
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Trading-Off Static and Dynamic Regret in Online Least-Squares and Beyond∗

Jianjun Yuan,1 Andrew Lamperski1

1Department of Electrical and Computer Engineering, University of Minnesota
200 Union Street SE, 4-174 Keller Hall

Minneapolis, MN 55455, US
{yuanx270, alampers}@umn.edu

Abstract

Recursive least-squares algorithms often use forgetting fac-
tors as a heuristic to adapt to non-stationary data streams.
The first contribution of this paper rigorously character-
izes the effect of forgetting factors for a class of online
Newton algorithms. For exp-concave and strongly convex
objectives, the algorithms achieve the dynamic regret of
max{O(log T), O(

√
TV)}, where V is a bound on the path

length of the comparison sequence. In particular, we show
how classic recursive least-squares with a forgetting factor
achieves this dynamic regret bound. By varying V , we ob-
tain a trade-off between static and dynamic regret. In order
to obtain more computationally efficient algorithms, our sec-
ond contribution is a novel gradient descent step size rule
for strongly convex functions. Our gradient descent rule re-
covers the order optimal dynamic regret bounds described
above. For smooth problems, we can also obtain static re-
gret of O(T 1−β) and dynamic regret of O(T βV ∗), where
β ∈ (0, 1) and V ∗ is the path length of the sequence of min-
imizers. By varying β, we obtain a trade-off between static
and dynamic regret.

Introduction

Online learning algorithms are designed to solve predic-
tion and learning problems for streaming data or batch data
whose volume is too large to be processed all at once. Ap-
plications include online auctions (Blum et al. 2004), online
classification and regression (Crammer et al. 2006), online
subspace identification (Yuan and Lamperski 2019), as well
as online resource allocation (Yuan and Lamperski 2018).

The general procedure for online learning algorithms is as
follows: at each time t, before the true time-dependent ob-
jective function ft(θ) is revealed, we need to make the pre-
diction, θt, based on the history of the observations fi(θ),
i < t. Then the value of ft(θt) is the loss suffered due to the
lack of the knowledge for the true objective function ft(θ).
Our prediction of θ is then updated to include the informa-
tion of ft(θ). This whole process is repeated until termina-

∗Work supported in part by NSF CMMI 1727096 and a Univer-
sity of MnDRIVE Informatics Graduate Fellowship.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion. The functions, ft(θ), can be chosen from a function
class in an arbitrary, possibly adversarial manner.

The performance of an online learning algorithm is typi-
cally assessed using various notions of regret. Static regret,
Rs, measures the difference between the algorithm’s cumu-
lative loss and the cumulative loss of the best fixed decision
in hindsight (Cesa-Bianchi and Lugosi 2006):

Rs =

T∑
t=1

ft(θt)−min
θ∈S

T∑
t=1

ft(θ),

where S is a constraint set. For convex functions, varia-
tions of gradient descent achieve static regret of O(

√
T),

while for strongly convex functions these can be improved
to O(log T) (Hazan 2016). However, when the underlying
environment is changing, due to the fixed comparator the al-
gorithms converge to, static regret is no longer appropriate.

In order to better track the changes of the underlying envi-
ronment, dynamic regret is proposed to compare the cumu-
lative loss against that incurred by a comparison sequence,
z1, . . . , zT ∈ S:

Rd =

T∑
t=1

ft(θt)−
T∑

t=1

ft(zt)

The classic work on online gradient descent (Zinkevich
2003) achieves dynamic regret of the order O(

√
T (1+ V)),

where V is a bound on the path length of the comparison
sequence:

T∑
t=2

‖zt − zt−1‖ ≤ V.

This has been improved to O(
√
T (1 + V)) in (Zhang, Lu,

and Zhou 2018) by applying a meta-optimization over step
sizes.

In works such as (Mokhtari et al. 2016; Yang et al. 2016),
it is assumed that zt = θ∗t = argminθ∈S ft(θ). We denote
that particular version of dynamic regret by:

R∗
d =

T∑
t=1

ft(θt)−
T∑

t=1

ft(θ
∗
t)

6712

In particular, if V ∗ is the corresponding path length:

V ∗ =

T∑
t=2

∥∥θ∗t − θ∗t−1

∥∥ , (1)

then (Mokhtari et al. 2016) shows that for strongly convex
functions, R∗

d of order O(V ∗) is obtained by gradient de-
scent. However, as pointed out by (Zhang, Lu, and Zhou
2018), V ∗ metric is too pessimistic and unsuitable for sta-
tionary problems, which will result in poor generalization
due to the random perturbation caused by sampling from the
same distribution. Thus, a trade-off between static regret Rs

and dynamic regret R∗
d is desired to maintain the abilities of

both generalization to stationary problem and tracking to the
local changes.

Adaptive regret (Hazan and Seshadhri 2009) is another
metric when dealing with changing environment, which is
defined as the maximum static regret over any contiguous
time interval. Although it shares the similar goal as the dy-
namic regret, their relationship is still an open question.

Closely related to the problem of online learning is adap-
tive filtering, in which time series data is predicted using a
filter that is designed from past data (Sayed 2011). The per-
formance of adaptive filters is typically measured in an av-
erage case setting under statistical assumptions. One of the
most famous adaptive filtering techniques is recursive least
squares, which bears strong resemblance to the online New-
ton method of (Hazan, Agarwal, and Kale 2007). The work
in (Hazan, Agarwal, and Kale 2007) proves a static regret
bound of O(log T) for online Newton methods, but dynamic
regret bounds are not known.

In order to have an algorithm that adapts to non-stationary
data, it is common to use a forgetting factor. For the recur-
sive least squares, (Guo, Ljung, and Priouret 1993) analyzed
the effect of the forgetting factor in terms of the tracking
error covariance matrix, and (Zhao et al. 2019) made the
tracking error analysis with the assumptions that the noise
is sub-Gaussian and the parameter follows a drifting model.
However, none of the analysis mentioned is done in terms of
the regret, which eliminates any noise assumption. For the
online learning, (Garivier and Moulines 2011) analyzed the
discounted UCB, which uses the discounted empirical aver-
age as the estimate for the upper confidence bound. (Russac,
Vernade, and Cappé 2019) used the weighted least-squares
to update the linear bandit’s underlying parameter.

The contributions of this paper are:
1. For exp-concave and strongly convex problems, we pro-

pose a discounted Online Newton algorithm which gen-
eralizes recursive least squares with forgetting factors
and the original online Newton method of (Hazan, Agar-
wal, and Kale 2007). We show how tuning the forget-
ting factor can achieve a dynamic regret bound of Rd ≤
max{O(log T), O(

√
TV)}. This gives a rigorous anal-

ysis of forgetting factors in recursive least squares and
improves the bounds described in (Zhang, Lu, and Zhou
2018). However, this choice requires a bound on the path
length, V . For an alternative choice of forgetting factors,
which does not require path length knowledge, we can
simultaneously bound static regret by Rs ≤ O(T 1−β)

and dynamic regret by Rd ≤ max{O(T 1−β), O(T βV)}.
Note that tuning β produces a trade-off between static
and dynamic regret.

2. Based on the analysis of discounted recursive least
squares, we derive a novel step size rule for online
gradient descent. Using this step size rule for smooth,
strongly convex functions we obtain a static regret bound
of Rs ≤ O(T 1−β) and a dynamic regret bound against
θt = argminθ∈S ft(θ) of R∗

d ≤ O(T β(1 + V ∗)). This
improves the trade-off obtained in the exp-concave case,
since static regret or dynamic regret can be made small
by appropriate choice of β ∈ (0, 1).

3. We show how the step size rule can be modi-
fied further so that gradient descent recovers the
max{O(log T), O(

√
TV)} dynamic regret bounds ob-

tained by discounted Online Newton methods. However,
as above, these bounds require knowledge of the bound
on the path length, V .

4. Finally, we describe a meta-algorithm, similar to that
used in (Zhang, Lu, and Zhou 2018), which can recover
the max{O(log T), O(

√
TV)} dynamic regret bounds

without knowledge of V . These bounds are tighter than
those in (Zhang, Lu, and Zhou 2018), since they exploit
exp-concavity to reduce the loss incurred by running an
experts algorithm. Furthermore, we give a lower bound
for the corresponding problems, which matches the ob-
tained upper bound for certain range of V .

Notation. For the n dimensional vector θ ∈ R
n, we use

‖θ‖ to denote the �2-norm. The gradient of the function ft
at time step t in terms of the θ is denoted as ∇ft(θ).

For the matrix A ∈ R
m×n, its transpose is denoted by A�

and A�A denotes the matrix multiplication. The inverse of
A is denoted as A−1. When m = n, we use ‖A‖2 to rep-
resent the induced 2 norm of the square matrix. For the two
square matrix A ∈ R

n×n and B ∈ R
n×n, A � B means

A−B is negative semi-definite, while A 	 B means A−B
is positive semi-definite. For a positive definite matrix, M ,
let ‖x‖2M = x�Mx. The standard inner product between
matrices is given by 〈A,B〉 = Tr(A�B). The determinant
of a square matrix, A is denoted by |A|. We use I to repre-
sent the identity matrix.

Discounted Online Newton Algorithm

As described above, the online Newton algorithm from
(Hazan, Agarwal, and Kale 2007) strongly resembles the
classic recursive least squares algorithm from adaptive filter-
ing (Sayed 2011). Currently, only the static regret of the on-
line Newton method is studied. To obtain more adaptive per-
formance, forgetting factors are often used in recursive least
squares. However, the regret of forgetting factor algorithms
has not been analyzed. This section proposes a class of algo-
rithms that encompasses recursive least squares with forget-
ting factors and the online Newton algorithm. We show how
dynamic regret bounds for these methods can be obtained by
tuning the forgetting factor.

6713

First we describe the problem assumptions. Throughout
the paper we assume that ft : S → R are convex, differen-
tiable functions, S is a compact convex set, ‖x‖ ≤ D for all
x ∈ S , and ‖∇ft(x)‖ ≤ G for all x ∈ S . Without loss of
generality, we assume throughout the paper that D ≥ 1.

In this section we assume that all of the objective func-
tions, ft : S → R are α-exp-concave for some α > 0. This
means that e−αft(θ) is concave.

If ft is twice differentiable, it can be shown that ft is α-
exp-concave if and only if

∇2ft(x) 	 α∇ft(x)∇ft(x)
� (2)

for all x ∈ S .
For an α-exp-concave function ft, Lemma 4.2 of (Hazan

2016) implies that for all ρ ≤ 1
2 min{ 1

4GD , α}, the follow-
ing bound holds for all x and y in S:

ft(y) ≥ ft(x) +∇ft(x)
�(y − x)+

ρ

2
(x− y)�∇ft(x)∇ft(x)

�(x− y). (3a)

In some variations on the algorithm, we will require extra
conditions on the function, ft. In particular, in one variation
we will require �-strong convexity. which means that there
is a number � > 0 such that

ft(y) ≥ ft(x) +∇ft(x)
�(y − x) +

�

2
‖x− y‖2 (3b)

for all x and y in S . For twice-differentiable functions,
strong convexity implies α-exp-concavity for α ≤ �/G2 on
S .

In another variant, we will require that the following
bound holds for all x and y in S:

ft(y) ≥ ft(x) +∇ft(x)
�(y − x) +

1

2
‖x− y‖2∇2ft(x)

.

(3c)

This bound does not correspond to a commonly used con-
vexity class, but it does hold for the important special case
of quadratic functions: ft(x) = 1

2‖yt−Atx‖2. This fact will
be important for analyzing the classic discounted recursive
least-squares algorithm. Note that if yt and At are restricted
to compact sets, α can be chosen so that ft is α-exp-concave.

Additionally, the algorithms for strongly convex func-
tions and those satisfying (3c) will require that the gradients
∇ft(x) are u-Lipschitz for all x ∈ S (equivalently, ft(x)
is u-smooth), which means the gradient ∇ft(x) satisfies the
relation

‖∇ft(x)−∇ft(y)‖ ≤ u ‖x− y‖ , ∀t.
This smoothness condition is equivalent to ft(y) ≤ ft(x) +

∇ft(x)
T (y−x)+ u

2 ‖y − x‖2 and implies, in particular, that
∇2ft(x) � uI .

To accommodate these three different cases, we propose
Algorithm 1, in which ΠPt

S (y) = argminz∈S ‖z − y‖2Pt
is

the projection onto S with respect to the norm induced by
Pt.

By using Algorithm 1, the following theorem can be ob-
tained:

Algorithm 1 Discounted Online Newton Step
Given constants ε > 0, η > 0, and γ ∈ (0, 1).
Let θ1 ∈ S and P0 = εI .
for t=1,. . . ,T do

Play θt and incur loss ft(θt)
Observe ∇t = ∇ft(θt) and Ht = ∇2ft(θt) (if needed)
Update Pt:

Pt = γPt−1 +∇t∇�
t (Quasi-Newton) (4a)

Pt = γPt−1 +Ht (Full-Newton) (4b)

Update θt: θt+1 = ΠPt

S
(
θt − 1

ηP
−1
t ∇t

)
end for

Theorem 1. Consider the following three cases of Algo-
rithm 1:

1. ft is α-exp-concave. The algorithm uses η ≤
1
2 min{ 1

4GD , α}, ε = 1 1, and (4a).
2. ft is α-exp-concave and �-strongly convex while ∇ft(x)

is u-Lipschitz. The algorithm uses η ≤ �/u, ε = 1, and
(4b).

3. ft is α-exp-concave and satisfy (3c) while ∇ft(x) is u-
Lipschitz. The algorithm uses η ≤ 1, ε = 1, and (4b).

For each of these cases, there are positive constants
a1, . . . a4 such that∑T

t=1(ft(θt)− ft(zt)) ≤ −a1T log γ − a2 log(1− γ)
+ a3

1−γV + a4

for all z1, . . . , zT ∈ S such that
∑T

t=2 ‖zt − zt−1‖ ≤ V .
Due to space limits, the proof is in the arxiv’s version.

Now we describe some consequences of the theorem.
Corollary 1. Setting γ = 1− T−β with β ∈ (0, 1) leads to
the following form:∑T

t=1(ft(θt)− ft(zt))
≤ O(T 1−β + β log T + T βV)

Proof. The first term is bounded as:

−T log γ = −T log(1− T−β)

≤ T 1−β

1− T−β
= O(T 1−β),

where the inequality follows from − log(1 − x) ≤ x
1−x for

0 ≤ x < 1.
The other terms follow by direct calculation.

This corollary guarantees that the static regret is bounded
in the order of O(T 1−β) since V = 0 in that case. The
dynamic regret is of order O(T 1−β + T βV). By choosing
β ∈ (0, 1), we are guaranteed that both the static and dy-
namic regrets are both sublinear in T as long as V < O(T).
Also, small static regret can be obtained by setting β near 1.

1The value used here is only for proof simplicity, please see
Meta-algorithm Section for more discussion.

6714

In the setting of Corollary 1, the algorithm parameters do
not depend on the path length V . Thus, the bounds hold for
any path length, whether or not it is known a priori. The
next corollary shows how tighter bounds could be obtained
if knowledge of V were exploited in choosing the discount
factor, γ.

Corollary 2. Setting γ = 1 − 1
2

√
max{V,log2 T/T}

2DT leads to
the form:

T∑
t=1

(ft(θt)− ft(zt)) ≤ max{O(log T), O(
√
TV)}

The proof is similar to the proof of Corollary 1.
Note that Corollary 2 implies that the discounted Newton

method achieves logarithmic static regret by setting V = 0.
This matches the bounds obtained in (Hazan, Agarwal, and
Kale 2007). For positive path lengths bounded by V , we im-
prove the O(

√
T (1 + V)) dynamic bounds from (Zhang,

Lu, and Zhou 2018). However, the algorithm above cur-
rent requires knowing a bound on the path length, whereas
(Zhang, Lu, and Zhou 2018) achieves its bound without
knowing the path length, a priori.

If we view V as the variation budget that zT1 = z1, . . . , zT
can vary over S like in (Besbes, Gur, and Zeevi 2015), and
use this as a pre-fixed value to allow the comparator se-
quence to vary arbitrarily over the set of admissible com-

parator sequence {zT1 ∈ S :
T∑

t=2
‖zt − zt−1‖ ≤ V }, we can

tune γ in terms of V .
In order to bound the dynamic regret without knowing a

bound on the path length, the method of (Zhang, Lu, and
Zhou 2018) runs a collection of gradient descent algorithms
in parallel with different step sizes and then uses a meta-
optimization (Cesa-Bianchi and Lugosi 2006) to weight
their solutions. In a later section, we will show how a re-
lated meta-optimization over the discount factor leads to
max{O(log T), O(

√
TV)} dynamic regret bounds for un-

known V .
For the Algorithm 1, we need to invert Pt, which can be

achieved in time O(n2) for the Quasi-Newton case in (4a)
by utilizing the matrix inversion lemma. However, for the
Full-Newton step (4b), the inversion requires O(n3) time.

From Forgetting Factors to a Step Size Rule

In the next few sections, we aim to derive gradient descent
rules that achieve similar static and regret bounds to the dis-
counted Newton algorithm, without the cost of inverting ma-
trices. We begin by analyzing the special case of quadratic
functions of the form:

ft(θ) =
1

2
‖θ − yt‖2 , (5)

where yt ∈ S . In this case, we will see that discounted
recursive least squares can be interpreted as online gradi-
ent descent with a special step size rule. We will show how
this step size rule achieves a trade-off between static regret
and dynamic regret with the specific comparison sequence

θ∗t = yt = argminθ∈S ft(θ). For a related analysis of more
general quadratic functions, ft(θ) = 1

2‖Atθ − yt‖2, please
see the arxiv’s version.

Note that the previous section focused on dynamic regret
for arbitrary comparison sequences, zT1 ∈ S . The analysis
techniques in this and the next section are specialized to
comparisons against θ∗t = argminθ∈S ft(θ), as studied in
works such as (Mokhtari et al. 2016; Yang et al. 2016).

Classic discounted recursive least squares corresponds to
Algorithm 1 running with full Newton steps, η = 1, and
initial matrix P0 = 0. When ft is defined as in (5), we have
that Pt =

∑t−1
k=0 γ

kI . Thus, the update rule can be expressed
in the following equivalent ways:

θt+1 = argmin
θ∈S

t∑
i=1

γi−1ft+1−i(θ) (6a)

=
γ − γt

1− γt
θt +

1− γ

1− γt
yt (6b)

= θt − P−1
t ∇ft(θt) (6c)

= θt − ηt∇ft(θt), (6d)

where ηt = 1−γ
1−γt . Note that since yt ∈ S , no projection

steps are needed.
The above update is the ubiquitous gradient descent with

a changing step size. The only difference from the standard
methods is the choice of ηt, which will lead to the use-
ful trade-off between dynamic regret R∗

d and static regret
to maintain the abilities of both generalization to stationary
problem and tracking to the local changes.

By using the above update, we can get the relationship
between θt+1 − θ∗t and θt − θ∗t as the following result:

Lemma 1. Let θ∗t = argminθS ft(θ) in Eq.(5). When using
the discounted recursive least-squares update in Eq.(6), we
have the following relation:

θt+1 − θ∗t =
γ − γt

1− γt
(θt − θ∗t)

Proof. Since θ∗t = argmin ft(θ) = yt, for θt+1 − θ∗t , we
have:

θt+1 − θ∗t = θt+1 − yt
= γ−γt

1−γt θt +
1−γ
1−γt yt − yt

= γ−γt

1−γt (θt − yt) =
γ−γt

1−γt (θt − θ∗t)

Recall from (1) that the path length of optimizer sequence
is denoted by V ∗. With the help of Lemma 1, we can upper
bound the dynamic regret R∗

d in the next theorem:

Theorem 2. Let θ∗t be the solution to ft(θ) in Eq.(5).
When using the discounted recursive least-squares update
in Eq.(6) with 1 − γ = 1/T β , β ∈ (0, 1), we can upper
bound the dynamic regret as:

R∗
d ≤ 2DT β

(‖θ1 − θ∗1‖+ V ∗)

6715

Proof. According to the Mean Value Theorem, there exists
a vector x ∈ {v|v = δθt + (1 − δ)θ∗t , δ ∈ [0, 1]} such that
ft(θt)−ft(θ

∗
t) = ∇ft(x)

T (θt−θ∗t) ≤ ‖∇ft(x)‖ ‖θt − θ∗t ‖.
For our problem, ‖∇ft(x)‖ = ‖x− yt‖ ≤ ‖x‖+ ‖yt‖. For
‖x‖, we have:

‖x‖ = ‖δθt + (1− δ)θ∗t ‖≤ δ ‖θt‖+ (1− δ) ‖yt‖

= δ

∥∥∥∥∥∥
t−1∑

i=1
γi−1yt−i

t−1∑

i=1
γi−1

∥∥∥∥∥∥+ (1− δ) ‖yt‖

≤ D

where the second inequality is due to ‖yi‖ ≤ D, ∀i.
As a result, the norm of the gradient can be upper bounded

as ‖∇ft(x)‖ ≤ 2D. Then we have R∗
d =

T∑
t=1

(
ft(θt) −

ft(θ
∗
t)
)
≤ 2D

T∑
t=1

‖θt − θ∗t ‖. Now we could instead upper

bound
T∑

t=1
‖θt − θ∗t ‖, which can be achieved as follows:

T∑
t=1

‖θt − θ∗t ‖

= ‖θ1 − θ∗1‖+
T∑

t=2

∥∥θt − θ∗t−1 + θ∗t−1 − θ∗t
∥∥

≤ ‖θ1 − θ∗1‖+
T−1∑
t=1

‖θt+1 − θ∗t ‖+
T∑

t=2

∥∥θ∗t − θ∗t−1

∥∥
= ‖θ1 − θ∗1‖+

T−1∑
t=1

γ−γt

1−γt ‖θt − θ∗t ‖+
T∑

t=2

∥∥θ∗t − θ∗t−1

∥∥
≤ ‖θ1 − θ∗1‖+

T∑
t=1

γ−γt

1−γt ‖θt − θ∗t ‖+
T∑

t=2

∥∥θ∗t − θ∗t−1

∥∥
where in the second equality, we substitute the result from
Lemma 1.

From the above inequality, we get

T∑
t=1

(
1− γ − γt

1− γt

)
‖θt − θ∗t ‖ ≤ ‖θ1 − θ∗1‖+

T∑
t=2

∥∥θ∗t − θ∗t−1

∥∥

Since
(
1− γ−γt

1−γt

)
= 1−γ

1−γt ≥ 1− γ, we get

T∑
t=1

‖θt − θ∗t ‖ ≤ 1
1−γ

∥∥θ1 − θ∗1
∥∥+ 1

1−γ

T∑
t=2

∥∥θ∗t − θ∗t−1

∥∥

= Tβ(
∥∥θ1 − θ∗1

∥∥+
T∑

t=2

∥∥θ∗t − θ∗t−1

∥∥)

Thus, Rd ≤ 2D
T∑

t=1
‖θt − θ∗t ‖ ≤ 2DT β(‖θ1 − θ∗1‖ +

T∑
t=2

∥∥θ∗t − θ∗t−1

∥∥).
Theorem 2 shows that if we choose the discounted factor

γ = 1−T−β we obtain a dynamic regret of O(T β(1+V ∗)).
This is a refinement of the Corollary 1 since the bound no
longer has the T 1−β term. Thus, the dynamic regret can be
made small by choosing a small β.

In the next theorem, we will show that this carefully cho-
sen γ can also lead to useful static regret, which can give
us a trade-off and solve the dilemma of generalization for
stationary problems versus the tracking for local changes.

Theorem 3. Let θ∗ be the solution to min
T∑

t=1
ft(θ). When

using the discounted recursive least-squares update in
Eq.(6) with 1− γ = 1/T β , β ∈ (0, 1), we can upper bound
the static regret as:

Rs ≤ O(T 1−β)

Recall that the algorithm of this section can be interpreted
both as a discounted recursive least squares method, and as
a gradient descent method. As a result, this theorem is actu-
ally a direct consequence of Corollary 1, by setting V = 0.
However, we will give a separate proof in the arxiv, since the
techniques extend naturally to the analysis of more general
work on gradient descent methods of the next section.

Our Theorems 2 and 3 build a trade-off between dynamic
and static regret by the carefully chosen discounted factor
γ. Compared with the result from the last section, there are
two improvements: 1. The two regrets are decoupled so that
we could reduce the β to make the dynamic regret R∗

d result
smaller than bound from Corollary 1; 2. The update is the
first-order gradient descent, which is computationally more
efficient than second order methods.

In the next section, we will consider the strongly convex
and smooth case, whose result is inspired by this section’s
analysis.

Online Gradient Descent for Smooth, Strongly

Convex Problems

In this section, we generalize the results of the previous sec-
tion idea to functions which are �-strongly convex and u-
smooth. We will see that similar bounds on Rs and R∗

d can
be obtained.

Our proposed update rule for the prediction θt+1 at time
step t+ 1 is:

θt+1 = argmin
θ∈S

‖θ − (θt − ηt∇ft(θt))‖2 (7)

where ηt =
1−γ

�(γ−γt)+u(1−γ) and γ ∈ (0, 1).
This update rule generalizes the step size rule from the

last section.
Before getting to the dynamic regret, we will first derive

the relation between ‖θt+1 − θ∗t ‖ and ‖θt − θ∗t ‖ to try to
mimic the result in Lemma 1 of the quadratic case:

Lemma 2. Let θ∗t ∈ S be the solution to ft(θ) which is
strongly convex and smooth. When we use the update in
Eq.(7), the following relation is obtained:

‖θt+1 − θ∗t ‖ ≤
√
1− l(1− γ)

u(1− γ) + lγ
‖θt − θ∗t ‖

Due to space limits, the proof is in the arxiv’s version.
Now we are ready to present the dynamic regret result:

6716

Theorem 4. Let θ∗t be the solution to ft(θ), θ ∈ S . When
using the update in Eq.(7) with 1 − γ = 1/T β , β ∈ (0, 1),
we can upper bound the dynamic regret:

R∗
d ≤ G

(
2(T β − 1) + u/l

)
(‖θ1 − θ∗1‖+ V ∗)

The proof follows the similar steps in the proof of The-
orem 2. Due to space limits, please refer to the version in
arxiv.

Theorem 4’s result seems promising in achieving the
trade-off, since it has a similar form of the result from
quadratic problems in Theorem 2. Next, we will present the
static regret result, which assures that the desired trade-off
can be obtained.

Theorem 5. Let θ∗ be the solution to min
θ∈S

T∑
t=1

ft(θ). When

using the update in Eq.(7) with 1 − γ = 1/T β , β ∈ (0, 1),
we can upper bound the static regret:

Rs ≤ O(T 1−β)

The proof follows the similar steps in the proof of The-
orem 3. Due to space limits, please refer to the version in
arxiv.

The regret bounds of this section are similar to those ob-
tained for simple quadratics. Thus, this gradient descent rule
maintains all of the advantages over the discounted Newton
method that were described in the previous section and the
advantages of trading off static regret and dynamic regret
R∗

d.

Online Gradient Descent for Strongly Convex

Problems

In this section, we extend step size idea from previous sec-
tion to problems which are �-strongly convex, but not nec-
essarily smooth. We obtain a dynamic regret of Rd ≤
max{O(log T), O(

√
TV)}, similar to the discounted online

Newton method. However, our analysis does not lead to the
clean trade-off of Rs ≤ O(T 1−β) and R∗

d ≤ O(T β(1 +
V ∗)) obtained when smoothness is also used.

The update rule is online gradient descent:

θt+1 = argmin
θ∈S

‖θ − (θt − ηt∇ft(θt))‖2 (8)

where ηt =
1−γ

�(1−γt) , and γ ∈ (0, 1).
We can see that the update rule is the same as the one in

Eq.(7) while the step size ηt is replaced with 1−γ
�(1−γt) .

By using the new step size with the update rule in Eq.(8),
we can obtain the following dynamic regret bound:

Theorem 6. If using the update rule in Eq.(8) with ηt =
1−γ

�(1−γt) and γ ∈ (0, 1), the following dynamic regret can be
obtained:

T∑
t=1

(
ft(θt)− ft(zt)

)
≤ 2D�

1

1− γ
V +

G2

2

T∑
t=1

ηt

Proof. According to the non-expansive property of the pro-
jection operator and the update rule in Eq.(8), we have

‖θt+1 − zt‖2 ≤ ‖θt − ηt∇ft(θt)− zt‖2
= ‖θt − zt‖2 − 2ηt∇ft(θt)

T (θt − zt)

+η2t ‖∇ft(θt)‖2

The reformulation gives us

∇ft(θt)T (θt − zt) ≤ 1
2ηt

(‖θt − zt‖2 − ‖θt+1 − zt‖2
)

+ ηt
2

‖∇ft(θt)‖2
(9)

Moreover, from the strong convexity, we have ft(zt) ≥
ft(θt)+∇ft(θt)

T (zt−θt)+
�
2 ‖zt − θt‖2, which is equiva-

lent to ∇ft(θt)
T (θt− zt) ≥ ft(θt)− ft(zt)+

�
2 ‖zt − θt‖2.

Combined with Eq.(9), we have

ft(θt)− ft(zt) ≤ 1
2ηt

(‖θt − zt‖2 − ‖θt+1 − zt‖2
)

+ηt

2 ‖∇ft(θt)‖2 − �
2 ‖zt − θt‖2

(10)
Then we can lower bound ‖θt+1 − zt‖2 by

‖θt+1 − zt‖2 = ‖θt+1 − zt+1‖2 + ‖zt+1 − zt‖2
+2(θt+1 − zt+1)

�(zt+1 − zt)
≥ ‖θt+1 − zt+1‖2 − 4D‖zt+1 − zt‖

(11)
Combining (10) and (11) gives

ft(θt)− ft(zt)

≤ 1
2ηt

(‖θt − zt‖2 − ‖θt+1 − zt+1‖2
)
+ 2D

ηt
‖zt+1 − zt‖

+ηt

2 ‖∇ft(θt)‖2 − �
2 ‖zt − θt‖2

Summing over t from 1 to T , dropping the term
− 1

2ηT
‖θT+1 − zT+1‖2, setting zT+1 = zT , using the in-

equality ‖∇ft(θt)‖2 ≤ G2, and re-arranging gives

T∑
t=1

(
ft(θt)− ft(zt)

)

≤ 1
2
(1
η1

− �)‖θ1 − z1‖2 + 1
2

T∑
t=1

(1
ηt

− 1
ηt−1

− �)‖θt − zt‖2

+2D
T−1∑
t=1

1
ηt

‖zt+1 − zt‖+ G2

2

T∑
t=1

ηt

≤ 2D� 1
1−γ

V + G2

2

T∑
t=1

ηt

where for the second inequality, we use the following re-
sults: 1

η1
− � = 0, 1

ηt
− 1

ηt−1
− � = �(1−γ)(γt−1−1)

1−γ ≤ 0,
1
ηt

= �(1−γt)
1−γ ≤ �

1−γ , and the definition of V .

Similar to the case of discounted online Newton methods,
if a bound on the path length, V , is known, the discount fac-
tor can be tuned to achieve low dynamic regret:

Corollary 3. By setting γ = 1 − 1
2

√
max{V,log2 T/T}

2DT , the
following bound can be obtained:

T∑
t=1

(
ft(θt)− ft(zt)

)
≤ max{O(log T), O(

√
TV)}.

6717

This result is tighter than the O(
√
T (1 + V)) bound ob-

tained by (Zhang, Lu, and Zhou 2018) on convex functions,
but not directly comparable to the O(V ∗) bounds obtained
in (Mokhtari et al. 2016) for smooth, strongly convex func-
tions.

Similar to the Corollary 2 on discounted online Newton
methods, Corollary 3 requires knowing V . In the next sec-
tion, we will see how a meta-algorithm can be used to obtain
the same bounds without knowing V .

Meta-algorithm

In previous sections, we discussed the results on dynamic
regret for both α-exp-concave and �-strongly convex objec-
tives. The tightest regret bounds were obtained by choosing
a discount factor that depends on V , a bound on the path
length. In this section, we solve this issue by running multi-
ple algorithms in parallel with different discount factors.

For online convex optimization, a similar meta-algorithm
has been used by (Zhang, Lu, and Zhou 2018) to search over
step sizes. However, the method of (Zhang, Lu, and Zhou
2018) cannot be used directly in either the α-exp-concave or
�-strongly convex case due to the added O(

√
T) regret from

running multiple algorithms. In order to remove this factor,
we exploit the exp-concavity in the experts algorithm, as in
Chapter 3 in (Cesa-Bianchi and Lugosi 2006).

In this section, we will show that by using appropriate
parameters and analysis designed specifically for our cases,
the meta-algorithm can be used to solve our issues.

Algorithm 2 Meta-Algorithm
Given step size λ, and a set H containing discount factors
for each algorithm.
Activate a set of algorithms {Aγ |γ ∈ H} by calling
Algorithm 1 (exp-concave case) or the update in Eq.(8)
(strongly convex case) for each parameter γ ∈ H.
Sort γ in descending order γ1 ≥ γ2 ≥ · · · ≥ γN , and set
wγi

1 = C
i(i+1) with C = 1 + 1/|H|.

for t=1,. . . ,T do
Obtain θγt from each algorithm Aγ .
Play θt =

∑
γ∈H

wγ
t θ

γ
t , and incur loss ft(θ

γ
t) for each θγt .

Update wγ
t by

wγ
t+1 =

wγ
t exp(−λft(θ

γ
t))∑

μ∈H
wμ

t exp(−λft(θ
μ
t))

.

Send back the gradient ∇ft(θ
γ
t) for each algorithm Aγ .

end for

Exp-concave case

Before showing the regret result, we first show that the cu-
mulative loss of the meta-algorithm is comparable to all
Aγ ∈ H:

Lemma 3. If ft is α-exp-concave and λ = α, the cumula-
tive loss difference of Algorithm 2 for any γ ∈ H is bounded

as:
T∑

t=1

(ft(θt)− ft(θ
γ
t)) ≤

1

α
log

1

wγ
1

This result shows how O(
√
T) regret incurred by running

an experts algorithm is reduced in the α-exp-concave case.
The result is similar to Proposition 3.1 of (Cesa-Bianchi and
Lugosi 2006).

Based on the above lemma, if we can show that there
exists an algorithm Aγ , which can bound the regret∑T

t=1(ft(θ
γ
t)− ft(zt)) ≤ max{O(log T), O(

√
TV)}, then

we can combine these two results and show that the regret
holds for θt, t = 1, . . . , T as well:
Theorem 7. For any comparator sequence z1, . . . , zT ∈ S ,
setting H =

{
γi = 1−ηi

∣∣∣i = 1, . . . , N
}

with T ≥ 2 where

ηi = 1
2

log T

T
√
2D

2i−1, N = � 1
2 log2(

2DT 2

log2 T
)� + 1, and λ = α

leads to the result:
T∑

t=1

(ft(θt)− ft(zt)) ≤ O(max{log T,
√
TV })

As described previously, the proof’s main idea is to show
that we could both find an algorithm Aγ bounding the regret∑T

t=1(ft(θ
γ
t) − ft(zt)) ≤ max{O(log T), O(

√
TV)} and

cover the V with O(log T) different γ choices. Please see
the arxiv’s version for the formal proof.

In practice, we include the additional case when γ = 1
to make the overall algorithm explicitly balance the static
regret. Also, the free parameter ε used in Algorithm 1 is
important for the actual performance. If it is too small, the
update will be easily effected by the gradient to have high
generalization error. In practice, it can be set to be equal to
1/(ρ2D2) or 1/(ρ2D2N) with ρ = 1

2 min{ 1
4GD , α} like in

(Hazan 2016).

Strongly convex case

For the strongly convex problem, since the parameter γ used
in Corollary 3 is the same as the one in Corollary 2, it seems
likely that the meta-algorithm should work with the same
setup in as Theorem 7. The only parameter that needs to be
changed is λ, which was set above to α, the parameter of
α-exp-concavity.

To proceed, we first show that the �-strongly convex func-
tion with bounded gradient (e.g.,‖∇ft‖ ≤ G) is also �/G2-
exp-concave. Previous works also pointed out this, but their
statement only works when ft is second-order differentiable,
while our result is true when ft is first-order differentiable.
Lemma 4. For the �-strongly convex function ft with
‖∇ft‖ ≤ G, it is also α-exp-concave with α = �/G2.

Lemma 4 indicates that running Algorithm 2 with
strongly convex function leads to the same result as in
Lemma 3. Thus, using the similar idea as discussed in the
case of α-exp-concavity and Algorithm 2, the theorem be-
low can be obtained:
Theorem 8. For any comparator sequence z1, . . . , zT ∈ S ,
setting H =

{
γi = 1 − ηi

∣∣∣i = 1, . . . , N
}

with T ≥ 2

6718

where ηi = 1
2

log T

T
√
2D

2i−1, N = � 1
2 log2(

2DT 2

log2 T
)� + 1, and

λ = �/G2 leads to the result:
T∑

t=1

(ft(θt)− ft(zt)) ≤ O(max{log T,
√
TV })

As discussed in the previous subsection, in practice, we
also include the case when γ = 1 to make the overall al-
gorithm explicitly balance the static regret and set ε accord-
ingly as in the exp-concave case.

A Lower bound

In the previous subsections, we demonstrate how to achieve
the dynamic regret max{O(log T), O(

√
TV)} for both the

exp-concave and strongly convex problems without knowing
V . In this subsection, we will give a lower bound, which
approaches the upper bound for large and small V .
Proposition 1. For losses of the form ft(θ) = (θ− εt)

2, for

all γ0 ∈ (0, 1) and all V = T
2+γ0
4−γ0 , there is a comparison

sequence zT1 such that
T∑

t=2
‖zt − zt−1‖ ≤ V and

Rd ≥ max{O(log T), O
(
(V T)

γ0
2

)}.
The above result has the following indications: 1. For

V = o(T) but approaching to T , it is impossible to achieve
better bound of Rd ≥ O

(
(V T)

α0
2

)
with α0 < 1. 2. For

other ranges of V like V = O(
√
T), its lower bound is not

established and still an open question.

Conclusion

In this paper, we propose a discounted online Newton algo-
rithm that generalizes recursive least squares with forgetting
factors and existing online Newton methods. We prove a dy-
namic regret bound max{O(log T), O(

√
TV)} which pro-

vides a rigorous analysis of forgetting factor algorithms. In
the special case of simple quadratic functions, we demon-
strate that the discounted Newton method reduces to a gra-
dient descent algorithm with a particular step size rule. We
show how this step size rule can be generalized to apply to
strongly convex functions, giving a substantially more com-
putationally efficient algorithm than the discounted online
Newton method, while recovering the dynamic regret guar-
antees. The strongest regret guarantees depend on knowl-
edge of the path length, V . We show how to use a meta-
algorithm that optimizes over discount factors to obtain the
same regret guarantees without knowledge of V as well as
a lower bound which matches the obtained upper bound for
certain range of V . Finally, when the functions are smooth
we show how this new gradient descent method enables a
static regret of Rs ≤ O(T 1−β) and R∗

d ≤ O(T β(1 + V ∗)),
where β ∈ (0, 1) is a user-specified trade-off parameter.

References

Besbes, O.; Gur, Y.; and Zeevi, A. 2015. Non-stationary
stochastic optimization. Operations research 63(5):1227–
1244.

Blum, A.; Kumar, V.; Rudra, A.; and Wu, F. 2004. Online
learning in online auctions. Theoretical Computer Science
324(2-3):137–146.
Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, learn-
ing, and games. Cambridge university press.
Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; and
Singer, Y. 2006. Online passive-aggressive algorithms.
Journal of Machine Learning Research 7(Mar):551–585.
Garivier, A., and Moulines, E. 2011. On upper-confidence
bound policies for switching bandit problems. In Interna-
tional Conference on Algorithmic Learning Theory, 174–
188. Springer.
Guo, L.; Ljung, L.; and Priouret, P. 1993. Performance
analysis of the forgetting factor rls algorithm. International
journal of adaptive control and signal processing 7(6):525–
537.
Hazan, E.; Agarwal, A.; and Kale, S. 2007. Logarithmic
regret algorithms for online convex optimization. Machine
Learning 69(2):169–192.
Hazan, E., and Seshadhri, C. 2009. Efficient learning al-
gorithms for changing environments. In Proceedings of the
26th annual international conference on machine learning,
393–400. ACM.
Hazan, E. 2016. Introduction to online convex optimization.
Foundations and Trends R© in Optimization 2(3-4):157–325.
Mokhtari, A.; Shahrampour, S.; Jadbabaie, A.; and Ribeiro,
A. 2016. Online optimization in dynamic environments: Im-
proved regret rates for strongly convex problems. In 2016
IEEE 55th Conference on Decision and Control (CDC),
7195–7201. IEEE.
Russac, Y.; Vernade, C.; and Cappé, O. 2019. Weighted
linear bandits for non-stationary environments. In Advances
in Neural Information Processing Systems, 12017–12026.
Sayed, A. H. 2011. Adaptive filters. John Wiley & Sons.
Yang, T.; Zhang, L.; Jin, R.; and Yi, J. 2016. Tracking
slowly moving clairvoyant: Optimal dynamic regret of on-
line learning with true and noisy gradient. In International
Conference on Machine Learning, 449–457.
Yuan, J., and Lamperski, A. 2018. Online convex optimiza-
tion for cumulative constraints. In Advances in Neural In-
formation Processing Systems, 6137–6146.
Yuan, J., and Lamperski, A. 2019. Online adaptive princi-
pal component analysis and its extensions. In International
Conference on Machine Learning, 7213–7221.
Zhang, L.; Lu, S.; and Zhou, Z.-H. 2018. Adaptive online
learning in dynamic environments. In Advances in Neural
Information Processing Systems, 1323–1333.
Zhao, P.; Wang, X.; Xie, S.; Guo, L.; and Zhou, Z.-H. 2019.
Distribution-free one-pass learning. IEEE Transactions on
Knowledge and Data Engineering.
Zinkevich, M. 2003. Online convex programming and
generalized infinitesimal gradient ascent. In Proceedings
of the 20th International Conference on Machine Learning
(ICML-03), 928–936.

6719

