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Abstract

Kernel Regularized Least Squares (KRLS) is a fundamental
learner in machine learning. However, due to the high time
and space requirements, it has no capability to large scale
scenarios. Therefore, we propose DC-NY, a novel algorithm
that combines divide-and-conquer method, Nyström, conju-
gate gradient, and preconditioning to scale up KRLS, has the
same accuracy of exact KRLS and the minimum time and
space complexity compared to the state-of-the-art approxi-
mate KRLS estimates. We present a theoretical analysis of
DC-NY, including a novel error decomposition with the op-
timal statistical accuracy guarantees. Extensive experimental
results on several real-world large-scale datasets containing
up to 1M data points show that DC-NY significantly outper-
forms the state-of-the-art approximate KRLS estimates.

Introduction

In nonparametric statistical learning, kernel methods (Liu et
al. 2018; Li et al. 2018; Liu and Liao 2014; Ding et al. 2018;
Liu et al. 2019) have made remarkable achievements for
kernel regularized least squares (KRLS) (Liu et al. 2017;
Taylor and Cristianini 2004; Yin et al. 2019; Liu and Liao
2015; Liu, Jiang, and Liao 2014) by projecting data into
high-dimensional space. Unfortunately, due to high time
and memory consumption, typically at least quadratic in the
number of examples, KRLS is unfeasible to deal with large-
scale learning despite excellent theoretical guarantee.

To address the problems, a variety of practical approx-
imate approaches have been designed to avoid the costly
expense of finding an exact minimizer: (1) Iterative opti-
mization (Lo et al. 2008). It provides regularization against
over-fitting and improves computational efficiency by lim-
ited and small iterations. The representative include gradi-
ent descent (Carratino, Rudi, and Rosasco 2018; Lin and
Cevher 2018), preconditioned conjugate gradient (Fasshauer
and Mccourt 2012; Yang, Pilanci, and Wainwright 2015;
Gonen, Orabona, and Shalev-Shwartz 2016; Ma and Belkin
2017), and accelerated extensions (Raskutti, Wainwright,
and Yu 2014; Cutajar et al. 2016; Bo et al. 2014); (2) Ran-
dom projections (Williams and Seeger 2001; Smola 2000).
It reduces dimensions of data to reduce the cost of matrix
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multiplication. Classical examples include Nyström (Rudi,
Carratino, and Rosasco 2017; Tu et al. 2016) and random
features (Rudi, Camoriano, and Rosasco 2016; Rahimi and
Recht 2007); (3) Distributed learning (Guo, Lin, and Shi
2017). It computes KRLS in parallel by dividing into some
subsets and then merge the result from each subset to get
the final approximation. Recently, combinations of those
accelerated algorithms have also captured a lot of atten-
tion, of which learning properties have been explored in-
cluding the combination of divide-and-conquer and SGD
(Lin and Cevher 2018) and the combination of divide-and-
conquer and random features (Li, Liu, and Wang 2019).
Even though the state-of-the-art KRLS estimates can pre-
serve the same optimal statistical accuracy of exact KRLS,
the computational requirements of them are still prohibitive
faced with large-scale datasets, namely, there are no corre-
sponding computational lower bounds.

In this paper, we investigate the algorithm of combin-
ing divide-and-conquer, Nyström, conjugate gradient and
preconditioning to deal with extremely large-scale appli-
cations, which achieves the same accuracy of exact kernel
regularized least squares with only a fraction of computa-
tions. Complexity analysis shows that the proposed algo-
rithm solve KRLS with max(Nm

p ,m3) time and Nm
p space,

where N is the number of data points, m is the sampling
scale, and p is the number of partitions. Our theoretical anal-
ysis derives optimal statistical rates in a basic setting. Under
benign conditions, the regularization parameter λ � 1/

√
N,

the proposed algorithm can reach the optimal convergence
rate 1/N . Most importantly, extensive experimental results
on large-scale datasets containing up to 1M data points show
that the proposed algorithm can process millions of data
points in just several seconds and has absolute advantage
over the state-of-the-art approximate KRLS in terms of effi-
ciency and accuracy. To the best of our knowledge, it is the
first time utilizing these approximate methods and achieving
fruitful results.

The reminder of the paper is organized as below: Sec-
tion 2 introduces the related work. Section 3 states the back-
ground and the proposed approximate KRLS estimator. The
corresponding theoretical assessments follows in section 4.
Finally, we present the experiments and conclusions.
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Table 1: Computational complexity of the classical approximation algorithms in KRLS estimates under the condition of the
same statistical accuracy. The second, third, fourth, fifth and sixth columns correspond to the training time complexity, space
complexity, the number of partitions p, sampling scale m, and the value of r and γ, respectively. N denotes the number of
training data, where N/p > m.

Algorithms Time Space p m r, γ

KRLS (Caponnetto and Vito 2007) N3 N2 / / /
Iterative (Avron, Clarkson, and Woodruff 2017) N2 N2 / / /
Random Features (Rudi, Camoriano, and Rosasco 2016) Nm2 Nm / N

(2r−1)γ+1
2r+γ [1/2,1], [0,1]

Nyström (Rudi, Camoriano, and Rosasco 2015) Nm2 Nm / N
1

2r+γ [1/2,1], (0,1]
Nyström-iterative (Rudi, Carratino, and Rosasco 2017) Nm+m3 Nm / N

1
2r+γ [1/2,1], (0,1]

DC (Guo, Lin, and Shi 2017) N3

p3
N2

p2 N
2r−1
2r+γ / [1/2,1], (0,1]

DC-Random Features (Li, Liu, and Wang 2019) Nm2

p
Nm
p N

2r−1
2r+γ N

(2r−1)γ+1
2r+γ [1/2,1], [0,1]

DC-NY(This paper) max(Nm
p ,m3) Nm

p N
2r−1
2r+γ N

1
2r+γ (1/2,1], (0,1]

Related Work

To overcome the computational and memory bottleneck
of KRLS, practical algorithms are developed, including
Nyström approach (Rudi, Carratino, and Rosasco 2017;
Camoriano et al. 2016) and divide-and-conquer (Zhang,
Duchi, and Wainwright 2013; Li, Liu, and Wang 2019) of
which statistical properties are well studied. Nyström (Rudi,
Camoriano, and Rosasco 2015; Camoriano et al. 2016) tact-
fully constructs some small-scale matrices, by sampling the
dataset, to approximate the raw kernel matrix so that the time
and space complexity can make a sudden drop. The typical
Nyström method FALKON, proposed in (Rudi, Carratino,
and Rosasco 2017), combines Nyström and preconditioned
conjugate gradient (PCG) to obtain the optimal statistical ac-
curacy. Divide-and-conquer methods divide the dataset into
several small blocks so as to reduce the number of data in
one processor. The representational method (Guo, Lin, and
Shi 2017) utilizes divide-and-conquer to obtain a substantial
reduction in computation time.

Further, we combine divide-and-conquer and Nyström to
approximate KRLS, and accelerate the solution with PCG
so as to obtain high computation gains and sound statisti-
cal guarantees. It is a non-trivial extension of these approxi-
mate approaches with technical challenges in algorithm de-
sign and theoretical analysis. Based on a novel partitioning,
clever scaling, and the standard integral operator framework,
the error is bounded tightly to obtain the optimal statisti-
cal performance. Table 1 shows the main information of the
state-of-the-art KRLS estimators with the optimal statisti-
cal accuracy. Evidently, a substantial step in provably reduc-
ing the time complexity is taken by us when we have the
same statistical accuracy. In detail, compared to the state-
of-the-art approximate KRLS estimates, we reduce the time
complexity at least by a factor of min(m, N

p
1
m ), where the

number of data points in each processor N
p is bigger than the

sampling scale m. Considering the concrete values of m and
p this leads to a computational cost for optimal generaliza-
tion, we reduce the space complexity by a factor of N

(2r−1)γ
2r+γ

compared to the state-of-the-art KRLS estimate.

Statistical and Computational Trade-offs in

KRLS

Let ρ be a probability measure on X × R, which is fixed
but unknown and where, X and R are the input and out-
put spaces. Data (xi, yi)

N
i=1 are sampled identically and in-

dependently from X × R with respect ρ. In the supervised
learning, the problem of estimating a function from random
noisy data can be formalized as minimizing the expected risk

inf
f∈H

E(f), E(f) =
∫
(f(x)− y)2dρ(x, y), (1)

where H is a space of candidate solutions. An ideal empiri-
cal solution f̂ should correspond to small excess risk

R(f̂) = E(f̂)− inf
f∈H

E(f). (2)

Kernel Regularized Least Squares (KRLS)

Kernel Regularized Least Squares (KRLS) introduces the
kernel trick which is based on choosing a separable repro-
ducing kernel Hibert space (RKHS) H with inner product
< ·, · >H. The reproducing kernel K : X × X → R is a
positive definite kernel, measurable and uniformly bounded.
We denote with Kx the function K(x, ·) and have (KN )ij =
K(xi, xj) for all x1, . . . , xN ∈ X. The KRLS method for
solving the problem in Eq.(1) can be expressed as

f̂N,λ = argmin
f∈H

1

N

N∑
i=1

(f(xi)−yi)
2+λ‖f‖2H, λ > 0. (3)

It is obvious that a solution f̂N,λ exists and is unique. Ac-
cording to the representer theorem (Schölkopf et al. 2002),
Eq. (3) can be transferred to

f̂N,λ(x) =

N∑
i=1

α̂iK(xi, x)

with

α̂ = (KN + λNI)−1y,

(4)
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where x1, . . . , xN are the data points, y = (y1, . . . , yN ) are
the corresponding labels, and KN is the kernel matrix.

Solving Eq.(4) is challenging as N increases: the time
cost is O(N3) for the linear system and the space cost is
O(N2) for storing the kernel matrix. To accelerate KRLS
with accuracy guarantees, we proposed the following meth-
ods.

Divide-and-Conquer KRLS with Nyström

In this paper, we exploit divide-and-conquer learning, along
with Nyström, preconditioning and conjugate gradient, to
process the large-scale problem, which has the minimum
time and space complexity compared to the state-of-the-art
KRLS estimates, and has the same accuracy of exact ker-
nel regularized least squares. Meanwhile, we provide a solid
theoretical proof to guarantee the optimal convergence rate.

KRLS with Nyström We consider Nyström subsampling
to reduce computational requirements, which uses a smaller
matrix obtained from random sampling to approximate the
empirical kernel matrix. Thus, a smaller hypothesis space
Hm is introduced

Hm = {f |f =

m∑
i=1

αiK(x̃i, ·),α ∈ R
m},

where sampling scale m ≤ N , {x̃1, . . . , x̃m} are Nyström
centers sampled uniformly at random without replacement
from the training set. The corresponding minimizer over the
space Hm is in the form:

f̃m
λ (x) =

m∑
i=1

α̃iK(x̃i, x)

with

α̃ = (KT
NmKNm + λNKmm︸ ︷︷ ︸

H

)† KT
Nmy︸ ︷︷ ︸
z

,

(5)

where H† denotes the Moore-Penorse pseudoinverse of a
matrix H, (KNm)ij = K(xi, x̃j) with i ∈ {1, . . . , N}
and j ∈ {1, . . . ,m}, (Kmm)kj = K(x̃k, x̃j) with k, j ∈
{1, . . . , s} and y = [y1, . . . , ym]T ∈ R

N . Note that this
Nyström KRLS is a linear system.

KRLS with Nyström and PCG Gradient methods (Rudi,
Carratino, and Rosasco 2017; Kumar, Mohri, and Talwalkar
2012; Dieuleveut and Bach 2016) are general strategies for
the unconstrained optimization problem, which are sim-
plicity, low iteration consumption. The conjugate gradient
method (Saad 1996) is one of the most popular ones, which
does not need to specify the step-size and whose speed of
convergence can benefit from preconditioning. We can use
it to compute the coefficients α̃ in Eq.(5).

The idea behind preconditioning is to use a suitable ma-
trix P to define an equivalent linear system with better con-
dition number. Therefore, we consider random projections
to approximately compute a preconditioner:

P =
1√
N

T−1A−1, (6)

where T = chol(Kmm) and A = chol( 1
mTTT + λI).

chol() represents the Cholesky decomposition.
Therefore, the Nyström KRLS with conjugate gradient

and preconditioning can be seen as solving the following
system

PTHα̂ = PT z,

with

f̂m
λ (x) =

m∑
i=1

α̂iK(x̃i, x),

(7)

where α̂ is solved via t-step conjugate gradient algorithm
and t ∈ N.

Divide-and-Conquer KRLS with Nyström and PCG
For further saving computational costs, we consider divide-
and-conquer based on the solver in Eq.(7). Given the training
dataset D: {(xi, yi)}Ni=1, the data in D be randomly parti-
tioned into p disjoint subsets {Dj}pj=1 with |D1| = |D2| =
. . . = |Dp| = n. The j-th data subset is sent to the j-th
local processor, where j = [1, p], which is separately used
to the solver in Eq.(7) to get α̂j and the estimator f̂m

Dj ,λ
.

Namely, in each local processor, we use the Nyström method
in Eq.(7) to solve KRLS. Then, the final training estimator
f̂m
D,λ is obtained by combining the individual estimators to

the center, whose formula is as follows:

f̂m
D,λ =

1

p

p∑
j=1

f̂m
Dj ,λ. (8)

Algorithm 1 Divide-and-Conquer KRLS with Nyström
(DC-NY)
Input: Training dataset {xi}Ni=1 ∈ R

N×d, {yi}Ni=1 ∈ R
N ,

kernel parameter, regularization parameter λ, sampling scale
m, number of iterations t, number of partitions p.
Output: f̂m

D,λ(x)

1: randomly partition the training dataset into p disjoint
subsets {Dj}pj=1.

2: sent each data subset to each local processor.
3: // In parallel: take j-th local processor for example
4: get α̂j based on j-th training subset by solving the prob-

lem in Eq.(7).
5: get the estimator f̂m

Dj ,λ
(x) =

∑m
i=1 α̂j,iK(xi, x) in j-th

local processor.
6: // End parallelism
7: compute the final estimator by synthesizing each one:

f̂m
D,λ(x) =

1
p

∑p
j=1 f̂

m
Dj ,λ

(x).

In the prediction stage, based on the trained α̂j , the new
query point xtest is transmitted to each local processor to get
an estimation f̂m

Dj ,λ
(xtest), then we get the finally predicted

estimation f̂m
D,λ(xtest) = 1

p

∑p
j=1 f̂

m
Dj ,λ

(xtest) by synthe-

sizing each f̂m
Dj ,λ

(xtest).
The detailed process of proposed algorithm (DC-NY) is

summarized in Algorithm 1.
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Theoretical Assessments

In this section, for exploring the generalization ability,
we firstly introduce four standard assumptions, which are
widely used in statistical learning of squared loss (Smale and
Zhou 2007; Caponnetto and Vito 2007; Rudi, Carratino, and
Rosasco 2017; Li, Liu, and Wang 2019). Under the basic as-
sumptions, the theoretical bound of the proposed algorithm
is provided, which is the same as that of the exact Kernel
Regularized Least Squares (KRLS).

Assumption 1 There exists an fH ∈ H such that

E (fH) = min
f∈H

E(f). (9)

The above assumption is standard in kernel-based non-
parametric regression (Smale and Zhou 2007; Caponnetto
and Vito 2007), which shows that the problem in Eq.(1) has
at least a solution. We also need a basic assumption on data
distribution to derive probabilistic results.

Assumption 2 Let zx be the random variable zx = y −
fH(x), with x ∈ X, and y distributed according to ρ(y|x).
Then, there exists b, σ > 0 such that

E |zx|e ≤ 1

2
p!be−2σ2

for any e ≥ 2, almost everywhere on X.
This assumption is related to a noise assumption in the re-

gression model, used to control random quantities, and holds
the bounded y. When |y| ≤ b, ∀b > 1, the assumption is sat-
isfied with σ = b.

Assumption 3 Let C be the covariance operator as

C : H → H, 〈f, Cg〉H =

∫
X

f(x)g(x)dρX(x), ∀f, g ∈ H.

For λ > 0, we define the random variable Nx(λ) =
〈Kx, (C + λI)−1Kx〉H with x ∈ X distributed according
to ρX and let N (λ) = ENx(λ), N∞(λ) = supx∈X Nx(λ).
The kernel K is measurable, C is bounded. Moreover, for
all λ > 0 and a Q > 0,

N∞(λ) < ∞, (10)

N (λ) ≤ Qλ−γ , 0 < γ ≤ 1. (11)
This assumption controls the variance of the estimator

(Rudi, Camoriano, and Rosasco 2015). Typically, this as-
sumption ensures that the covariance operator is a well de-
fined linear, continuous, self-adjoint, positive operator. If
the kernel satisfied supx∈X K(x, x) = κ2 < ∞, we have
N∞(λ) ≤ κ2/λ for all λ > 0. γ affects the size of RKHS
H, namely it quantifies the capacity assumption. The more
benign situation with smaller H is obtained when γ → 0.
Note that, because the operator C is trace class, Eq.(11) al-
ways holds for γ = 1.

The bias/approximation error of KRLS can be con-
trolled by the following assumption (Rudi, Camoriano, and
Rosasco 2015).

Assumption 4 There exists s > 0, 1 ≤ R < ∞, such that∥∥C−sfH
∥∥
H < R. (12)

The degree, fH can be well approximated by functions
in the RKHS H, can be quantified by this assumption. This
assumption can be seen as regularity of fH.

In the following, we quantify the quality of empirical so-
lutions of Eq.(1) obtained by schemes of Eq.(8) in terms of
the quantities in Assumptions 1, 2, 3 and 4.
Theorem 1. Under Assumptions 1,2,3 and 4, let δ ∈ (0, 1],

r = 1/2 + min(s, 1/2), γ ∈ (0, 1], λ = N− 1
2r+γ , N ≥ n0

with n0 ∈ N, and f̂m
D,λ be the estimator. When

t ≥ O(log(N)), p ≤ N
2r−1
2r+γ , m ≥ O(N

1
2r+γ ),

with probability 1− δ, we have

E[E(f̂m
D,λ)]− E(fH) = O(N− 2r

2r+γ ). (13)

Remark 1. Note that, O(N− 2r
2r+γ ) is the optimal conver-

gence rate (Caponnetto and Vito 2007). Under the same
constraints, the convergence rate of the proposed algo-
rithm (DC-NY) is the same as the bounds of the exact
KRLS (Steinwart et al. 2009), DC (Guo, Lin, and Shi
2017), Nyström (Rudi, Camoriano, and Rosasco 2015) and
Nyström-iterative (Rudi, Carratino, and Rosasco 2017) by
p ≤ N

2r−1
2r+γ and m ≥ O

(
N

1
2r+γ

)
. Although Random

Features (Rudi, Camoriano, and Rosasco 2016) and DC-
Random Features (Li, Liu, and Wang 2019) can also ob-
tain the same optimal convergence rate as DC-NY, their
corresponding m ≥ O

(
N

(2r−1)γ+1
2r+γ

)
is bigger than our

m ≥ O
(
N

1
2r+γ

)
. Namely, under the same m, the accu-

racy of the proposed method is theoretically better than that
of Random Features and DC-Random Features. In the best
case (r = 1 and γ � 0), λ � 1/

√
N, DC-NY can reach

the convergence rate 1/N . Theoretical analysis demonstrate
that our algorithm is sound and effective.
Remark 2. The proposed algorithm DC-NY is an extraor-
dinary expansion of approximate KRLS. We succeed in con-
quering the bottleneck that optimal learning rate for the
combination of distributed learning algorithm, Nyström al-
gorithm, preconditioner and conjugate gradient. By intro-
ducing a novel technique of error decomposition and ap-
plying standard integral operator framework, the proposed
algorithm achieves a tight bound under some basic assump-
tions. This is the first time that combining these approximate
methods, achieving the optimal statistical accuracy and the
minimum time and space complexity.

Complexity Analysis

The dataset is divided into p subsets so that the number of
data in each processor is N/p.

The matrices T and A in Eq.(6) are upper-triangular ma-
trices, so that the time complexity of A−1x and A−Tx
(x is a vector) are all m2. The matrix P does not need to
be represented explicitly. The time cost for the precondi-
tioner, namely computing the matrices T and A, is 4

3m
3,
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Table 2: Datasets used in this paper.

Dataset Instance Feature
√
N Type σ in DC-NY λ in DC-NY

YearPredictionMSD 463,715 90 373 Regression 5.6 7.6× 10−6

covtype 581,012 54 638 Multi-Classification 16 3.8× 10−6

SUSY 1, 000, 000 18 837 Bi-Classification 8 1.5× 10−5

HIGGS 1, 000, 000 28 837 Bi-Classification 5.6 1.2× 10−4
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Figure 1: (a) validates average test error with respect to the iteration times t of the proposed algorithm with p = 4 and m = 2000,
(b) and (c) validate average test error and average training time with respect to the sampling scale m of the proposed algorithm
with t = 7 and p = 2, on YearPredictionMSD, covtype, SUSY and HIGGS datasets.

which includes two Cholesky decompositions and one prod-
uct of two triangular matrices. The time cost in Nyström
with conjugate gradient is O(Nmt/p). As stated in The-
orem 1, using the conjugate gradient solver typically re-
quires O(log(N)) iterations. Therefore, the time complex-
ity in DC-NY is O(max(Nm/p,m3)). Compared to exact
kernel regularized least squares whose time complexity is
O(N3), we reduce the time by a factor of min(N

2p
m , N3

m3 ).
Compared to the state-of-the-art approximate KRLS esti-
mates whose time complexity is O(Nm2

p ), we reduce the
time by a factor of min(m, N

p
1
m ), where the number of data

in each processor N
p is bigger than the sampling scale m.

In space complexity, the decisive element is the scale of
matrix Knm in Eq.(7). Therefore, the required space com-
plexity of the proposed algorithm is only O(Nm/p) which
is the minimum. Compared to the exact kernel regularized
least squares whose space complexity is O(N2), we reduce
the space complexity by a factor of Np

m . Considering the con-
crete values of m and p this leads to a computational cost for
optimal generalization, we reduce the space complexity by
a factor of N

(2r−1)γ
2r+γ compared to the state-of-the-art KRLS

estimate, where (2r−1)γ
2r+γ > 0. Details are shown in Table 1.

To the best of our knowledge, DC-NY currently possesses
the best time and space complexity to achieve the optimal
statistical accuracy of KRLS.

Error Decomposition

In this section, a novel technique of error decomposition is
introduced for DC-NY. The main task of proving the gen-
eralization performance is to bound excess risk R(f̂) =

E(f̂)− inff∈H E(f).
In order to describe the decomposition of excess risk

clearly, we provide some estimators in advance. f̂m
D,λ is our

estimator in Eq.(8), namely the estimator in Eq.(8) after t it-
erations of the conjugate gradient algorithm. f̃m

D,λ is the cor-
respondingly estimator by exact Nyström in Eq.(5), namely
the estimator in Eq.(8) after infinite iterations of the conju-
gate gradient algorithm. fm

Dj ,λ
focus on noise-free data on

the j-th subset Dj , fm
λ is the estimator in Eq.(5) on the total

dataset D. we obtain the error decomposition in Lemma 1.
Lemma 1. Let f̂m

D,λ, f̃m
D,λ, fm

Dj ,λ
, fm

λ and fH de defined as
above, we have

E

[
E(f̂m

D,λ)
]
− inf

f∈H
E(f)

≤2E
∥∥∥f̂m

D,λ − f̃m
D,λ

∥∥∥2
ρ
+

4

p2

p∑
j=1

E

∥∥∥f̃m
Dj ,λ − fm

Dj ,λ

∥∥∥2
ρ

+

(
8

p2
+

4

p

) p∑
j=1

E

∥∥∥fm
Dj ,λ − fm

λ

∥∥∥2
ρ

+

(
8

p2
+

4

p

) p∑
j=1

E ‖fm
λ − fH‖2ρ

(14)

The error decomposition and the standard integral opera-
tor framework are the keys to guarantee the generalization
performance of DC-NY algorithm. Our error bound is not
a simple sum of block errors. Instead, it uses clever scaling
and novel partitioning, then each error is transformed rea-
sonably and bounded tightly based on the integral operator.
The error bound obtained by the conventional summation of
block errors is much larger than that obtained by our method.

Experiment
We empirically analyze the performance of the proposed al-
gorithm compared with the classical algorithms, considering
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Figure 2: Average test error and partitions p of various algorithms on YearPredictionMSD, covtype, SUSY and HIGGS datasets.
With t = 7 and m = 2500.
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Figure 3: Average training time and partitions p of various algorithms on YearPredictionMSD, covtype, SUSY and HIGGS
datasets. With t = 7 and m = 2500.

a Gaussian kernel of width σ. The form of kernel function
is as below K(x1, x2) = e−

1
2σ2 (x1−x2)

2

. Each experiment
is measured on a server with 2.40GHz Intel(R) Xeon(R) E5-
2630 v3 CPU and 32 GB of RAM in Matlab.

Dataset Preparation

The comparative experiments are based on four real-world
datasets: SUSY, HIGGS, YearPredictionMSD and covtype,
from website 1. Each features has been normalized sub-
stracting its mean and dividing for its variance. The details
are shown in Table 2. We randomly sample 1 × 106 data
points on SUSY and HIGGS, use the whole of YearPredic-
tionMSD and covtype, and then randomly divide each exper-
imental dataset into training set and prediction set, of which
the training set accounts for 70%.

Baselines and Parameters

In order to avoid contingency, each experiment is repeated
10 times. For ensuring fairness, we use the same way to tune
parameters σ in 2[−2:+0.5:10] and λ in 2[−21:+1:3], on each
dataset and algorithm. Maybe the selected parameters are
not optimal, but they are sufficient to achieve satisfactory
results. The detail of parameters σ and λ in DC-NY are dis-
played in Table 2.

We will compare our method with 3 methods. (1) RF: it is
the abbreviation of Random Features (Rudi, Camoriano, and
Rosasco 2016), which is a classical approximate KRLS. We

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

use the code from website 2. (2) NY: it represents Nyström-
iterative (Rudi, Carratino, and Rosasco 2017), which com-
bine Nyström with iterative methods. The code is from web-
site 3. (3) DC-RF: it represents the algorithm (Li, Liu, and
Wang 2019): combining Random Features with Divide-and-
Conquer. The code is from website 4. (4) DC-NY: this is the
proposed algorithm.

The error is measured with RMSE for regression prob-
lems, and with classification error for the classification prob-
lems, to be consistent with the literature.

Parameters Evaluation

As shown in (a) of Figure 1, when t > 4, the errors of
DC-NY have converged on four datasets, which is consis-
tent with our theoretical analysis t > O(log(N)).

In (b) and (c) of Figure 1, the test errors of DC-NY decline
significantly when sampling scale m is a small number, and
when m =

√
N , DC-NY has converged on four datasets

which is in line with the theoretical reasoning. The bigger
the m is, the longer the training time is. Therefore, in prac-
tice, we only need to take a small m to obtain a satisfactory
error, which will result in significant savings in resources.

2https://github.com/superlj666
3https://github.com/LCSL/FALKON-paper
4https://github.com/superlj666
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Table 3: Comparison of average training time (left) in seconds and average test error (right) in solving KRLS between RF, NY,
DC-RF and DC-NY algorithms on YearPredictionMSD, covtype, SUSY and HIGGS datasets, with partitions p = 2, iteration
times t = 7, sampling scale m = 1500 and 2000. We bold the numbers of the best algorithm. YPMSD is the abbreviation of
YearPredictionMSD.

Dataset RF(m = 1500) NY(m = 1500) DC-RF(m = 1500) DC-NY(m = 1500)
time error time error time error time error

YPMSD 7.270 0.061± 0.00008 2.90 0.058±0.00012 3.560 0.062± 0.00007 1.60 0.058±0.00013
covtype 17.90 0.233± 0.00079 5.02 0.185±0.00050 9.060 0.234± 0.00013 2.56 0.185±0.00027
SUSY 19.24 0.221± 0.00031 8.32 0.197±0.00068 9.020 0.223± 0.00027 4.09 0.197±0.00064
HIGGS 20.87 0.346± 0.00094 9.02 0.323±0.00048 10.84 0.347± 0.00070 4.34 0.323±0.00057

Dataset RF(m = 2000) NY(m = 2000) DC-RF(m = 2000) DC-NY(m = 2000)
time error time error time error time error

YPMSD 10.68 0.060± 0.00007 3.49 0.058±0.00016 5.590 0.061± 0.00007 2.09 0.058±0.00003
covtype 25.79 0.233± 0.00041 5.62 0.185±0.00067 12.88 0.234± 0.00067 2.63 0.185±0.00047
SUSY 27.06 0.220± 0.00035 12.9 0.195±0.00065 13.67 0.222± 0.00061 6.40 0.195±0.00059
HIGGS 22.58 0.343± 0.00118 9.14 0.321±0.00050 11.68 0.345± 0.00108 5.19 0.322± 0.00053

Comparison with Baselines

Figure 2 shows how the number of partition affects the error
of the algorithms on test sets. The horizontal coordinate rep-
resents the number of partitions p, and the vertical coordi-
nate the average test errors of different algorithms. DC-NY
keeps the optimal accuracy level which is consistent with
the theoretical analysis. With the increase of the number of
partition p, the errors increase in each algorithms and our al-
gorithm provides competitive accuracy. Taking the same m
and p, RF and DC-RF have bigger error than DC-NY, which
is in line with the theoretical analysis.

Figure 3 shows the training time of the algorithms on train
sets with respect to the number of partition p. The vertical
coordinate is the training time (logarithmizing it) of differ-
ent algorithms in seconds. With the increase of p, the train-
ing time decreases in divide-and-conquer algorithms (DC-
RF and DC-NY). Our algorithm has a significant advantage
over other algorithms in the training time. On covtype, the
time cost of DC-RF with p = 10 is higher than that of DC-
NY with p = 2, that is to say, our algorithm requires less ex-
pensive hardware devices, under the same scenario and time
cost. The bigger the number of data in a subprocessor, the
more obvious the time advantage of the proposed algorithm
is. Apparently, combining Figure 2 with Figure 3, we get
that DC-NY can use fewer hardware devices (processors) to
reach a smaller error under the same time cost, which is con-
sistent with the statistical analysis.

Table 3 shows the specific numerical information of ex-
perimental results when m = 1500 and m = 2000. Ap-
parently, DC-NY always keeps the least time consumption
than other algorithms on four datasets. Even on SUSY and
HIGGS datatset of millions of points, the training time of
DC-NY is always a few seconds. In test error, DC-NY keeps
the optimal value or just has a little gap with the optimal,
which validate the effectiveness of the proposed algorithm.

The empirical performance verifies our theoretical results
that the proposed algorithm has a prominent advantage in
speed while achieving satisfactory accuracy.

Conclusions

We focus on the trade-off between statistical performance
and computational requirements to propose a novel approxi-
mate KRLS estimator DC-NY, which achieves the same ac-
curacy of exact KRLS and has the minimum time complex-
ity and space complexity, compared to the state-of-the-art
approximate KRLS estimates. The empirical performance
verifies the theoretical analysis. In the future, we try to ex-
plore other distributed methods to solve KRLS.
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