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Abstract

The Mixed-Membership Stochastic Blockmodel (MMSB) is
proposed as one of the state-of-the-art Bayesian relational
methods suitable for learning the complex hidden structure
underlying the network data. However, the current formula-
tion of MMSB suffers from the following two issues: (1), the
prior information (e.g. entities’ community structural infor-
mation) can not be well embedded in the modelling; (2), com-
munity evolution can not be well described in the literature.
Therefore, we propose a non-parametric fragmentation co-
agulation based Mixed Membership Stochastic Blockmodel
(fcMMSB). Our model performs entity-based clustering to
capture the community information for entities and linkage-
based clustering to derive the group information for links
simultaneously. Besides, the proposed model infers the net-
work structure and models community evolution, manifested
by appearances and disappearances of communities, using the
discrete fragmentation coagulation process (DFCP). By inte-
grating the community structure with the group compatibility
matrix we derive a generalized version of MMSB. An effi-
cient Gibbs sampling scheme with Polya Gamma (PG) ap-
proach is implemented for posterior inference. We validate
our model on synthetic and real world data.

Introduction
Analysis of complex networks is an important research topic
leading to a variety of useful applications. To this end, many
interesting and promising approaches have been proposed
to address various challenges in investigating these com-
plex networks. The Mixed-Membership Stochastic Block-
model (MMSB) (Airoldi et al. 2008) is one such state-of-
the-art model in using Bayesian methods to discover mean-
ingful underlying hidden structure. In general, MMSB as-
sumes each entity in the network has a mixed-membership
distribution over the groups. To generate the link between
two entities, each entity would sample a belonging group
from its mixed-membership distribution. The compatibility
value between these two sampled groups would then deter-
mine the probability of generating this link.

MMSB has garnered considerable interest in recent years,
however, it is not good at embedding certain prior infor-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mation such as, for instance, the entities’ community struc-
ture. When the entities in the network are assumed to have
a mixed-membership distribution over the groups, the en-
tity itself would belong to only one community. That is to
say, we should consider two types of clustering in MMSB:
entity-based clustering (i.e. communities for entities) and
linkage-based clustering (i.e. groups for links.)

For example, each footballer can play multiple positions
(groups) in one match while only belonging to one team
(community). This situation is quite common in the real
world. Besides, consider the more general example in Figure
1 where there are three communities {Ci|i ∈ 1, 2, 3} in the
network, each composed of two groups (G1

i , G
2
i ). If we use

a 6 × 6 compatibility matrix, this will hinder interpretabil-
ity because entities that should belong to groups in the same
community may belong to groups in different communities.
Under this setting, the MMSB can’t not infer any community
information about entities. Moreover, the size of the compat-
ibility matrix is bigger than the true one (or the proposed one
in Figure 1.) which may lead to an overfitting problem.

Furthermore, another issue will also be prominent under
the dynamic setting. Recall that with respect to temporal dy-
namics, most of MMSB-based temporal models focus on
correlation among groups in the adjacent time slice. How-
ever, the size of their compatibility matrices is same across
time which leads to another shortcoming. Consider, for in-
stance, a simple case where there is a complex network with
just 2 time slices. At time slice 1, there is one community
that consists of 4 groups. It is reasonable to use MMSB with
a 4×4 compatibility matrix to represent it. However, at time
slice 2, the community splits into two communities. Each
community still consists of 4 groups but the entities origi-
nally in the same group may have different relations based
on the community they belong to. Thus a compatibility ma-
trix of size 8× 8 is more suitable at time slice 2. This causes
a problem when selecting the compatibility matrix size in
the MMSB. Choosing the 4×4 matrix will lead to an under-
fitting problem while choosing the 8× 8 one will lead to an
overfitting problem.

In this work, we focus on the following problems:

• In a complex network, we should consider two types of
clustering: entity-based clustering (communities for en-
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Figure 1: An example to illustrate the intuition of the proposed model. Each community (C1, C2 and C3) consists of two groups
G1 and G2. Entities within each group are represented by black dots. Four types of interactions are considered: within/across
groups and within/across communities. In MMSB, a 6 × 6 compatibility matrix can be used (left part). In our model, it is
represented by 2 compatibility matrices: one representing the group relations within communities and another representing the
group relations across communities. (right part)

tities); and linkage-based clustering (groups for links).
MMSB-based models only adapt the second one in both
static and dynamic setting and this will hinder community
interpretability.

• Community evolution exists in complex networks across
time. MMSB-based models are not able to capture these
changes by merely adjusting the size of the compatibility
matrix as they use a fixed size compatibility matrix across
time.

To handle these two problems, we propose the frag-
mentation coagulation based Mixed Membership Stochastic
Blockmodel (fcMMSB).

To enrich the structure of MMSB, we introduce a commu-
nity level to MMSB in which the Chinese restaurant process
(CRP) is used to partition entities. Due to the nonparametric
property of CPR, the number of communities doesn’t need
to be specified and this makes the model more flexible. For
entities in the same community, MMSB is carried out inde-
pendently to enable each entity to hold multiple groups.

To distinguish the group relations within/across commu-
nities, we make use of two compatibility matrices, one for
modeling relations between groups in the same community
and one for modeling relations between groups in different
communities. Specifically, we introduce an across commu-
nity adjustment parameter which acts as a modifier on the
intra group relations across communities so that intra group
relations are different if the groups belong to different com-
munities.

Furthermore, to handle the issue in the dynamic setting,
we incorporate the discrete fragmentation coagulation pro-
cess (DFCP) (Elliott and Teh 2012; Luo et al. 2017) to model
the community evolution across time. This allows us to re-
lease the limitation of the fixed size compatibility matrix in
MMSB across time. The reason is that DFCP can automat-

ically learn the number of communities at each time slice.
Also, the changes in the number of communities would in-
fluence the entities’ group membership. Therefore, this will
influence the size of compatibility matrix implicitly. Be-
sides, DFCP helps to model situations such as community
splitting and merging while also generalizing MMSB such
that when there is only one community in the network, it
just turns back to the vanilla MMSB. With this approach,
communities can merge into super communities or split into
small communities.

Model Formulation
In fcMMSB, our task is to do link prediction for the unob-
served entity interactions, based on the observed ones. We
focus on binary-valued interaction with a total number of
N entities at T time slices. Formally, these interactions can
be defined as a binary 3-d tensor X ∈ {0, 1}TN×N , where
xtij = 1 represents a directed interaction between entity ui
and entity uj at time slice t, and xtij = 0 represents no inter-
action. Other format of the observed interactions is possible
by considering different forms of the likelihood functions.

Modelling Community Evolution Using DFCP
In our model, each entity (individual) is associated with a
community, so community evolution influences relations be-
tween entities. Consider, for example, a scenario where cor-
porations are communities, the branches within these cor-
porations (IT, accounting, etc.) are groups, and the network
models relations between employees. In the case of a cor-
porate merger, the interactions between employees in the
same branches of the merging corporations will increase.
In general, we can categorize community evolution into
four types: appearance, disappearance, split, and merge. We
use fragmentation and coagulation to depict all four types
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of changes such that coagulation and fragmentation corre-
spond to merging and splitting, respectively. Community ap-
pearance and disappearance can be viewed as extensions of
community splits and merges. Since communities evolve, it
is hard to know the number of communities a priori, thus
our model infers the number of communities using non-
parametric Bayes.

We adopt the DFCP framework to implement these two
operations. DFCP is a non-parametric dynamic clustering
process where clusters are first split (fragmentation) and
then merged (coagulation). DFCP performs the fragmenta-
tion and coagulation processes alternately. To describe the
procedures of fragmentation and coagulation, we define a set
of disjoint non-empty subsets, νt = {χt

1, ..., χ
t
r} where χt

h
is a latent community h at t and r is the number of commu-
nities at time t. Furthermore, each subset χt

h consists of dis-
joint entities ui in the network. Figure 2 provides the visu-
alization of fragmentation and coagulation processes. In our
model, we process fragmentation and coagulation at times
t − 1′ and t, respectively. At time t − 1′, the fragmentation
process partitions each community χt−1′

h from νt−1
′

while
at time t the obtained partitions are coagulated into a new
set of communities νt

′
= {χt′

1 , ..., χ
t′
r }.

Now, we provide the generative process for communities
using DFCP. To sample community indicator zti for each en-
tity ui where i ∈ {1, ..., N}, we start an initialization with
CRP at t = 0 as:

Init(zit) : p(zi0 = h|z0−i)

=

{|χ0
h|/(N + ζ − 1) if χ0

h ∈ ν0−i
ζ/(N + ζ − 1) if χ0

h = ∅
where z0−i is the community indicator for all entities exclud-
ing entity ui, ζ is concentration parameter, ν0−i is the set ν0

excluding ui, |χ0
h| is the number of entities in χ0

h and ∅ is a
new community at t = 0.

In the fragmentation part, each community splits into
small communities and executes a CRP partition indepen-
dently. The fragmentation process at t �= 0 is summarized
as:

Frag(zit) : p(zti = h|νt−1′−i , νt−i, z
t−1′
i = q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|χt
h|/(|χt−1′

q |+ ζ − 1) if χt−1′
q ∈ νt−1

′
−i , χt

h ∈ νt−i
ζ/(|χt−1′

q |+ ζ − 1) if χt−1′
q ∈ νt−1

′
−i , χt

h = ∅
1 if χt−1′

q = ∅, χt
h = ∅

0 otherwise

We note that all the elements in χt
h also belong to χt−1′

q .
In the coagulation part, we execute a CRP partition on the

set of communities. The coagulation process at t′ is summa-
rized as:

Coal(zit
′
) : p(zit

′
= e|νt′−i, νt, zit = h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if χt′
e ∈ νt

′
−i, χ

t
h ∈ νt−i

|Ω|/(|νt|+ η − 1) if χt′
e ∈ νt

′
−i, χ

t
h = ∅

η/(|νt|+ η − 1) if χt′
e = ∅, χt

h = ∅
0 otherwise

Figure 2: Visualization of fragmentation and coagula-
tion processes in fcMMSB. For example, the community
of {1, 2, 3, 4, 5} at time t− 1′ will first be split into 3
small sub-communities {1}, {2, 3}, {4, 5} and then be re-
clustered into communities at time t′.

where η is the concentration parameter for the coagulation
process and Ω represents the communities at t which belong
to the community set with index e at time t′. = {χt

v|χt
v ⊆

χt′
e }.

Generating Relations
In reality, it is common that an entity plays roles in multi-
ple groups. For example, a doctor may be the supervisor of
a nurse and the subordinate of the hospital director. There-
fore, we induce MMSB to each entity at the group level by
imposing a mixed membership vector θti on each entity ui at
a time slice t. (θti is a membership of entity ui overK groups
where

∑
k θ

t,k
i = 1). For each pair of entities ui and uj , we

sample group indicators gti→j , g
t
i←j from Multinomial(θti)

and Multinomial(θtj). The arrow in gti→j and gti←j indicates
the sender (from ui to uj) and the receiver (from uj to ui),
respectively.

Now, we construct a compatibility matrix to predict en-
tity relations xtij based on the community and group indi-
cators. Imagine that there are several communities consist-
ing of groups inside a complex network. It is quite common
that the inner structure (group relations) of each commu-
nity is similar. For example, each company has sales and
marketing departments. Besides, groups within the commu-
nity are more likely to have tighter interactions than ones
across communities. Moreover, across community, groups
with similar functionality are more probable to have inter-
actions. Therefore two assumptions are made to construct
these relations. First, group pair relations within commu-
nities are consistent. We use a compatibility matrix, B, to
model all within community group relations. Second, inter-
actions between entities from the same group but in different
communities may be different from ones in the same group
and community. To account for this we add aK-array across
community adjustment parameter Q to on-diagonal values
of the B. This provides a flexible way to model the differ-
ences of within-group entity relations based on whether the
entities are in the same community. Furthermore, we set the
value of relations between entities that do not share commu-
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Figure 3: Graphical model of fcMMSB. Hyperparameters
are not shown. ·t and ·t′ denote the time index of frag-
mentation and coagulation process respectively. Notation:
zt = {zti |i ∈ {1, ..., N}}.

nity nor group to a small value, ε. For each pair of entities ui
and uj , we sample xtij from Bernoulli( 1

1+exp (−yt
ij)

) where

ytij =

⎧⎨
⎩
Blk if zti = ztj , gti→j = l, gti←j = k

Bkk +Qk if zti �= ztj , gti→j = gti←j = k

ε otherwise

Group pairs are always correlated in the real world. For
example, employee-employer relations can be unidirectional
while employee-employee may be bidirectional. We are in-
terested in the correlation of group pairs so the Inverse-
Wishart prior is imposed on the variance σkl of the normal
distribution ofBlk andBkl. Finally, we share the group-level
compatibility matrix B and adjustment parameter K-ary Q
across time due to the data sparsity.

In summary, the fcMMSB generative model is as follows:

• To generate compatibility matrix B

– sample σkl ∼ Invwishart(ϕ, ψ)
– sample (Blk, Bkl) ∼ N (μkl, σkl)

– sample Bkk ∼ N (μB , σB)

• For each across community adjustment parameter Qk

– sample Qk ∼ N (μQ, σQ)

• For each mixed membership of entity ui
– sample θti ∼ Dirichlet(α)

• For each community indicator zti
– sample z0i ∼ Init(zi0)
– sample zti ∼ Frag(zit)
– sample zt

′
i ∼ Coal(zit

′
)

• To generate each directed relations xtij
– sample sender group gti→j ∼ Multinomial(θti)
– sample receiver group gti←j ∼ Multinomial(θtj)

– sample xtij ∼ Bernoulli( 1

1+e
−yt

ij
)

We give the graphical model of fcMMSB in Figure 3.

Inference
Our model is intractable for exact inference, instead we de-
rive a Gibbs sampling scheme for posterior inference. The
target is to predict the unobserved relations between enti-
ties by inferring parameters z, θ,B,Q,g and σ. The param-
eter in bold represents its total set. The joint distribution
p(x, z, θ,B,Q,g|ε, α, ζ, η) can be expressed as:∏

i,j,t

p(xtij |zti , ztj , Qgt
i→j

,Bgt
i→jg

t
i←j

, ε)
∏
i

Init(z0i )

∏
i,t

Frag(zti)Coal(zt
′
i )

∏
k

p(Qk|μQ, σQ)p(Bkk|μB, σB)

∏
i,j,t

p(gti→j |θti)
∏

l,k,l �=k

p(Blk,Bkl|μkl, σkl)
∏
i,t

p(θti |α)

Sampling Blk, Bkl(l �= k) Using Polya-Gamma
For simplicity, the (Blk, Bkl) pair is denoted as a vector B̂
in this section. The Polya-Gamma (PG) data augmentation
is implemented for B̂. Following (Polson, Scott, and Win-
dle 2013), (eφ)

m

(1+eφ)n
can be expressed as 2−neκφE{e−wφ2/2}

with a PG variable ω ∼ PG(n, 0), where κ = m − n/2.
Furthermore, with conditional distribution p(w|φ), we have
ω|φ ∼ PG(n, φ). Assuming that the prior of φ follows
N (μ, σ) with likelihood (eφ)

m

(1+eφ)n
, the posterior of φ is a

Gaussian distribution. Therefore, the true posterior of φ can
be derived by updating φ and ω alternately.

In our model, B̂ is updated via PG approach by alternately
sampling B̂, ωlk, ωkl:

B̂|− ∼ N (μ∗, σ∗)
ωlk ∼ PG(nlk, Blk), ωkl ∼ PG(nkl, Bkl)

where

μ∗ = σ∗(κ+ σklμkl)

σ∗ = (Ω + σkl
−1)
−1

κ = (κlk, κkl). Ω is a diagonal matrix of ωlk and ωkl. κlk =
n1lk − nlk/2. Here nlk =

∑
t,i,j I[g

t
i→j = l] · I[gti←j =

k] · I[zti = ztj ] and n1lk =
∑

t,i,j I[g
t
i→j = l] · I[gti←j =

k] · I[zti = ztj ] · I[xtij = 1] where I is an indicator function.
As the sampling scheme of Bll and Ql is similar with B̂, we
omit the procedure here.

Sampling gti→j

Collapsed Gibbs sampling is used on gti→j by marginalizing
over θti . The posterior of gti→j can be expressed as:

p(gti→j = k|−) ∝ [ey
t
ij ]

I[xt
ij=1]

1 + ey
t
ij

ni¬jk (t) + αk∑
k n

i¬j
k (t) + αk

where ni¬jk (t) =
∑

l,l �=j I[g
t
i→l = k].
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Sampling z

The prior of latent communities sequence zi is:

pprior(zi) = Init(zi0) · Coal(zi0
′
) · . . . · Frag(ziT−1)

so the posterior of zi can be described as:

p(zi|−) ∝ p(xi·,x·i|z, θ,B,Q,g, ε) · pprior(zi)

=
∏
j,t

[ey
t
ij ]

I[xt
ij=1]

1 + ey
t
ij

· [e
yt
ji ]

I[xt
ji=1]

1 + ey
t
ji

· pprior(zi)

where ytij follows the previous definition in section 3. For
computational simplicity, we use forward-backward algo-
rithm on p(zTi |−). Here xi· = {xtij |j ∈ {1, ..., N}, t ∈
{0, ..., T − 1}},x·i is defined similarly.

Sampling σkl
As the prior and likelihood of σkl are a conjugate pair, we
give the posterior of σkl directly.

σkl|− ∼ Invwishart(1 + ϕ, ψ + (B̂− μkl)(B̂− μkl)
ᵀ
)

Prediction
In the previous sections, we derived the samples at each iter-
ation. We would like to use these samples to estimate the
unobserved relations. Our prediction target at iteration s,
x̂
t[s]
ij , is expressed as θ̂tᵀ

i · B̄ · θ̂tj , where the superscript of
θ̂tᵀ
i is the transpose of the vector. Here each dimension of

θtj is θ̂t,ki =
ni
k(t)+αk∑

k ni
k(t)+αk

and nik(t) =
∑

j I[g
t
i→j = k].

Each entry B̄lk of B̄ is 1
1+exp (−Ȳlk)

and Ȳlk = I[zti =

ztj ]Blk+I[l = k]I[zti �= ztj ](Blk+Qk)+I[l �= k]I[zti �= ztj ]ε.

Related Work
The Stochastic Block Model (SBM) presents is an ear-
lier approach on modelling network data. In general, SBM
builds on fundamental works (Aldous 1981) and (Hoover
1979) that bring the notion of relational data exchangeabil-
ity (Fan, Li, and Sisson 2018a; 2018b). Blockmodels (Dyer
and Frieze 1989) and (Snijders and Nowicki 1997) lever-
age interactions between entities to generate corresponding
clusters that have a symmetric adjacency matrix. The Infi-
nite Relational Model (IRM) (Kemp et al. 2006) makes an
extension to SBM by allowing the number of clusters to be
undetermined. Our proposed work is based on MMSB, the
key contribution of which is to allow each entity to hold mul-
tiple groups in a network.

Another important class of relation model, Poisson ma-
trix factorization model, is also used in the evaluation sec-
tion. Bayesian Poisson Tensor Factorization (BPTF) (Schein
et al. 2015) models the dyadic events via a tensor factoriza-
tion. (Zhou 2015) focuses on utilizing hierarchical gamma
process on static networks mainly. (Yang and Koeppl 2018a;
2018b) make substantial contributions of incorporating the
completely random measures into the modelling, and (Fan et
al. 2019) proposes a deep and scalable version of the Mixed-
Membership Stochastic Blockmodel.

Figure 4: AUC comparison on synthetic data.

DFCP provides flexibility to model the process of split-
ting and merging of communities. The predecessor to DFCP,
the fragmentation coagulation process (FCP) (Teh, Blundell,
and Elliott 2011) is a continuous limit of DFCP. The main
drawback of FCP is that at most two clusters can undergo
a merge operation or one cluster can be split into at most
two clusters at the same time. There is no constraint on the
number of clusters to be split or merged in DFCP.

We derive a highly efficient sampling scheme via a data
augmentation approach (PG) (Polson, Scott, and Windle
2013). This approach offers a model that has a Bernoulli
likelihood with a Gaussian prior transferred by the logistic
function. Naturally, (Durante and Dunson 2014) implements
PG approach on Gaussian process (GP). Furthermore, (Zhou
et al. 2012) improves Poisson regression by LGNB model
with PG approach.

Evaluation
Synthetic Data
To demonstrate the problem of the MMSB mentioned in the
introduction, we generate a synthetic dataset with N = 100
and T = 2, the generative process for which is described as
follows:

1. Instantiate a network structure of three communi-
ties containing two groups each. For each time slice,
generate the mixed membership for 100 entities by
sampling the Dirichlet distribution with parameters
[0.8, 0.2] or [0.2, 0.8] depending on the group. Set B to
be a 2 × 2 compatibility matrix with high on-diagonal
values and low off-diagonal values.

2. For time slice 1, if both entities belong to the same com-
munity perform step 3, otherwise set the entity relation
to 0. For time slice 2, if both entities belong to the same
community and group perform step 3, otherwise set the
entity relation to 0.

3. Generate entity relations using the Bernoulli distribution
with parameter (θᵀi Bθj) for the relation between ui and
uj .
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Model Coleman Student net Mining reality Hypertext 2009 Infectious

CN 0.881± 0.018 0.839± 0.019 0.873± 0.004 0.776± 0.006 0.883± 0.014
MMSB 0.880± 0.016 0.914± 0.011 0.885± 0.007 0.867± 0.005 0.965± 0.001
T-MBM∗ 0.881± 0.005 0.896± 0.010 0.861± 0.002 0.790± 0.004 0.838± 0.008
BPTF∗ 0.908± 0.013 0.909± 0.021 0.922± 0.001 0.874± 0.006 0.843± 0.011
SVD++∗ — — 0.833± 0.006 0.735± 0.004 0.614± 0.011
DRGPM∗ — 0.823± 0.014 0.933± 0.003 0.904± 0.008 0.988± 0.000
MNE 0.891± 0.024 0.940± 0.020 0.813± 0.004 0.872± 0.008 0.900± 0.017
DeepWalk 0.914± 0.018 0.910± 0.018 0.759± 0.004 0.816± 0.005 0.910± 0.014

fcMMSB 0.908± 0.009 0.954± 0.006 0.935± 0.004 0.902± 0.001 0.981± 0.001

Table 1: Model performance: AUC (mean and standard deviation) on the real dataset. Note: * represents a dynamic model.

Figure 5: Comparison of AUC between MMSB and
fcMMSB on the Coleman dataset.

For evaluation, we randomly split the data into 2 sub-
sets: 80% for training and 20% for testing. We compare our
model with two different MMSB models varying in the num-
ber of groups in the compatibility matrix. The train and test
AUC results are provided in Figure 4. We notice that when
the number of groups in MMSB is 2, it is underfitting rela-
tive to fcMMSB with 2 groups. When the number of groups
in MMSB is 6, there are two possible outcomes: overfitting
and not overfitting. The overfitting of the MMSB is demon-
strated by the higher train AUC and lower test AUC on time
slice 2 compared to our model. Overfitting is not always the
outcome, however, and the stochastic nature of the MMSB
means that on different runs, the MMSB may achieve simi-
lar results to our model, as shown by MMSB-non in Figure
4. This demonstrates the problem of choosing the number of
groups in the MMSB.

Prediction Relations
To demonstrate the potential of our fcMMSB model, we
use five real-world datasets for validation. We use the re-
lation prediction task to validate our model. The area under
the ROC (Receiver Operating Characteristic) curve (AUC)
is used as a performance metric. Here, we randomly select
80% data for training and leave the 20% for testing. Each
experiment is run for five times, and we report the AUC
results with their mean and standard deviation values. Five
real-world datasets are described as follows:

Figure 6: Left: compatibility matrix in MMSB. Middle:
compatibility matrix within community in fcMMSB. Right:
compatibility matrix across community in fcMMSB.

• The Coleman dataset (Coleman and others 1964) contains
the information about the friendships of boys in an Illi-
nois high-school. It records the three closest friends for
each student in the fall of 1957 and spring of 1958. The
binarized dataset is a 73× 73× 2 asymmetric matrix.

• The Student net dataset (Fan, Cao, and Da Xu 2014) de-
scribes the relations between students. We binarize the re-
lations at each time slice, leading to a 50× 50× 3 asym-
metric matrix.

• Mining Reality dataset (Eagle and Pentland 2006) records
contact data of 96 students at the Massachusetts Institute
of Technology (MIT) over 9 months in 2004. The dataset
is split into 10 time slices, then we set each entity pair
value to be 1 at that time slice if they have at least one
contact during that time. Thus, it leads to a 96× 96× 10
symmetric matrix.

• The Hypertext 2009 dataset (Isella et al. 2011) records
the contact network ACM Hypertext 2009 conference at-
tendees. The relation between two attendees is 1 if they
have a face-to-face contact over 20 seconds. We split
the dataset into 10 time slices and binarize it, leading to
113× 113× 10 symmetric matrix.

• The Infectious dataset (Isella et al. 2011) describes the
face-to-face interactions between people during the exhi-
bition INFECTIOUS: STAY AWAY in 2009 at the Sci-
ence Gallery in Dublin. Each relation is 1 if those two
people had face-to-face contact for at least 20 seconds.
We binarize the relations at each time slice, leading to a
410× 410× 10 symmetric matrix.
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Figure 7: Visualization of community clustering on the Stu-
dent net dataset across time.

Figure 8: Left: User activeness across time. Middle: The
recovered number of user interactions. Right: The original
number of user interactions.

General Performance
We use eight baseline methods for comparison. One
structure-based model: Common neighbor (CN) (Newman
2001). Five feature or cluster based models: Mixed Mem-
bership Stochastic Blockmodel (MMSB) with Gibbs sam-
pling (Airoldi et al. 2008), Temporal Tensorial Mixed Mem-
bership Stochastic Blockmodel (T-MBM) (Tarrés-Deulofeu
et al. 2019), Bayesian Poisson Tensor Factorization (BPTF)
(Schein et al. 2015), Collaborative filtering with temporal
dynamics (SVD++) (Koren 2009) and Dependent relational
gamma process model (DRGPM) (Yang and Koeppl 2018a).
Two embedding based models: Scalable Multiplex Network
Embedding (MNE) (Zhang et al. 2018) and DeepWalk (Per-
ozzi, Al-Rfou, and Skiena 2014).

We show the results in Table 1. The overall result of
fcMMSB is competitive with DRGPM and outperforms
the other state-of-the-art models. This may result from
fcMMSB, with its flexible structure, being more suitable for
long time series datasets in which the number of commu-
nities may vary across time. The DRGPM performance on
Student net dataset may suffer from the short time sequence
of the dataset.

Compared with vanilla MMSB, fcMMSB also shows its
advantage on both short and long time series dataset. We
compare our model with MMSB by varying the group num-
ber parameter on the Coleman dataset in Figure 5. fcMMSB
achieved better AUC on both train and test sets. When we
increased the group number, train AUC on both models in-
creased. Due to the flexible structure of fcMMSB, the mar-
gin of train and test AUC between fcMMSB and MMSB is
relatively larger with smaller group numbers. While the train
AUC of MMSB is relatively close to that of fcMMSB, the
test AUC is lower.

Besides, we compare fcMMSB with vanilla MMSB by
looking at the trained compatibility matrix for the Hyper-

text dataset in Figure 6. We see that the MMSB compat-
ibility matrix is similar to the within-community matrix
in fcMMSB. However, there is a moderate difference in
fcMMSB between the within-community and across com-
munities matrices for the entry (2,2). This shows that the
group-pair relation within a community is not same as the
one across communities, therefore MMSB with its single
compatibility matrix, cannot properly model this network.
This is why the fcMMSB is better than MMSB on the Hy-
pertext dataset; its more flexible structure is better at mod-
eling multiple communities. In comparing the compatibility
matrices of other datasets, we find this to be the case with
other datasets as well. We also observe that the second role
of the membership covers the main part for most people due
to sparsity which can be interpreted as the inactive role. This
interpretation is consistent with the compatibility matrix.

In Figure 7, we visualize the community clustering result
on the Student net dataset. We find the data points are dense
along the diagonal. This is consistent with our assumption
that the interactions within the community are tighter than
the ones across communities. Besides, we find that most
entities belong to the same communities across time, even
though the community index may change. This shows why
DFCP is used in our model since DFCP constructs a tempo-
ral dependency for communities across time.

Furthermore, to show the dynamic of membership in the
Infectious dataset, for each time slice, we randomly select
one user who is active at that time slice. To show the inten-
sity of user activeness, we define activeness, AC, for each
user i at time slice t to be ACt

i = θti
ᵀ · B · 1. We present

the user activeness and the recovered number of users’ in-
teractions with the original one in Figure 8. It is interesting
that the user is active in consecutive time segments. Mean-
while, comparing the user activeness with the original user
interactions, it is easy to observe that they have correlations.
This shows the membership used for user activeness really
reflects the characteristic of the data. Also the recovered
number of user interactions is similar with the original one
in Figure 8. Besides, we find that BPTF got the relatively
low AUC compared with the other four datasets. It seems
that the tight correlation of features across time inherent in
BPTF does not fit this dataset. Overall, fcMMSB is stable
in both dense (Coleman, Student net, Mining reality) and
sparse (Hypertext, Infectious) datasets.

Conclusion
In this work, we highlight two problems in MMSB: the
structure in MMSB is unable to encapsulate the prior infor-
mation like the community structure of entities in the static
case; and modelling the community evolution using a fixed
size compatibility matrix may suffer underfitting/overfitting
in the dynamic case. To overcome these two problems,
we developed the fragmentation coagulation based Mixed
Membership Stochastic Blockmodel (fcMMSB). Specifi-
cally, we used CRP for entity-based clustering to capture the
community information of entities and MMSB for linkage-
based clustering to derive the group information for links
simultaneously. Besides, we utilized DFCP to infer the com-
munity structure (including the number of communities)
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among entities and evolution (appearance/disappearance or
split/merge). Our model combines a group-level compatibil-
ity matrix with a community adjustment parameter to satisfy
the four types of entity pair relations: within and across com-
munities and groups. Our model unifies these techniques to
derive a generalized MMSB. Furthermore, a PG approach is
implemented for an efficient sampling scheme to infer hid-
den variables. Finally, we demonstrate the fcMMSB outper-
forms and is competitive with the state-of-the-art methods
through experiments on real datasets.
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