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Abstract

It is known that existing policy gradient methods (such as
vanilla policy gradient, PPO, A2C) may suffer from overly
large gradients when the current policy is close to determin-
istic, leading to an unstable training process. We show that
such instability can happen even in a very simple environ-
ment. To address this issue, we propose a new method, called
target distribution learning (TDL), for policy improvement in
reinforcement learning. TDL alternates between proposing a
target distribution and training the policy network to approach
the target distribution. TDL is more effective in constraining
the KL divergence between updated policies, and hence leads
to more stable policy improvements over iterations. Our ex-
periments show that TDL algorithms perform comparably to
(or better than) state-of-the-art algorithms for most contin-
uous control tasks in the MuJoCo environment while being
more stable in training.

1 Introduction

Reinforcement learning (RL) algorithms can be broadly di-
vided into value-based methods and policy search meth-
ods. When applied to continuous control tasks, value-based
methods, such as (Mnih et al. 2015; Schaul et al. 2015;
Wang et al. 2016; Van Hasselt, Guez, and Silver 2016; Dab-
ney et al. 2018), need additional treatments to convert the
learned value function to executable policies (Gu et al. 2016;
Novati and Koumoutsakos 2019). On the other hand, pol-
icy search methods directly improve a policy for continuous
control. Among others, policy gradient-based methods have
been shown to be quite effective in searching good poli-
cies, e.g., (Williams 1992; Sutton, Barto, and others 1998;
Silver et al. 2014; Lillicrap et al. 2015; Mnih et al. 2016).
These methods first compute the gradient of the performance
measure with respect to the parameters of the policy network
and then update the parameters via stochastic gradient as-
cent. In order to ensure that the policy improves in terms of
the performance measure over the iterations, the policy im-
provement theorem (Kakade and Langford 2002) suggests
that the policy update should not be too large over one itera-
tion. Specifically, policy improvement requires a regulariza-
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tion on the state-action space to avoid destructively large up-
dates, i.e., the probability distributions over the action space
of the old and new policies conditioned on a state should not
vary too much.

Influenced by the policy improvement theorem, several
effective algorithms have been proposed in the literature.
TRPO (Schulman et al. 2015a) and ACKTR (Wu et al. 2017)
both update the policy subject to a constraint in the state-
action space (trust region). ACER (Wang et al. 2017) adopts
a trust region optimization method that clips the policy gra-
dient in the state-action space to constrain the policy up-
date. PPO (Schulman et al. 2017) designs a clipped surro-
gate objective that approximates the regularization. PPO has
been proven to be quite effective and is relatively simple-
to-implement, thus becomes a quite popular method. In a
very simple environment (see Section 3), we observe some
weakness of PPO in our experiment: when the policy is near-
deterministic, the gradient may explode which leads to in-
stability. Moreover, PPO performs multiple epochs of mini-
batch updates on the same samples to fully utilize the sam-
ples. We observe significant performance degradation when
increasing the sample reuse (see Section 6).

We propose a new policy search method, called target dis-
tribution learning (TDL), that improves the policy over iter-
ations. In each iteration, the action distribution conditioned
on each encountered state is produced by the policy network.
The actions are drawn from these distributions and used to
interact with the environment. Then, TDL proposes better
action distributions (called target distributions) to optimize
the performance measure and updates the policy network to
approach the target distributions.

The contributions of our work are summarized as follows:

1. (Section 3) We show experimentally that PPO (even com-
bined with some commonly used remedies) suffers from
an instability issue during the training even in a very sim-
ple environment.

2. (Section 4) We propose a new policy improvement
method TDL that retains the simplicity of PPO while
avoids the instability issue. We also propose three al-
gorithms based on TDL, all of which set target distri-
butions within a trust region and thus ensure the pol-
icy improvement. We provide theoretical guarantee that
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the target distribution is close to the old distribution
in terms of KL divergence (Appendix A). Two algo-
rithms set the target distributions following an update
rule of evolutionary strategy (ES) (Rechenberg 1973).
Unlike previous work (such as (Salimans et al. 2017;
Mania, Guy, and Recht 2018; Liu et al. 2019)) which
used ES to search over the parameter space directly, we
incorporate the idea in ES to propose better action distri-
butions. Moreover, we show that the target distributions
proposed by one of our algorithms based on ES indicate
a desirable direction and illustrate that the algorithm can
better prevent premature convergence (Appendix B).

3. (Section 6) We conduct several experiments to show that
our algorithms perform comparably to (or better than)
several state-of-the-art algorithms on benchmark tasks.
Moreover, we show that our algorithms are more effec-
tive to realize a regularization in the state-action space
than TRPO and PPO, and can increase the sample reuse
without significant performance degradation.

2 Preliminaries
A Markov Decision Process (MDP) for continuous control is
a tuple (S,A, P,R, γ) specifying the state space S , the con-
tinuous action space A ⊆ R

d, the state transition probability
P (st+1|st, at), the reward R(rt|st, at) and the discount fac-
tor γ. Let π denote a stochastic policy π : S × A → [0, 1].
In this paper, it is specified by a probability distribution
whose statistical parameter is given by a neural network
with parameter θ, i.e., π(at|φθ(st)) where φθ(st) denotes
the statistical parameter (e.g., the mean and standard devia-
tion of a Gaussian). We call this probability distribution ac-
tion distribution. The value function is defined as V π(s) :=
E[
∑∞

t=0

∑
s′ p(st = s′|s0 = s, πθ)γ

trt] for each s ∈ S .
The corresponding Q-function is defined as Qπ(s, a) :=
E[
∑∞

t=0

∑
s′ p(st = s′|s0 = s, a0 = a, πθ)γ

trt] for each
s ∈ S and a ∈ A. The advantage function for each action a
in state s is defined as Aπ(s, a) = Qπ(s, a) − V π(s). The
goal is to maximize the expected cumulative reward from an
initial state distribution, i.e., maxπ η(π) := Es0 [V

π(s0)].
In this paper, we use multivariate Gaussian distributions

with diagonal covariance matrices as the action distribu-
tions for the stochastic policy. In this case, the statisti-
cal parameter φθ(s) has two components, the action mean
μθ(s) ∈ R

d and the diagonal elements of covariance ma-
trix (variance) σ2

θ(s) ∈ R
d. In each iteration, the new policy

π(a|s) = N (a|μθ(s), σθ(s)) is updated from an old policy
πold(a|s) = N (a|μold(s), σold(s)).

In each iteration, the policy network is updated to
maximize the following surrogate objective subject to a
Kullback–Leibler (KL) divergence (Kullback and Leibler
1951) constraint to prevent destructively large updates. The
formulation is first proposed by (Schulman et al. 2015a)
based on (Kakade and Langford 2002).

L(θ) = Es∼ρπold

[∑
a

N (a|μθ(s), σθ(s))A
πold

(s, a)

]

s.t. max
s∈S

KL
(N (μold(s), σold(s))||N (μθ(s), σθ(s))

) ≤ δ,

(1)

where ρπ(s) = Es0 [
∑∞

t=0 γ
tp(st = s|s0, π)] is the state

visitation frequency and KL(·||·) indicates the KL diver-
gence between two probability distributions. When δ is
small, a solution of the above optimization problem can
guarantee a policy improvement over the iteration, i.e.,
η(π) > η(πold) (Schulman et al. 2015a).

The above optimization objective can be approximated
using Monte Carlo samples as follows:

L̂(θ) =
1

T

T∑
t=1

[
Ât

N (at|μθ(st), σθ(st))

N (at|μold(st), σold(st))

]
, (2)

where st and at are the samples of the state and the action,
respectively, at timestep t following πold. Ât := Âπold

(st, at)
is an estimator of the advantage function at timestep t. One
popular choice is to use generalized advantage estimator
(GAE) (Schulman et al. 2015b) as the advantage estimator.
We note that TRPO and PPO are based on the above formu-
lation.

3 Instability Issue of Previous Methods

In this section, we show that the gradient of the objective
L̂(θ) (in (2)) with respect to θ may explode when the policy
is near-deterministic, i.e., σθ(·) is small, which may lead to
instability in training.

Let us consider a case where the standard deviation of
the action distribution σ is state independent and thus it-
self is a parameter of the policy network. Define L̂t(θ) =

Ât
N (at|μθ(st), σ)

N (at|μold(st), σold)
. By the standard chain rule, one can

see that the gradient with respect to θ is as follows:

∂L̂(θ)

∂θ
=

1

T

T∑
t=1

[
L̂t(θ)

∂ logN (at|μθ(st), σ)

∂μθ(st)

∂μθ(st)

∂θ

]
.

(3)
Moreover, the gradient of the logarithm of the probability
density with respect to the mean is

∂ logN (at|μθ(st), σ)

∂μθ(st)
=

at − μθ(st)

σ2
. (4)

Therefore, the gradient with respect to θ is inversely propor-
tional to σ for a typical sample at. When the policy is near-
deterministic, i.e., σ is small, the gradient with respect to θ
becomes large. So, it is likely that, given a state s, the mean
of the action distribution conditioned on this state μθ(s) is
updated to a place far away from the previous mean μold(s),
which may already be close to optimal. This thus leads to
a ”bad” action in the next iteration. Notice that other policy
gradient-based algorithms involving the gradient of a proba-
bility density function (such as vanilla policy gradient, A2C)
may suffer from the same issue. 1 (Zhao et al. 2011) has sim-
ilar results that the variance of the policy gradient update is
inversely proportional to the square of the standard deviation
in two policy gradient algorithms, REINFORCE (Williams
1992) and PGPE (Grüttner et al. 2010).

1TRPO does not suffer from such issue since it performs a line
search for the step size.
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Now, we experimentally show that PPO suffers from such
instability issue even in a simple environment as follows: In
each round, the environment samples a state s ∼ U([0, 1]1).
The agent receives the state, performs an action a ∈ R

1 and
suffers a cost (negative reward) c(a) = a2. The objective is
to minimize the one-step cost, i.e., minθ E[

∑
a πθ(a|s)c(a)].

Notice that the cost is independent of the state but the state is
still fed as an input to the policy network. It is obvious that
the optimal policy should play a = 0 with probability 1 for
any state, which is a deterministic policy. Our experiment
shows that PPO suffers from the aforementioned instability
issue, resulting in an oscillating and diverging behavior. On
the other hand, our new method TDL (see Section 4) cir-
cumvents the computation of the gradient of a probability
density function, hence does not suffer from such instability
issue. In practice, there are some common tricks that attempt
to solve the instability issue, such as adding an entropy term
in the loss function, setting a minimum variance threshold
below which the variance of the action distribution is not al-
lowed to decrease further, or using a small clip constant in
PPO. We also adopt these tricks for PPO and compare them
with our method. The entropy term can stabilize the training
but leads to a worse asymptotic performance. The minimum
variance constraint can achieve a smaller cost but is still un-
stable. A small clip constant may delay but does not prevent
the instability. We show the result in Figure 1.

Figure 1: Median performance out of 100 independent runs
for each algorithm in the simple environment described in
Section 3. The shaded areas indicate the 10% and 90% quan-
tiles. Left. The cost from executing the mean of the action
distribution along the training. Right. The variance of the
action distribution along the training.

4 Target Distribution Learning

Instead of optimizing the objective L(θ) with respect θ di-
rectly, TDL solves the constrained optimization problem
in two steps: TDL first proposes statistical parameters that
specify action distributions (targets) under which the ex-
pected advantage function of the old policy is improved.
Then, TDL trains the policy network to match the targets.

In the first step, for each state sample st, TDL proposes
a target distribution whose statistical parameters attempt to
maximize Lt,1(μ, σ), the surrogate objective on state st (cf.
equation (1)), where

Lt,1(μ, σ) = Ea∼N (μ,σ)

[
Aπold

(st, a)
]

(5)

or maximize Lt,2(μ, σ), the probability that the target policy
is improved over the old value function, where

Lt,2(μ, σ) = Ea∼N (μ,σ)

[
I{Aπold

(st, a) > 0}
]

(6)

while being subject to the following constraint:

KL(N (·|μold(st), σ
old(st))||N (·|μ, σ)) ≤ δ. (7)

In the second step, the policy network learns to match the
proposed targets by minimizing the mean squared error with
respect to these target statistical parameters.

Notice that typically only one estimate Ât :=

Âπold
(st, at) is known. Therefore, the above optimization

problems cannot be solved exactly and there is a tradeoff
between exploitation and exploration for the target distribu-
tion, i.e., we can move the target distribution to the ”best”
area indicated by the estimate and shrink the variance of the
distribution (exploit) or we can increase the variance for a
better estimation of the advantage function (explore). In pol-
icy gradient methods, the mean and the variance of the action
distribution are updated jointly subjected to the law given by
the gradient of the probability density function. However, in
TDL, the mean and the variance can be updated indepen-
dently to implement different action search strategies.

Next, we propose three algorithms based on TDL, TDL-
direct, TDL-ES and TDL-ESr. The three algorithms differ in
the way they propose target distributions. The pseudocode
for TDL is shown in Algorithm 1, the details of which are
described in the following paragraphs.

Target variance

The three algorithms update the variance in the same way
described as follows. The update rule allows an adaptation
for exploration while changes the variance slowly which
prevents premature convergence and violation of the con-
straint.

Inspired by the self-adaption technique (Hansen and
Ostermeier 2001; Hansen 2000), given one state sample,
action sample and the corresponding advantage estimate
(st, at, Ât), the target variance is proposed as:

σ̂2
t = (at − μold(st))

2
I{Ât > 0}+ (σold(st))

2
I{Ât ≤ 0},

(8)
where μold(·) and σold(·) are the values of μθ(·) and σθ(·)

in the last iteration. When the advantage estimate is posi-
tive, if the action sample is within the one-sigma range, the
target variance will be smaller than the old variance, other-
wise it gets larger than the old variance for further explo-
ration. When the advantage estimate is negative, the target
variance remains the same as the old variance. Notice that
when the advantage estimator is non-informative, the tar-
get variance remains the same as the old in expectation, i.e.,
Eat∼N (μold(st),σold(st))[σ̂

2
t ] = σold(st)

2. This prevents a drift
of the action distribution when the critic is not well learned.

To prevent large variance update that may lead to a vi-
olation of the KL divergence constraint, the variance on a
state st is designed to be the average of a state independent
component and a state dependent component as follows:

σθ(st) = σ1/(ϕ+1)σ̃θ(st)
ϕ/(ϕ+1), (9)
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Algorithm 1 Target learning
1: Number of timesteps in one iteration T , minibatch size M , number of epochs E
2: Initialize the action distribution of the policy N (μθ(·), σθ(·) = σ1/(ϕ+1)σ̃θ(·)ϕ/(ϕ+1))
3: Initialize the critic network Vφ(·)
4: for i = 0, 1, 2, · · · do
5: Interact with the environment and obtain T on-policy transitions {(st, at, rt, st+1)}
6: Calculate the Monte Carlo return for each transition Rt =

∑T
t′=t γ

t′−trt′

7: Calculate the advantage function estimate Ât for each transition (by GAE)
8: Calculate the target standard deviation σ̂t following (8)
9: if TDL-direct then calculate the target means μ̂t following (11)

10: if TDL-ESr then revise the sampled actions following (15)
11: if TDL-ES or TDL-ESr then calculate the target means μ̂t following (12)
12: for j = 1 : ET/M do
13: Sample a minibatch that contains M transitions
14: Update the policy network to minimize 1

M

∑M
t=1(μ̂t − μθ(st))

2 and 1
M

∑M
t=1(σ̂t − σ̃θ(st))

2 on the minibatch
15: Update the critic network to minimize 1

M

∑M
t=1(Rt − Vφ(st))

2 on the minibatch
16: Update σ to σ̂ defined in (10) and σθ(·) following (9)

where ϕ > 0 is a hyperparameter that controls the degree to
which the variances on different states are updated indepen-
dently. σ̃θ(st) is the state dependent component which is a
neural network trained to minimized the MSE w.r.t. σ̂t. σ is
the state independent component and directly updated to σ̂
in each iteration, where

σ̂2 =
1

T

T∑
t=1

σ̂2
t . (10)

The state independent component is based on all the T
samples in the iteration and therefore allows a global adap-
tation for exploration while changes slowly. With the state
independent component, the variance changes slowly in one
iteration. Empirically in our later experiments on Mujoco
(Todorov, Erez, and Tassa 2012), with ϕ = 1 and T = 2048,
each dimension of σθ(st)/σ

old(st) for any state falls within
[1− ε, 1 + ε] for a ε ≤ 0.01.

TDL-direct algorithm

Consider a state sample st, an action sample at and its ad-
vantage estimate Ât. Given that the update of the variance
is small in each iteration, TDL-direct sets the target mean
μ̂t to μ that maximizes N (at |μ, σold(st))Ât (i.e., the Monte
Carlo estimate of Lt,1) subject to the constraint in (7).

Recall that the action at is sampled from
N (μold(st), σ

old(st)). Hence, we can write at =
μold(st) + ytσ

old(st), where yt ∼ N (0, I). Let α > 0 be a
hyperparameter controlling the size of the trust region. The
target mean for the sample at timestep t is proposed as

μ̂t = μold(st)+sign(Ât)min

(
1,

√
2α

‖yt‖2

)
ytσ

old(st), (11)

where sign(·) is the sign function. When Ât > 0,
N (at |μ, σ)Ât can be maximized by setting μ = at. When
Ât ≤ 0, it is preferred that μ should be as far away from

at as possible. However, this may violate the constraint in
(7). Thus, we clip the amount of the change from μold(st) to
μ̂t such that KL(N (·|μold(st), σ

old(st))||N (·|μ̂t, σ(st))) ≤
dα(1 + 2ε) + o(ε2) ≈ dα, recalling that the standard devi-
ation changes within [1 − ε, 1 + ε] in each iteration. In Ap-
pendix A, we show that the above clip operation can guaran-
tee that the KL constraint is satisfied (by leveraging the fact
that the KL divergence between two Gaussian distributions
has a closed-form formula).

TDL-ES algorithm

(1 + 1)-ES, one of the evolutionary strategies (ES) (Beyer
and Schwefel 2002), can be used to maximize Lt,1. It is a
family of optimization techniques for finding a distribution
D that maximizes Ex∼D[f(x)], for a blackbox fitness func-
tion f . Natural evolutionary strategy (NES) (Wierstra et al.
2014) provides an algorithm based on (1 + 1)-ES that itera-
tively updates a Gaussian distribution to optimize the objec-
tive along a natural gradient direction. Specifically, in each
iteration, an offspring x is sampled from the Gaussian dis-
tribution N (μold, σold) centering at the parent μold and the
distribution is updated based on the comparison between the
fitness of the offspring f(x) and that of the parent f(μold).

We observe that the objective Lt,1 is essentially the same
as the objective for (1+1)-ES. By letting μold = μold(st) and
x = at, Ât, which is an estimate of Qπold

(st, at)−V πold
(st),

can be used to indicate f(x)− f(μold). In this way, the opti-
mization problem defined in (5) can be solved by (1+1)-ES.
Therefore, the target mean can be proposed by the update
rule for NES, as follows:

μ̂t = μold(st) + νI{Ât > 0}(at − μold(st)), (12)

where ν ∈ (0, 1] is the step size. For the update of the vari-
ance, we still use the aforementioned update rule. 2

2We found that the variance easily explodes following the NES
rules to set the target variance in RL context. Hence, we choose
to keep using the update rules described in (8) and (10), where (8)
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TDL-ES algorithm with target statistical parameters de-
fined in (8), (10) and (12) has the following properties.

First, for a typical action sample at, the proposed
target statistical parameters satisfy the constraint in
(7), i.e., E[KL(N (·|μold(st), σ

old(st))||N (·|μ̂t, σ(st)))] ≤
1
2dν

2(1 + 2ε) + o(ε2) ≈ 1
2dν

2 (cf. Appendix A).
Second, (12) and (8) can be regarded as a stochastic gra-

dient ascent step w.r.t. Lt,2 for some step sizes λμ and λσ

(cf. Appendix B), i.e.,

μ̂t = μold(st) + λμ
∂Lt,2(μ, σ

old(st))

∂μ

∣∣∣∣
μ=μold(st)

, (13)

σ̂2
t = (σold(st))

2 + λσ
∂Lt,2(μ

old(st), σ)

∂σ2

∣∣∣∣
σ=σold(st)

. (14)

Third, consider one policy improvement step in TDL-ES
and denote D := {a|Qπold

(st, a) > V πold
(st)} for a state

st which represents the ”good” areas in the action space in-
dicated by the value functions of the old policy. TDL-ES
updates the standard deviation of the action distribution to-
wards the (truncated) ”radius” of D and the mean of the ac-
tion distribution towards the ”center” of D. This is appeal-
ing, since when the actor performs poorly (leading to a small
V (st) and a large D), it keeps exploring. In addition, when
the critic estimate is overly large or small (leading to very
large or very small D), the action distribution remains the
same in expectation. In contrast, a vanilla policy gradient
method under a similar setting updates the variance of the
action distribution towards zero and the mean of the action
distribution towards argmaxa Q

πold
(st, a). This may lead to

premature convergence. See the detail in Appendix B.

TDL-ESr algorithm

Both TDL-direct and TDL-ES propose the target mean
based solely on the action sample at from the state st and ig-
nore the temporal structure of MDP. According to the obser-
vation that the state representation does not change too fast
in adjacent steps, we can revise the formulation for the target
mean in TDL-ES (i.e., (12)) by the information of 2N + 1

adjacent samples (at+t′ , Ât+t′), t
′ ∈ [−N,N ], resulting in

a revised version of TDL-ES which we call TDL-ESr. The
revised formula is the same as (12), except that we substitute
at with ãt. Suppose at = μold(st) + ytσ

old(st) is obtained
by sampling yt ∼ N (0, I). For a revising ratio r ∈ [0, 1], ãt
can be defined as ãt = μold(st) + ỹtσ

old(st), where

ỹt = (1− r)yt + ry′t,

y′t =

∑N
t′=−N yt max(0, Ât+t′)∑N
t′=−N max(0, Ât+t′)

.
(15)

Recall that, in TDL-ES, the mean of the action distribution
moves to the direction indicated by yt. This revision makes
the mean update tilt to a direction y′t indicated by adjacent

can be regarded as the first order Taylor approximation of the NES
rules for the variance update.

”good” samples, i.e., samples with Ât+t′ > 0. Consider a
case where an action sample at yields a large reward and re-
sults in a large Ât, indicating that this is potentially a good
direction. In TDL-ESr, the mean updates on the adjacent
states will tilt towards this direction. This yields a directional
exploration.

5 Related Work

Conservative policy iteration. TDL follows conservative
policy iteration (CPI) (Kakade and Langford 2002; Scher-
rer 2014; Agarwal et al. 2019), which suggests a small
policy update in each iteration to ensure monotonic pol-
icy improvement and avoid oscillations. Several previous
methods (Schulman et al. 2015a; 2017; Wu et al. 2017;
Novati and Koumoutsakos 2019) also follow CPI and con-
strain the parameters of the policy directly. Instead, ACER
(Wang et al. 2017) clips the gradient on the statistical pa-
rameters produced by the policy network. Similarly, TDL
also constrains the policy update in the statistical parameter
space but proposes target distributions that satisfy the con-
straint. Safe policy iteration (Pirotta et al. 2013) proposes to
update the policy with different step sizes on different states
to ensure policy improvement and is characterized by faster
convergence and guaranteed policy improvement. TDL ben-
efits from the similar idea but with a simpler rule to deter-
mine the step sizes on different states.
Setting targets. Setting target policies is an effective way
to guide the learning of the policy network. In large dis-
crete action domain, AlphaGo Zero (Silver et al. 2017) uses
MCTS to propose a categorical distribution as the target for
the policy network to learn. In continuous action domain,
MPO (Abdolmaleki et al. 2018b) and Relative Entropy Reg-
ularized Policy Iteration (Abdolmaleki et al. 2018a) set the
target action distribution to be an improvement over the esti-
mated Q-function. TDL uses a state value function which is
typically easier to estimate than a Q-function, and perform
in more robust manner upon near-deterministic policies, as
shown in our experiments.
Instability problem. The analysis on the variance of the
policy gradient update in (Zhao et al. 2011) implies the in-
stability problem on near-deterministic policies. In addition,
(Van Hasselt and Wiering 2007; Hämäläinen et al. 2018)
state that updating along the negative direction upon a ”bad”
action sample may cause instability. We empirically show
that this may lead to instability but can accelerate the learn-
ing process when the action space dimension or the step size
is small (cf. Appendix D).

6 Experiments

We conduct several experiments in order to demonstrate the
following: 1) The performance of our algorithms on contin-
uous control benchmark tasks is comparable with (or bet-
ter than) the state-of-the-art algorithms; 2) We can safely
increase the on-policy sample reuse without damaging the
performance of our algorithms; 3) Our algorithms can con-
strain the maximum KL divergence across the state space
more effectively than TRPO and PPO.
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Figure 2: Comparison of several algorithms on MuJoCo tasks. The lines indicate the moving average across five independent
runs and the shaded areas indicate the 10% and 90% quantiles. The percentage numbers in the legend indicate the normalized
fluctuation of the scores in the last 100 iterations averaged over all the tasks.

Performance on continuous control benchmarks

We implemented TDL-direct, TDL-ES and TDL-ESr for the
continuous control tasks provided by OpenAI Gym (Brock-
man et al. 2016) using MuJoCo simulator (Todorov, Erez,
and Tassa 2012). Due to space limit, the detailed setting of
hyperparameters can be found in Appendix G. In our experi-
ments, we compare our algorithms against TRPO (Schulman
et al. 2015a) and PPO (Schulman et al. 2017) (the clipped
version) which are two popular policy gradient-based algo-
rithms. We also compare our algorithms with MPO (Abdol-
maleki et al. 2018b) and an improved version of CACLA
(Van Hasselt and Wiering 2007). Our algorithms differ from
MPO in the way we set target distributions. Specifically,
we set target statistical parameters, whereas MPO sets tar-
get probability density values on action samples based on
an estimated Q-function. The improved version of CACLA
is actually an ablated version of TDL-ES without setting tar-
gets, i.e., the policy network is directly updated by stochastic
gradient ascent on Lt,2. We show the results in Figure 2.

We can see that at least one of our algorithms outper-
form the previous algorithms in most tasks. TDL-ES per-
forms better than the improved CACLA as setting targets
prevents destructively large updates. Our algorithms gener-
ally outperform MPO which illustrates the effectiveness of
the way we set target distributions. Moreover, the perfor-
mance fluctuation during the training (and especially at the
end of the training) for our algorithms is typically small (see
also the normalized fluctuation in the legend of Figure 2),
which indicates that the training processes of our algorithms
are more stable and steadily improved over iterations. This
also indicates that our algorithms are robust across differ-
ent seeds. For tasks that require a precise control such as

Reacher and InvertedPendulum, our algorithms re-
sult in a higher average cumulative reward than TRPO and
PPO. This is due to the fact that our algorithms address the
instability issue illustrated in Section 3. In particular, TDL-
ESr performs the best on most tasks, especially the ones with
large action space dimensions (such as Humanoid).

On-policy sample reuse

Unlike off-policy algorithms that use past experiences to im-
prove sample efficiency, on-policy algorithms can improve
the sample efficiency by learning more epochs on the same
on-policy samples. We compare our algorithms against PPO
with different level of sample reuse and show the result in
Figure 3. Notice that PPO is quite similar to our algorithms
and the main difference is that PPO updates along the pol-
icy gradient and ours update to match the target distribu-
tions. We see that, in PPO, although the sample efficiency
improves from the increase of the sample reuse, the perfor-
mance gets damaged. In contrast, TDL methods avoid this
issue and we can safely increase the sample reuse. This is
due to the fact that the policy network in TDL learns to
match the fixed target distributions, whereas the policy net-
work in PPO updates along the policy gradient of a clipped
surrogate objective. In PPO, when iteratively optimizing this
objective, more samples are masked by the clipping and the
action distributions conditioned on the corresponding state
samples may stray away.

KL divergence constraints

Our algorithms, like TRPO and PPO, rely on a conservative
policy iteration that requires a constraint in the state-action
space. This experiment is designed to evaluate how effective
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Figure 3: Performance of TDL-direct, TDL-ES, TDL-ESr and PPO on Hopper-v2 task with different levels of sample reuse.
Num. epochs denotes the average number of times that a sample is used the for the neural network update. The lines indicate
the moving average across five independent runs and the shaded areas indicate the 10% and 90% quantiles.

Figure 4: The maximum KL divergence during the training on different tasks. The mean KL constraint in TRPO is set to
δ = 0.01 and the level is indicated by the straight pink lines (bottom). The maximum KL bounds on samples for TDL-direct
and TDL-ES(r) are indicated by the straight blue lines (middle) and the straight orange lines (top) respectively.

these algorithms can enforce such a constraint. TRPO, PPO
and our algorithms aim to constrain the maximum KL diver-
gence across the state space. In this experiment, we approxi-
mate the maximum KL divergence across the state space by
first sampling a holdout set of 2048 transitions in each itera-
tion and then recording the maximum KL divergence of the
action distributions conditioned on each state sample in the
holdout set over the iteration.

We show the results in Figure 4. First, we observe that
in our algorithms the maximum KL divergences are effec-
tively bounded by the limits we set while in TRPO the max-
imum KL divergences can be up to two orders of magnitude
larger than the prescribed limits. Second, the maximum KL
divergences in our algorithms (especially in TDL-direct) are
generally smaller than those of TRPO and PPO, indicating
a more conservative policy update in our algorithms. Thus,
our algorithms result in a more stably improved performance
during the training while achieving a comparable asymptotic
performance and sample efficiency. The result indicates that
the sample-wise constraint in TDL is more effective in en-
forcing a global constraint in the state-action space than pre-
vious methods.

7 Conclusion

We proposed a new method, called target distribution learn-
ing, to optimize stochastic policies for continuous control.

This method proposes target distributions in each iteration
and then trains the policy network to match these distri-
butions. It enables a safe increase in the sample reuse to
improve the sample efficiency for an on-policy algorithm.
We designed three algorithms via this method. These al-
gorithms can effectively impose constraint on the state-
action space and avoid the instability problem of some prior
policy gradient-based methods. Empirically, our algorithms
achieve comparable performances to some state-of-the-art
algorithms on a set of continuous control benchmark tasks.

In this paper, we focus on on-policy algorithms and Gaus-
sian distribution for the action distribution. However, target
distribution learning can be readily extended to off-policy
settings, other types of action distributions and other types
of constraints in the state-action space. We leave the exten-
sion as an interesting future direction.
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