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Abstract

In this paper, we first formally define the problem set of
spatially invariant Markov Decision Processes (MDPs), and
show that Value Iteration Networks (VIN) and its extensions
are computationally bounded to it due to the use of the con-
volution kernel. To generalize VIN to spatially variant MDPs,
we propose Universal Value Iteration Networks (UVIN). In
comparison with VIN, UVIN automatically learns a flexible
but compact network structure to encode the transition dy-
namics of the problems and support the differentiable plan-
ning module. We evaluate UVIN with both spatially invari-
ant and spatially variant tasks, including navigation in regular
maze, chessboard maze, and Mars, and Minecraft item syn-
theses. Results show that UVIN can achieve similar perfor-
mance as VIN and its extensions on spatially invariant tasks,
and significantly outperforms other models on more general
problems.

Introduction

Literature in psychology and neuroscience reports that be-
haviors are generally controlled by two systems, a rigid
retrospective model-free system and a flexible prospective
model-based system (Moran et al. 2019). Likewise, it is intu-
itive in deep reinforcement learning (DRL) research to com-
bine the strength of both model-based (sample-efficiency)
and model-free (accuracy) approaches to improve perfor-
mance.

Despite the great advancement in DRL research, most ex-
isting approaches focus on leveraging the deep neural net-
work structure to approximate the value function via a trial-
and-error learning process (Mnih et al. 2015; Van Hasselt,
Guez, and Silver 2016; Wang et al. 2015; Hessel et al. 2018;
Lillicrap et al. 2015; Mnih et al. 2016; Schulman et al. 2015;
2017), but insufficiently address explicit planning computa-
tion as in the conventional model-based approaches, which
is critical for long-term reasoning and inference.

Value Iteration Networks (VIN) (Tamar et al. 2016) pro-
poses to encode the value iteration process with a convolu-
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Figure 1: (a) Spatially invariant system with the dynamics
in each state. (b) & (c) Toy navigation problem on Mars. (b)
The magnetic fields on Mars. (c) A navigation map on Mars.
The consequence of action “go north” varies in each grid on
Mars, while remains the same on Earth.

tional neural network (CNN) to achieve learning and plan-
ning simultaneously. With the planning module, VIN gen-
eralizes well in conventional navigation domains, showing
that the planning computation module is beneficial to appli-
cations requiring complex long-term reasoning.

To adapt to more complex navigation tasks, MACN (Khan
et al. 2018) and AVINs (Schleich, Klamt, and Behnke 2019)
extend VIN with a memory augmented controller and repre-
sentations with multiple levels of abstraction.

The strength of VIN and its extensions (VINs) lie in the
exploitation of the resemblance between the value iteration
and the convolution operation. However, the use of the CNN
structure also limits them to solving the “conventional” nav-
igation problems, whose state space can be seen as regular
lattices. To work with irregular spatial graphs, GVIN (Niu et
al. 2018) employs a graph convolution operator to simulate
the value iteration process.

Nevertheless, we argue that the use of convolution opera-
tor in VINs/GVIN makes them only applicable to the prob-
lem set of spatially invariant Markov Decision Processes
(MDPs).

Definition 1. An MDP is a quadruple M = {S,A,R, T}
where S is a set of states, A is a set of actions, R(s, a) is a
reward function for acting a ∈ A at s ∈ S, and T : S ×
A× S → [0, 1] is the transition function which encodes the
probability of the next state given the current state and the
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chosen action.

Definition 2. An MDP M = {S,A,R, T} is spatially in-
variant if and only if there is a function d : S × S → R

n,
s.t.

if d(si, sj) = d(s′i, s
′
j) then

p(sj |si, a) = p(s′j |s′i, a)
∀si, sj , s′i, s′j ∈ S ∀a ∈ A ∀p ∈ T

(1)

A “conventional” navigation problem is a spatially invari-
ant MDP as it requires the same transition model for each
grid unit in the map (Fig.1a). This can be proven by defining
d(sxi,yi

, sxj ,yj
) = [xi − xj , yi − yj ] in which sx,y denotes

a state being in the grid (x, y). In fact, VINs implicitly ex-
ploit the property of spatially invariant MDPs with a rela-
tively small convolution kernel to approximate such transi-
tion model.

Q(sx,y, a) =
∑
i,j

W a
i,j(γV (sx−i,y−j) + r) (2)

Eq.(2)1 denotes VIN’s planning computation via convo-
lution operation where W a denotes the convolution kernel
for action a, which encodes the transition model for naviga-
tion problems. It is apparent that the transition probability
(W a

i,j) of taking a at (x, y) needs to be the same for any pair
of states (x′, y′) whose coordinates satisfy x′ − x = i and
y′ − y = j. Thus, VIN greatly reduces the parameters to be
learnt to embed the MDP’s transition dynamics on spatially
invariant problems. More specifically, the size of transition
function is reduced from |S| × |A| × |S| to |A| × |K| where
|K| is the size of the convolution kernel which is usually far
less than |S|, which in turn improves the sample efficiency.

In fact, the use of convolution kernel presumes the ex-
istence of the universal transition model of the problems.
When this is not true, or when the problem is not spatially
invariant, VINs will fail because a small kernel cannot pre-
cisely summarize the transition dynamics. Our experiments
later show that VINs fail to deal with cases in Fig.1b and 1c,
which depict a navigation problem on Mars where a global
intrinsic magnetic field does not exist, e.g., an agent per-
forming an action of going west at a grid does not neces-
sarily land in its left grid, which contradicts to the spatially
invariant MDP case as on Earth.

There are two major directions to enable VINs on general
spatially variant problems: 1) Keep the CNN module during
the planning computation, but determine the proper coordi-
nates of states in 2-D space, thus allowing the convolution
kernel to capture the dynamics as sufficiently as possible; 2)
Replace the CNN module with more flexible network struc-
tures to capture the dynamics.

In this paper, we propose Universal Value Iteration Net-
works (UVIN) to explore the second path. The key of UVIN
is to automatically learn a compact module/structure for the
planning computation which can sufficiently summarize the
transition dynamics and save computational cost of value it-
eration. UVIN can be trained via imitation learning or rein-
forcement learning. In imitation learning, the planning mod-

1Please refer to (Tamar et al. 2016) for more details.

ule is supervised by the expert trajectories. In contrast, in re-
inforcement learning, the planning module is updated along
with agent’s interactions with the environment during the
learning process, and the planning module is optimized pe-
riodically and synchronously.

We first evaluate UVIN in “conventional” maze naviga-
tion problems and demonstrate that it achieves the same
good performance in comparison with other models (VIN,
GVIN and GPPN). We then evaluate these models on gen-
eral spatially variant problems, including chessboard maze
navigation, navigation on Mars, and deterministic/stochastic
Minecraft tasks. Rainbow (Hessel et al. 2018), the state-of-
the-art model-free sequential decision making framework,
is also included in the comparison. The experimental results
demonstrate our UVIN significantly outperforms all other
models in spatially variant problems.

The main contributions of this paper include:
• We provide a formal definition of spatially invariant MDP

and show that VINs are computationally bounded to it due
to the use of the convolution kernel.
• We propose UVIN to deal with spatially variant MDPs.

UVIN automatically learns a flexible but compact net-
work structure to encode the transition dynamics of the
problems and support the differentiable planning module.
• We evaluate UVIN with both spatially variant and spa-

tially invariant tasks. The results demonstrate that our
method significantly outperforms other state-of-the-art
approaches in spatially variant tasks while achieving the
same level of performance in conventional spatially in-
variant tasks.

Related Work
Value Iteration. VI (Bellman 1957) was introduced to com-
pute an optimal solution to an MDP (Def.1). It formalizes
the underlying model as interactions between the agent and
the environment (Sutton and Barto 1998). At time step t, the
agent receives state st ∈ S, the representations of the en-
vironment, and takes an action at ∈ A. Then, it receives
a scalar reward rt = R(st, at), and lands in the next state
st+1. The goal is to find a policy π(at | st) that maximizes
the cumulative rewards:

Rt =

∞∑
k=0

γkrt+k. (3)

Following a given policy π, let V π(s) be the expected long-
term reward from state s, and Qπ(s, a) be the expected re-
ward of taking action a in state s.

V π(s) = E[Rt | st = s]

Qπ(s, a) = E[Rt | st = s, at = a]
(4)

The optimal policy is π∗ = argmaxπ V
π , the optimal state-

value function is V ∗ = maxπ V
π , and the optimal action-

value function is Q∗ = maxπ Q
π . To compute π∗, Bellman

equation is solved iteratively as:

Q(s, a)← R(s, a) + γ
∑
s′

T (s, a, s′)V (s′)

V (s)← max
a

Q(s, a)
(5)
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Figure 2: The UVIN Framework. It performs value iteration on the embedded MDP M̄ . The embedded transition function T̄
is represented by both weights and the structure of the network. Dynamics Set defines the structure, which is learnt from the
trajectories. Shared Probability Set contains trainable variables which define the weights of the network, and it is trained by BP.

Differentiable planning module. VIN (Tamar et al.
2016) proposes to embed the differentiable planning mod-
ule via a CNN. Memory Augmented Control Network
(MACN) (Khan et al. 2018) extends VIN model with a mem-
ory augmented controller, empowering VIN to backtrack
through the history of previous trajectories. AVIN (Schleich,
Klamt, and Behnke 2019) extends VIN with the represen-
tations supporting multiple levels of abstraction, allowing
VIN to deal with more complex tasks, e.g., planning omni-
directional driving for a search-and-rescue robot in cluttered
terrain. Cognitive Mapper and Planner (CMP) (Gupta et al.
2017) proposes to plan actions in first person view. It com-
bines a neural network, which processes first person images
to build up a latent map representation of the environment,
with a hierarchical planning module based on VIN, which
plans on multiple spatial scales. GVIN (Niu et al. 2018) sub-
stitutes the CNN module with a graph convolution operator
to enable the application of VIN in irregular spatial graphs.
Recently, Value Propagation Network (VPN)(Nardelli et al.
2019) was proposed to employ the “Value Propagation” and
“state-dependent discount factor” to generalize VIN for bet-
ter sample complexity, however the convolutional kernels
are still kept in VPN hidering the adaption of the spatially-
variant MDP problems.

However, VIN and its extensions are only applicable to
spatially invariant MDP problems. (Lee et al. 2018a) com-
mented on the issue, but did not provide the formal or
clear identification of the restriction regarding the “spatially
invariant” problem set. GPPN (Lee et al. 2018b) some-
what alleviates this issue by reframing VIN as a recurrent-
convolutional network and replacing the recurrent update
with LSTM, which enable it to filter out some inappropriate
values caused by the inaccurate transition model. Although
GPPN can capture simple patterns, it fails to deal with more
complex transition dynamics in spatially variant problems.

Universal Value Iteration Networks

This section introduces the UVIN framework which learns
a compact structure to embed the transition dynamics to-
gether with the explicit planning computation. The train-
ing of UVIN via imitation learning (IL) and reinforcement
learning (RL) is also discussed respectively.

Let M = {S,A,R, T} be the underlying MDP of the task
environment. Let M̄ = {S̄, Ā, R̄, T̄} be the embedded MDP
of UVIN. The goal of UVIN is to learn M̄ which approxi-
mates M in terms of the optimal policy, and then solve M̄ ,
thus obtaining the optimized solution for the original task
M . With M̄ initialized, Eq.(5) is applied to compute the Q-
function Q̄(s̄, ā) of the embedded MDP. The objective is to
minimize the loss between Q̄(s̄, ā) of M̄ and Q(s, a) of M .
As the VI algorithm does not have any non-differentiable
operator, the parameters of M̄ can be iteratively updated
with supervisory signals (optimal actions in IL setting and
rewards in RL setting) and backpropagation.

To construct M̄ , we need to first define S̄ and Ā. A
general approach is to find the optimal projection func-
tion fS : S → S̄ and fA : A → Ā. In this pa-
per, we simply let M̄ and M share the same action space
(fA(a) = a), and let fS select a subset of s. For example,
if s ∈ S is {map, goal, current position}, fS(s) could be
{current position}.

To encode the reward signals, we leverage a CNN to learn
the function fR : S → {R̄} to convert s ∈ S to R̄. It should
be noted that the use of CNN for the embedded reward rep-
resentation does not compromise UVIN’s capability of deal-
ing with spatially variant MDPs because Def.2 only sets the
constraints on the transition dynamics.

Then, the challenging part is to encode the transition func-
tion T̄ . Apparently, |S| × |A| × |S| variables are sufficient,
but not efficient, to encode the transition dynamics. In fact,
it is not necessary to maintain such massive number of vari-
ables, as many of them share the same dynamics.
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UVIN represents the network structure as a “Dynamics
Set” D = {C11, C12, · · · , C21, C22, · · · , C|S̄||Ā|}, in which
Cij = {(s̄k1

, pk1
), · · · , (s̄kcn

, pkcn
)} is a “Connection Set”

recording the local connectivity for state s̄i ∈ S̄. Cij delim-
its all states that could be reached and their corresponding
probability p when the agent at state s̄i takes action āj ∈ Ā.

To boost the sample efficiency, UVIN uses a “Shared
Probability Set” P = {p1, p2, · · · , ppn

}, which is trained
during the learning process, for possible values of transition
probabilities.

Computing the optimal D can be treated as the estima-
tion of transition probabilities for random variables. Let
p̂(s̄′|s̄, ā) be the estimated value of p(s̄′|s̄, ā). In addition
to the conventional estimation problem, we have an addi-
tional constraint: ∀p̂(∃pi ∈ P ∧ p̂ = pi). That is, we must
select a value from P rather than use an arbitrary value. The
objective is to minimize the mean distance between p and p̂:

min
1

|S̄|2|Ā|
∑
s̄,ā,s̄′

|p(s̄′|s̄, ā)− p̂(s̄′|s̄, ā)|

p̂(s̄′|s̄, ā) =
{
pk (s̄′, pk) ∈ Cs̄ā

0 (s̄′, ∗) /∈ Cs̄ā

∀Cs̄ā ∈ D

(6)

To compute P , a straightforward solution is to do cluster-
ing on all p(s̄′|s̄, ā) with the number of clusters as |P |. After
the clustering process is converged, let p̂(s̄′|s̄, ā) equal to its
nearest cluster center. Thereafter, the optimal D can be com-
puted. It should be noted that both P and D jointly define the
network. In UVIN, after D is determined, P will be further
updated via backpropagation running through the planning
computation (VI) as below:

Q̄ = r̄ + γ
∑

piV̄

V̄ = max Q̄
(7)

Fig.2 illustrate the overall structure of the UVIN frame-
work. The rest of this section discusses the differences in
training UVIN with IL and RL.

Imitation Learning In IL, expert trajectories, but not the
interactions with the environment, are available to the agent.
Thus, we could utilize the frequencies of the transition tu-
ples {(s1, a1, s′1), · · · , (sn, an, s′n)}, ∀si, s′i ∈ S, ∀ai ∈ A
to estimate p(s̄′|s̄, ā), and compute P and D.

With D known, UVIN outputs the embedded Q̄ for a mini
batch sample via Eq.(7). By computing the loss between Q̄
and the optimal action (Ross, Gordon, and Bagnell 2011),
fR and P can then be updated by backpropagation.

Reinforcement Learning In RL, the frequencies of em-
bedded dynamics f(s̄′|s̄, ā) can only be counted during the
learning process, and the “Dynamics Set” D will be updated
periodically by a clustering program, indicating that the net-
work structure is dynamically changing during the weight
optimization process.

In UVIN, the structure is guided by the frequency
f(s̄′|s̄, ā), which is independent of the weights and will con-
verge to the probability p(s̄′|s̄, ā) according to the law of
large numbers.

Algorithm 1 UVIN training via reinforcement learning

Input:
a state projection function fS : S → S̄
an action projection function fA : A→ Ā

1: initialize parameterized reward projection function fθ
R

2: initialize Shared Probability Set P = {p0, p1, · · · , ppn
}

3: initialize Dynamics Set D
4: for episode = 1 to T do
5: reset the environment, get initial state s
6: repeat
7: R̄ = fθ

R(s)
8: update Q̄ iteratively with Eq.(7)
9: ā = argmaxa Q̄(fS(s), a)

10: s′, r = step(f−1
A (ā))

11: add (s, f−1
A (ā), r) to buffer

12: update the frequency f(s̄′|s̄, ā)
13: until episode ends
14: R = 0
15: for (s, a, r) in reversed(buffer) do
16: R = r + γR
17: update Q̄ iteratively with Eq.(7)
18: L = MSE(Q̄(fS(s), fA(a)), R)
19: update fθ

R and P by ∂L
∂θ and ∂L

∂pi

20: end for
21: clear the buffer
22: update D by clustering on f(s̄′|s̄, ā)
23: end for

We apply episodic Q-learning similar to GVIN. When an
episode ends, calculate the cumulative discounted reward for
each state and its MSE loss with the Q-value output via NN
to update the corresponding parameters. The details of train-
ing UVIN via RL is summarized in Algorithm 1.

UVIN utilizes a flexible structure to find the compact rep-
resentations for each problem. In comparison, VIN uses the
fixed structure (CNN) and works only for spatially invariant
problems as stated earlier. Moreover, the structure found by
UVIN could be more compact than CNN, allowing UVIN to
use less parameters to capture the transition model. In other
words, with the same number of parameters, UVIN could
represent more complicated dynamics2.

Experiments

We evaluated UVIN with both spatially invariant and spa-
tially variant tasks, covering: 1) Maze navigation, which
consists of randomly generated mazes, and 2) Penalized
Minecraft synthesis task, which consists of goal and unde-
sired inventory states.

2VIN needs |A| × |K| parameters to capture the transition
model, UVIN only uses |K| parameters to achieve similar perfor-
mance as VIN. In experiments, we set |K| = 9 as suggested in
(Tamar et al. 2016).
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Table 1: Performance on Maze Navigation. All models used the same training epoch, learning rate, and the number of iterations.
Bold text highlights the best result passing t-test3.

Regular Chessboard Mars
%Acc %Suc Reward %Acc %Suc Reward %Acc %Suc Reward

UVIN 99.36 99.01 0.679(±0.27) 98.43 99.04 0.673(±0.27) 82.27 95.52 0.615(±0.47)
GPPN 98.01 93.97 0.598(±0.49) 98.32 95.24 0.623(±0.44) 57.82 25.25 −0.779(±0.94)
GVIN 94.43 98.05 0.660(±0.35) 30.69 8.16 −1.241(±0.69) 13.29 1.45 −1.309(±0.38)
VIN 95.10 99.04 0.683(±0.27) 46.64 5.84 −1.346(±0.62) 18.56 2.69 −1.288(±0.46)
VI n/a 99.17 0.684(±0.27) n/a 99.07 0.677(±0.28) n/a 98.33 0.659(±0.34)

Compared Methods

We compare our proposed UVIN with the following meth-
ods:

• VIN: Value Iteration Networks was proposed to embed
the differentiable planning module via a CNN (Tamar et
al. 2016).

• GVIN: Generalized Value Iteration Networks (Niu et al.
2018) substitutes the CNN module with a graph convolu-
tion operator to enable the application of VIN in irregular
spatial graphs.

• GPPN: Gated Path Planning Networks (Lee et al. 2018b)
reframes VIN as a recurrent-convolutional network and
replaces the recurrent updates with LSTM.

• Rainbow: A state-of-the-art model-free method (Hessel
et al. 2018) which ensembles several improvements to
DQN, showing great advantages in Atari games.

Maze Navigation via Imitation Learning

In maze navigation problems, each grid is denoted as 1 for
being an obstacle or 0 for a free-zone. A state includes the
information of the map, the agent’s position and the goal.
Eight actions are available for the agent, each represents a
move along with a specific direction, such as east and north-
east. We applied three types of mazes with different transi-
tion models, including regular maze, chessboard maze, and
maze on Mars. Regular maze navigation belongs to the typ-
ical spatially invariant MDP problems. The other two repre-
sent spatially variant problems.

For each experiment, we generated 20, 000 maps of size
16× 16 with obstacles and the goal randomly set4. We pro-
vided 10 positions with the corresponding optimal actions
to the goal as the supervised labels for each map (given by
shortest path algorithm). We used 80% of them as the train-
ing set, the remaining 20% as the test set.

In comparison with the shortest path problem, the agent
does not have complete knowledge about the consequence
of each action. Therefore, VINs use the convolution opera-
tor to introduce a prior to ensure an action leads to its neigh-
bor position, and the consequence of the actions is same for

3Use Benjamini-Hochberg procedure with the significance level
p = 0.05.

4The numbers of obstacles were randomly selected following
the uniform distribution on the interval [1, |S̄|/2]. If there was no
path to the goal state, the generated problem was discarded.
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Figure 3: Chessboard Maze. The obstacles, starting posi-
tion, and the goal are denoted as black grids, S, and T re-
spectively. It has two types of free grids (white and grey),
which have opposite consequences for an action. (b) shows
the transition models for each type of free grids.

diverse states (spatially invariant). However, UVIN does not
require any prior knowledge about the actions. In stead, it
learns everything from the imitation data.

Three metrics are used to evaluate the performance:

• %Acc, the accuracy of predicting labels in test set

• %Suc, the success rate that the agent reaches the goal state

• Reward, the mean and standard deviation of the cumula-
tive discounted rewards

Table 1 shows the results of UVIN in comparison with
VIN, GVIN, GPPN, and the conventional VI.

Regular Maze As a typical spatially invariant problem,
Table 1 shows that VIN has the best performance which is
very close to that of the classic VI which works directly on
the ground-truth model, which verifies the effectiveness of
using convolution operator on such type of problems. UVIN
performs slightly worse than VIN but better than GVIN and
GPPN, proving that UVIN can effectively learn the transi-
tion model without any prior knowledge of the structure.

It should be noted that VIN and GVIN require |A| chan-
nels to capture the transition model for each a ∈ A. In fact,
the models they learnt can be further abstracted/compressed
simply by the rotation of coordinate axes. In comparison,
UVIN directly explores the transition model to achieve more
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compact NN structure to learn the dynamics, thus achieving
better sample-efficiency.

Chessboard Maze In a chessboard maze, there are two
types of free grids, which are labeled as grey and white in
Fig.3. They have opposite consequences for an action. Such
setting makes the navigation task no longer spatially invari-
ant as in regular maze problems.

Table 1 shows that UVIN has the best performance which
is very close to VI. It is evident that VIN and GVIN do not
work well on such spatially variant problems. GPPN shares
the same problem as VIN and GVIN, but it performs much
better than VIN and GVIN. This may be attributed to its use
of LSTM to replace the max operator in Eq.(5). Therefore,
GPPN can filter out some noise caused by the inaccurate
transition model.

Figure 4 visualize the navigation map and the correspond-
ing value function for UVIN, VIN, and GVIN. The shape of
the value function of UVIN resembles the original naviga-
tion map the most truthfully, proving that UVIN has learnt
the reward function and transition function close to the orig-
inal task.

As the value functions of VIN and GVIN show a relatively
accurate approximation near the goal state, we can conclude
that the reward functions learnt by them are relatively good.
Thus, their poor performance (Table 1) should be the re-
sult of the inaccurate learning of the transition model (the
convolution kernel). For spatially variant problems, the en-
forced use of the convolution kernel tends to average the
weights inside the kernel for different consequences of an
action to minimize the loss, thus making the value function
more “smooth”.

Maze on Mars As Mars does not have a global intrinsic
magnetic field, an agent performing an action of going west
at a grid does not necessarily land in the grid on its left,
which turns the navigation on Mars no longer spatially in-
variant as on Earth. In this paper, we tested the navigation in
a local area on Mars with a hypothetical magnetic field. The
landing pattern of taking a specific action at a state varies
grid by grid, making Mars navigation much more complex
than the chessboard navigation.

Table 1 shows that UVIN again has the best performance,
which is close to that of the classic VI, due to its capability
of capturing complex transition models. In comparison, all
other models, including GPPN, fail to deal with navigation
problems at this level of complexity.

Penalized Minecraft Synthesis Task (PMST)

Minecraft is a sandbox video game that allows players to
explore, gather, and craft in a 3D world. In Minecraft, most
items can not be obtained directly, but need to be syn-
thesized. And the synthesized items could be used as in-
gredients to synthesize more advanced items. To collect
the desired items in the inventory, players need to plan
whether to search for or synthesize a new item, and how.
Thus, Minecraft is a typical problem requiring long-term
reasoning.

To evaluate UVIN in more realistic domains, we designed
synthesis tasks in the Minecraft environment. In addition to

Table 2: Performance Comparison on Deterministic PMSTs

%Acc %Suc Reward

Imitation Learning

UVIN 96.18 100.0 0.955(±0.02)
GPPN 87.01 51.00 0.023(±0.96)
GVIN 25.47 0.00 0.000(±0.00)
VIN 25.65 0.00 0.000(±0.00)

Reinforcement Learning

UVIN - 100.0 0.951(±0.02)
GPPN - 1.00 0.007(±0.11)
GVIN - 1.00 −0.036(±0.04)
VIN - 3.00 0.03(±0.17)

Rainbow - 5.00 0.046(±0.22)

getting the desired inventory, if the agent’s decisions result
in an unwanted inventory, it will be penalized for them.

PMSTs can be formalized as being hierarchical. The input
of PMSTs contains the frames of images and its associated
inventory storage. UVIN works at the top level to determine
a sub-policy to be used to enable the inventory state transi-
tion and eventually complete the execution.

The state of PMST is defined as si = [z1, z2, ..., z|IT |],
s ∈ S ⊆ N

|IT |, where zj ∈ N and |IT | represents the
number of item types. Each sub-policy needs to work on a
specific zj , such as collecting or synthesizing enough copies
of i-th type of items (zj). Thus, each sub-policy is in fact
a high-level action ai ∈ A leading the state transitions and
computing the rewards in UVIN. To speed up the training
process, we developed a simulator, which skips the game-
play, to mimic the state transition.

We set up both deterministic and stochastic environments
to evaluate UVIN’s performance on PMSTs. The state tran-
sition probability can only be 0 or 1 (p(s′|s, a) ∈ {0, 1}) in
the deterministic environment, while it can be p(s′|s, a) ∈
[0, 1] in the stochastic environment. The results of experi-
ments demonstrate that UVIN is capable of solving all tasks
successfully via IL/RL, while other methods fail.

Deterministic PMST (DPMST) In DPMST, the request
for each item type is binary (zi ∈ {0, 1}). That is, either a
player needs it. Therefore, if we have |IT | types of items
to work with, there will be 2|IT | states in the DPMST. Sim-
ilar to the maze experiments, we generated 20, 000 DPM-
STs with the penalized states and goal state randomly set in
the experiments. During the execution, an agent gets +1 re-
ward for reaching the goal state, or gets −1 and terminates
the episode for reaching any the penalized state. If the agent
cannot arrive at the goal state within 250 steps, the episode
also terminates. The state space was converted into a 2-D
grid map to run VIN, GVIN, and GPPN as the comparison
models. To minimize the impact of grid-map reshaping on
their performance, we experimented grid-maps with varied
shapes for fairer comparison.

DPMST via Imitation Learning DPMST is far more
complex than maze problems. Table 2 shows that UVIN is
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(a) map (b) UVIN (c) VIN (d) GVIN

Figure 4: Visualization of the map and value function. (a) The map: purple, red, and green denote the obstacles, goal, and free
grids respectively. (b) The value function of UVIN. (c) The value function of VIN. (d) The value function of GVIN.

Figure 5: Training loss in Deterministic PMST (IL)

the only model that is capable of dealing with DPMSTs via
IL. The results prove that the flexible compact module de-
signed for UVIN can learn the model dynamics much more
effectively than the convolution operators in VINs.

GPPN has relatively high accuracy in predicting labels.
However, its success rate is only half of the UVIN’s which
indicates the difficulties of such problems and the impor-
tance of long-term reasoning.

IL is in general a supervised learning. Figure 5 illustrates
the loss in the training process of each model. UVIN stably
converges along with learning steps while VIN and GVIN
oscillate acutely at the beginning. This might be related to
their enforced use of the convolution kernel which has in-
consistent gradient directions when the affects/dynamics of
an state-action vary over the state space.

DPMST via Reinforcement Learning. In this setting,
the agent interacted with our simulator for 2 million steps.
UVIN, VIN, GVIN, and GPPN were all trained by episodic
Q-learning (Niu et al. 2018). Moreover, Rainbow (Hessel
et al. 2018) was included in the comparison. Rainbow is
a state-of-the-art model-free method which ensembles six
improvements to DQN, showing great advantages in Atari
games. We used the same hyper parameters as its paper ex-
cept the first convolution layer was adjusted to adapt to the
input size.

Table 2 shows that UVIN is the only model that is capable
of dealing with DPMSTs via RL. VIN and GVIN perform
slightly better than their results in IL. The reason is that RL
cares more about the consequences of action history while
IL aims at accurate label prediction. Therefore, even though
VIN and GVIN cannot model the actual dynamics, they still

(a) Deterministic PMST (b) Stochastic PMST

Figure 6: Training performance in PMST (RL)

Table 3: Performance on Stochastic PMST (RL)

%Suc Reward

UVIN 53.00 0.419(±0.49)
GPPN 0.00 0.000(±0.00)
GVIN 0.00 −0.001(±0.00)
VIN 0.00 −0.005(±0.05)

Rainbow 0.00 −0.103(±0.30)

achieve better reward.
The results demonstrate that VIN, GVIN, and GPPN do

not have the ability to learn the correct dynamics to per-
form the planning computation. Although Rainbow might
be a more advanced model-free approach, its performance is
still far worse than UVIN which properly incorporates the
planning computation.

Stochastic PMST (SPMST) SPMST is more difficult
than DPMST.

In SPMST, the request for each item type is an integer
(zi ∈ N), resulting in much larger number of states than
that in the deterministic setting. As the transition probability
is p(s′|s, a) ∈ [0, 1] in the stochastic environment, SPMST
has more complex dynamics to capture. Therefore, SPMST
requires the learning model to be compact to perform the
task efficiently and effectively.

Experiments for SPMST shared the same setting as
DPMST. Table 3 shows that UVIN is the only model that
is capable of dealing with SPMSTs via RL. Fig. 6a and
Fig. 6b illustrate RL’s training process of each model in
deterministic setting and stochastic setting, respectively.
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In general, SPMST needs more episodes to converge than
DPMST due to its more complex dynamics.

We validated UVIN in MineRL (Guss et al. 2019) to
play Minecraft games without extra training. The sub-
policies were pre-trained via Rainbow. Please refer to https:
//github.com/bit1029public/UVIN for the source codes and
the videos of game playing with the policy computed.

Conclusion

This paper investigated the strength behind VIN and its ex-
tensions, and formally identified that they are confined to
spatially invariant MDPs. To generalize VIN to spatially
variant problems, we proposed Universal Value Iteration
Networks which automatically explore a compact module to
capture transition dynamics and incorporate it into the differ-
entiable planning computation. Experiment results demon-
strated that UVIN can achieve similar performance as VINs
on spatially invariant problems, and significantly outper-
forms other models on more complex problems.
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