0.1493 0.2821
BMVC 0.1680 0.1621 0.2872

Ours 0.1909 0.2129 0.3168

weights and deep autoencoders networks are simultaneously
learned in a unified framework such that the final cluster-
ing assignment is intuitively achieved. Experimental results
show that the proposed method can provide better cluster-
ing solutions than other state-of-the-art approaches, includ-
ing the shallow models and deep models.
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