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Abstract

Detecting relationships among multivariate data is often of
great importance in the analysis of high-dimensional data sets,
and has received growing attention for decades from both
academic and industrial fields. In this study, we propose a sta-
tistical tool named the neighbor correlation coefficient (nCor),
which is based on a new idea that measures the local continu-
ity of the reordered data points to quantify the strength of the
global association between variables. With sufficient sample
size, the new method is able to capture a wide range of func-
tional relationship, whether it is linear or nonlinear, bivariate
or multivariate, main effect or interaction. The score of nCor
roughly approximates the coefficient of determination (R2) of
the data which implies the proportion of variance in one vari-
able that is predictable from one or more other variables. On
this basis, three nCor based statistics are also proposed here to
further characterize the intra and inter structures of the associ-
ations from the aspects of nonlinearity, interaction effect, and
variable redundancy. The mechanisms of these measures are
proved in theory and demonstrated with numerical analyses.

Introduction

Identifying relationships among variables is one of the most
critical issues in data analysis and interpretation (Altman and
Krzywinski 2015) with a wide range of applications in diverse
fields from data science to neuroscience. Nowadays, however,
a large data set may contain a vast number of variable pairs
and combinations that are difficult to be examined manu-
ally (Reshef et al. 2011). Association measures can be used
to quickly find out the significant associations scattered in
thousands or even millions of potential relationships without
modelling the relationships explicitly, and thereby provide
valuable knowledge and promising pointers for future study.

Consider a data sample {(x(t), y(t))|1≤t≤N} that is ob-
served from an underlying functional relationship expressed
as follows.

y = f(x) + e =
∑
xi∈x

gi(xi) +
∑
xi⊆x

hi(xi) + e (1)

where y∈R, x = (xi|1≤i≤M)∈RM , e∈R, and M≥2 re-
spectively denote dependent variable, multiple independent
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variables, subset of x, and additive noise. f(·), gi(·) and hi(·)
denote the underlying function, main effect and interaction
effect respectively.

If f(·) is linear in which all gi(·) are linear and all hi(·) are
null, the Pearson correlation coefficient should be a perfect
measure of how much fluctuation in one variable can be
explained by another variable (R2) (Altman and Krzywinski
2015). If f(·) is nonlinear, the traditional correlation test is no
longer sufficient. Developing concise and efficient nonlinear
association detection methodologies has been a challenging
research and received wide attention for over a half century.

Some of the previous approaches have been developed
based on the theory of mutual information (MI) and parti-
tioning (binning) techniques. A typical one is the maximal
information coefficient (MIC), which is the state-of-the-art
association measure that has been extensively evaluated re-
cently (Reshef et al. 2011; Reshef et al. 2018). This kind of
methods use partitioning as a means to apply MI on continu-
ous random variables based on the idea that, if an association
exists between two variables, then a grid can be drawn on
the scatterplot that partitions the data to encapsulate that re-
lationship. Similarly, Heller and Gorfine’s SDDP adopted
summation or maximization aggregation of the scores over
all partitions of a fixed size to estimate the MI (Heller et al.
2016). In addition, other techniques, such as kernel density
estimation (KDE), k-nearest neighbor distances (kNN), and
nonlinear correlation information entropy (NICE), also can
be used to compute the score of MI as a dependence mea-
sure (Moon, Rajagopalan, and Lall 1995; Darbellay and Va-
jda 1999; Kraskov, Stogbauer, and Grassberger 2004; Wang,
Shen, and Zhang 2005).

Another method named distance correlation (dCor) has
a compact representation analogous to the Pearson correla-
tion coefficient, however is calculated based on certain Eu-
clidean distances between sample elements (Székely, Rizzo,
and Bakirov 2007; Székely and Rizzo 2009). dCor can be
viewed as a special case of kernel based method (Sejdinovic
et al. 2013), which is a kind of more general statistic defined
on reproducing kernel Hilbert spaces (Gretton et al. 2008;
Gretton and Gyorfi 2010). Empirical studies (Reshef et al.
2015; Reshef et al. 2018) showed that dCor also achieved ex-
cellent performance in some situations. In order to construct
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a distribution free test, Székely and Rizzo (2009) consid-
ered using the ranks of each random variable instead of the
actual values in computing dCor, and Heller, Heller, and
Gorfine (2013) introduced an association test based on the
cross-classification of the distances from center points.

From the 1980s, a number of higher order correlation
measures have been proposed to construct concise nonlinear
model validity tests (Aguirre 1995; Billings and Zhu 1995;
Mao and Billings 2000) for system identification. Zhang, Zhu,
and Longden (2007) and Zhu, Zhang, and Longden (2007)
introduced a set of first order correlation functions, named
omni-directional cross-correlation functions (ODCCF) by
considering the symmetrical properties of nonlinear relation-
ship. Other extensions of the ordinary correlation test include
the Spearman rank correlation coefficient, Kendall coefficient
of concordance (Kendall 1938), maximal correlation (Rényi
1959; Breiman and Friedman 1985), principal curve based
methods (Hastie and Stuetzle 1989; Delicado 2001; Deli-
cado and Smrekar 2009), randomized dependence coefficient
(RDC) (Lopez-Paz, Hennig, and Scholkopf 2013), and non-
linear spectral correlation (Liu, Sohn, and Jeon 2017), which
all capture a certain range of nonlinear relationships.

Nevertheless, these approaches still cannot effectively de-
tect associations in a satisfactory manner under every condi-
tion, since they are incapable of equitability estimating the
R2 of the relationships and show strong preference for some
types of nonlinear functions (Reshef et al. 2018). In addition,
the overwhelming majority of the existing methods are de-
signed for pairwise association detection, and thus unable to
detect interaction effects. If only main effects exist among
multiple variables, pairwise test should be sufficient since the
influence of the variables is separable in such situation. In
contrast, interaction effect describes a situation in which the
simultaneous influence of two or more independent variables
is not additive. In the real world, actually, many bivariate
relationships appear to be insignificant or non-functional, but
can in fact be explained by interaction effects. Due to the
complexity of interactions, sometimes, there is no any trend,
principle curve, or particular pattern identifiable in the pair-
wise tests, and even various fitting or transformation would
be of no avail. Therefore, whenever interactions occur all
the bivariate analysis techniques tend to be less effective. Al-
though dCor and some MI estimators can handle multivariate
data, they are still incapable of distinguishing interactions
from main effects in all cases.

In the present study, we propose a new method named
the neighbor correlation coefficient (nCor) to detect the re-
lationships among data sequences in both the bivariate and
multivariate cases with the following properties. (i) With suf-
ficient sample size, the method could capture a wide range of
functional relationships including not only various bivariate
functional forms such as exponential or periodic, but also
multivariate associations and in particular interaction effects.
(ii) The method roughly measures the association strength
(R2) of the data that have the same statistical power increas-
ing with sample size for whatever functional relationship. (iii)
The method can be used to further characterize and distin-
guish the inter and intra structure of the detected relationship
from the aspects of nonlinearity, interactivity, and variable re-

dundancy. Finally, nCor differs from the previous approaches
in that it detects associations by measuring the local con-
tinuity of the concomitants obtained from data reordering,
rather than partitioning the scatterplots, estimating the prob-
ability distributions, or computing with pairwise distances
(and reproducing kernel Hilbert spaces). For this reason, in
the new method, the independent variables are only used for
reordering data points, but not involved in the computation
of correlation scores at all. This provides an alternative way
to assess the relationships among multivariate data.

The rest of this study is organized as follows. In the next
two sections, nCor and three nCor based statistics are pro-
posed. Subsequently, empirical studies are performed to eval-
uate the effectiveness of the new statistics and make com-
parisons with previous approaches. In the last Section, con-
clusions are drawn to summarize the study. To reduce the
length of the study, more analyses and experimental studies
are enclosed in supplementary material.

Neighbor correlation coefficient (nCor)

To simplify the proofs, without losing generality, through-
out this study x is assumed to be continuous and uniformly
distributed, and f(·), gi(·) and hi(·) are all assumed to be
continuous functions. Supplementary material gives the theo-
retical proofs of all the lemmas and theorems, as well as the
empirical proofs on the robustness of the new method against
data distribution and function continuity. Actually, the new
method exhibits almost same performance under different
data distributions when the sample size is sufficiently large
(In Supplementary Material, we tested 8 continuous and dis-
crete distributions including uniform, normal, exponential,
and bimodal).

nCor for bivariate data

Consider a set of paired data {(x(t), y(t))|1≤t≤N}. To de-
tect the potential relationship y = g(x) + e, sample points
need to be rearranged initially in an increasing order of the
independent variable. The concepts of order statistics and con-
comitants are given as follows (David and Nagaraja 2003).

Order statistics: Sorting independent variable data with
respect to its values to obtain a new sequence denoted by
x(1:N)≤x(2:N)≤· · ·≤x(N :N), where x(k:N) is known as the
k-th order statistic of {x(t)}. Let {n(k)|1≤k≤N} be the re-
ordering permutation, that is, if n(k) = t then x(k:N) = x(t).

Lemma 1. Let x(1), x(2), · · ·, x(N) be a sample of a random
variable which is continuous and uniformly distributed on
[a, b]. Let Δx(k:N) be the difference between two neighboring
order statistics of {x(t)} which can be derived as

Δx(k:N) = x(k+1:N) − x(k:N) (2)

Then, it holds that

lim
N→∞

Δx(k:N) = 0, ∀1≤k≤N − 1 (3)

Concomitants: Rearranging dependent variable data
in accordance with {n(k)} to yield a new sequence
y[1:N ], y[2:N ], · · ·, y[N :N ] , where y[k:N ] is known as the k-
th concomitant, and defined as y[k:N ] = y(t) when n(k) = t.
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Lemma 2. Let {(x(t), y(t))|1≤t≤N} be observed from a
noise free continuous relationship y = g(x), where x∈[a, b]
is a uniformly distributed random variable. Let Δy[k:N ] be
the difference between two neighboring concomitants which
can be derived as

Δy[k:N ] = y[k+1:N ] − y[k:N ] (4)

Let Δy denote the sequence of {Δy[k:N ]}. If N is sufficiently
large, then Var(Δy) < Var(y). In addition,

lim
N→∞

Δy[k:N ] = 0, ∀1≤k≤N − 1 (5)

Figure 1 shows the scatterplots of four typical data relation-
ships that when Δx(k:N) is sufficiently small (due to large
N ), the amplitude of Δy[k:N ] should be much smaller than
that of y(t)(y[k:N ]).
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Figure 1: The scatterplots of four bivariate associations.

nCor measures how much knowing the independent vari-
ables determines the value of the dependent variable based
on the idea that, if a continuous functional relationship exists,
the data points which are very similar in the independent
variables should also have similar values in the dependent
variable. In such a situation, y[k:N ] will exhibit a positive cor-
relation with y[k+1:N ] = y[k:N ]+Δy[k:N ]. Pairwise neighbor-
ing concomitants, then, are used to compute nCor by means
of the product-moment correlation coefficient as below.

Definition 1. neighbor correlation coefficient (nCor). Let
(y′, y′′) denote the paired sequences of the neighboring
concomitants where y′ = {y[k:N ]|1 ≤ k ≤ N − 1} and
y′′ = {y[k+1:N ]|1 ≤ k ≤ N − 1}. nCor is defined as

nCor(x, y) =
Cov(y′, y′′)√
Var(y′)Var(y′′)

(6)

where Cov(·) and Var(·) denote covariance and variance
operators respectively. nCor when applied to a sample can
be calculated as (7).

Theorem 1. Let {(x(t), y(t))} (|x| ≥ 1) be a data sample
that is observed from random variables (x, y). If (x, y) are in-
dependent, then the expectation of the correlation coefficient

has nCor(x, y) = 0. When applied to a sample, a hypothesis
test rejects the null hypothesis of independence if

|nCor(x, y)| > tanh
(
Φ−1(1− α/2)/

√
(N − 4)

)
(8)

where Φ(·) denotes the standard normal cumulative distribu-
tion function and α is the significance level of the test.
Theorem 2. Let {(x(t),i, y(t))} be paired data that is ob-
served from the relationship as defined in (1), and each
xi ∈ x is uniformly distributed on [a, b]. If a main effect
gi(xi) exists, with sufficient N , the correlation coefficient
has nCor(x, y) > 0. In addition,

lim
N→∞

nCor(x, y) = Var(g(x))/Var(y) (9)

nCor for multivariate data

When considering the relationship among three or more vari-
ables, an interaction effect may arise that the association
between each of the interacting variables and the dependent
variable depends on the values of the other interacting vari-
able(s). Figure 2(a) clearly suggests that when an interaction
occurs, the value of y(t) is unpredictable if only x(t),1 or
x(t),2 is known. Although Δx(k:N),1 is small, Δy[k:N ] could
be large due to the potentially large value of Δx(k:N),2. In
this case, the aforementioned order statistics based data rear-
ranging is no longer sufficient.
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Figure 2: The scatterplots (a) and contour map (b) of y =
x1x2 with 100 sample points.

To address this problem, we convert the data reordering
process to a travelling salesman problem (TSP) by consider-
ing the reordering permutation as a short route that visits each
sample point in the multi-dimensional independent variable
space exactly once. Then, {n(k)} obtained from solving TSP
are applied to generate concomitants for computing nCor.
Figure 2(b) shows that although a short route cannot make
each {x(t),i} be rearranged in an ascending or descending
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nCor(x, y) =

(N − 1)
N−1∑
k=1

y[k:N ]y[k+1:N ] −
N−1∑
k=1

y[k:N ]

N−1∑
k=1

y[k+1:N ]√
(N − 1)

N−1∑
k=1

y2[k:N ] −
(N−1∑

k=1

y[k:N ]

)2√
(N − 1)

N−1∑
k=1

y2[k+1:N ] −
(N−1∑

k=1

y[k+1:N ]

)2 (7)

order, it still ensures not only a small distance between each
pair of connected data points in the space of x (which is de-
fined as λn(k)n(k+1)

= ‖x(k:N)−x(k+1:N)‖), but also a small
difference in y (Δy[k:N ]).

Lemma 3. Let {(x(t), y(t))|1≤t≤N} be observed from a
noise free continuous relationship y = f(x) where each
xi ∈ x is uniformly distributed on [a, b]. Let λn∗

(k)
n∗
(k+1)

be
obtained from the optimum reordering permutation that is
defined as

{n∗
(k)} = argmin

n(1),··· ,n(N)

( N∑
k=1

λn(k)n(k+1)
+ λn(1)n(N)

)
(10)

Then, it holds that

lim
N→∞

Δy[k:N ] = 0, ∀1≤t≤N (11)

Theorem 3. Let {(x(t), y(t))} be a data sample that is ob-
served from the relationship as defined in (1), and each
xi ∈ x is uniformly distributed on [a, b]. Suppose nCor(x, y)
is calculated based on the optimum {n∗

(k)}. Then,

lim
N→∞

nCor(x, y) = Var(f(x))/Var(y)

=
∑
xi∈x

Var(gi(xi))

Var(y)
+

∑
|xi⊆x|≥2

Var(hi(xi))
Var(y)

(12)

In this study, we adopt the nearest neighbor (NN) algo-
rithm (Algorithm 1) to solve TSP (Gutin and Punnen 2007),
which is simple and can quickly yield a short route of suf-
ficient quality to satisfy the needs of association detection.
(i) The time complexity of NN algorithm is O(N2) which
means that the computational time of nCor(x, y) mainly de-
pends on N but not on M . (ii) nCor is able to cope with
high dimensional x without a large expense of computational
cost. With increasing M , however, the power of nCor on ap-
proximating R2 decreases little by little, since with fixed N
the data points become more sparse in a higher dimensional
space. (iii) nCor is robust to non-optimal reordering, and
it is not sensitive on any particular order of the data points.
Even though a TSP route is comparatively bad, the majority
of the connected data points are still close to each other in x
space, that is enough for computing nCor.

Three nCor based association measures

To further characterize the inter and intra structure of the
detected associations, three nCor based statistics are also
proposed in this study.

Algorithm 1 NN algorithm based data reordering.

Input: Euclidean distance matrix of sample data {x(t)}, de-
noted by [λpq]

N×N where λpq = ‖x(p) − x(q)‖;
Output: concomitants {y[k:N ]|1≤k≤N};

Start on data point t←1 as the current data point, set
n(1)←1 and y[1:N ]←y(t);
for k←1 to N − 1 do

Find out the shortest distance connecting the current
data point t and an unvisited data point i /∈ {n(1), · · · ,
n(k)} that i∗← argmin

i
λit;

Move the current data point to t←i∗, set n(k+1)←i∗
and y[k+1:N ]←y(i∗);

end for

Definition 2. The coefficient of interaction (COI)

COI(x, y) =nCor(x, y)−
∑
xi∈x

max
(
0, nCor(xi, y)

)
−

∑
|xi⊂x|≥2

max
(
0, COI(xi, y)

)
(13)

where 2≤|xi|<|x|.
COI(x, y) (COI(x1· · ·xM , y)) is a measure of the

strength of the interaction effect exactly in terms of x,
and by Theorem 3 it holds that limN→∞ COI(x, y) =
Var(h(x))/Var(y).
Remark 1. COI and nCor can be used together to distin-
guish interaction from main effect. (i) If nCor(xi, y) is sig-
nificant, then a main effect exists between xi and y. The
stronger the main effect is the larger the nCor value will be.
(ii) If nCor(xi, y) is significant and COI(x, y)>0, then an
interaction may exists. The stronger the interaction effect is
the larger the COI value will be.
Definition 3. The coefficient of nonlinearity (CON)

CON(x, y) = nCor(x, y)− Cor2(x, y) (14)

where Cor(x, y) denotes the Pearson correlation coefficient.
CON(x, y) is a measure of the nonlinearity of main ef-

fect, which indicates the strength of the nonlinear part of a
bivariate association. CON is defined similar as the measure
of nonlinearity MIC − ρ2 in (Reshef et al. 2011).
Remark 2. CON and Cor can be used together to distin-
guish linear and nonlinear associations. Consider a signif-
icant nCor(x, y). (i) CON(x, y)≤0 indicates that only a
linear association exists. (ii) CON(x, y)>0 indicates that
the association is nonlinear. The stronger the nonlinear effect
is the larger the CON value will be. (iii) An insignificant
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Figure 3: Diagnose and characterize various associations by using nCor and the three nCor based statistics

Cor(x, y) indicates that there only exists a nonlinear effect
such that a linear model will completely fail to capture the
underlying relationship.
Definition 4. The coefficient of essentialness (COE)

COE(xs, y) = nCor(x, y)−max
(
0, nCor(x\xs, y)

)
(15)

where xs⊂x, and x\xs = {xi|∀xi∈x, xi /∈xs}.
COE(xs, y) (COE(xs1 · · ·xsm , y)) implies whether or

not xs is redundant in the presence of x\xs. Its role is similar
as that of the partial correlation coefficient in the linear case
and conditional MI (CMI) which is the MI of two variables
conditioned to a third one (Fleuret 2004; Sato et al. 2006;
Runge 2018).
Remark 3. COE can be used to detect if a subset of inde-
pendent variables is essential in analyzing the dependent
variable. Consider a significant nCor(x, y) and a subset xs.
(i) COE(xs, y)>0 indicates that xs is essential in that it con-
tains at least one irreplaceable independent variable that
must be involved in model construction. (ii) Generally, the
more essential xs of same size is, the larger value the COE
test will yield, and thus needs to be given a higher priority in
analyzing y.

Summarily, Fig. 3 depicts the decision tree that represents
how to diagnose and characterize various associations arising
from a subset of independent variables 1≤|xs⊆x|≤M by the
use of Cor, nCor and the three nCor based statistics.

Empirical studies
In this section, a set of simulation examples and a real-world
data set are employed to illustrate the effectiveness of the new
method. Supplementary material gives the detailed experi-
mental settings, as well as more empirical demonstrations of
nCor on detecting associations and approximating R2 under
different data distributions, sample sizes, non-optimum data
reordering, and independent variable numbers.

Simulation experiments and comparative analysis

Six simulated examples were performed here for comparison
purposes. Table 1 presents the underlying associations that

cover a wide range of functional forms including parabolic,
exponential, periodic, cross term, mixture function, and even
classification problem (step function).

Table 1: The six simulated examples (|g| and |h| respectively
denote the numbers of main effects g(·) and interactions h(·)
occuring in each f(·)).

Underlying functions |g| |h|

y1 =

{
sin(10x2), x1 ≥ 0
sin(10x2 + 2), x1<0

1 1

y2 = x1x2 − 0.7x2x3 + 3x1x2x3 0 3
y3 = x1x

2
2 − 3x1 + cos(20x3) + e 2 1{

y4 = cos(20x1x2)x2 + 0.5 exp(x2) + e
x3 = 0.667x2 + 0.333u

1 1

(x1, x2, y5): two-spirals problem 0 1
(x1, x2, y6): noisy two-spirals problem 0 1

In examples 1 to 4, we considered three random indepen-
dent variables with uniform distribution and amplitude range
from -1 to 1. In examples 3 and 4, a normally distributed ran-
dom noise with zero mean and variance of 0.25 was applied to
increase the difficulties of association detection. All the data
sequences for the first four examples were generated with
length of 1000. In example 4, collinearity occurred between
x2 and x3, and u was set to be a random variable having an
identical distribution of xi. Examples 5, called two-spirals
problem, is a benchmark task for nonlinear classification,
which consists of two spirals each with 200 samples in a
2-D space. In example 6, each independent variable of the
two-spirals problem was corrupted by a normally distributed
additive noise with zero mean and variance of 1× 10−4. In
addition, 40 randomly selected samples (10%) were wrongly
categorized that led to a noisy dependent variable.

Here, we compared nCor with MIC, dCor, kNN based
MI, CODCF, and the RDC whose outstanding performances
have been extensively demonstrated (Reshef et al. 2018).
To make comparisons easier, the MI values were re-scaled
to the range [0, 1] (Gelfand and Yaglom 1957; Lange and
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Table 2: Association detection by using previous methods (significant scores are marked with underlines).

MIC(x, y) CODCF (x, y) RDC(x, y)

x1 x2 x3 x1 x2 x3 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3

y1 0.134 0.462 0.134 -0.032 -0.096 -0.001 0.107 0.244 0.095 0.260 0.149 0.212 0.255
y2 0.180 0.229 0.231 0.384 0.479 0.353 0.478 0.532 0.503 0.693 0.730 0.714 0.976
y3 0.412 0.131 0.268 -0.659 -0.360 0.039 0.664 0.390 0.118 0.809 0.673 0.382 0.814
y4 0.133 0.242 0.226 0.009 0.441 0.392 0.098 0.477 0.414 0.486 0.424 0.483 0.491
y5 0.222 0.207 0.098 0.006 0.012 0.001 0.020
y6 0.196 0.183 0.080 0.009 0.011 0.004 0.023

dCor(x,y) r2MI(x, y) = 1− exp(−2MI(x, y))

x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3

y1 0.054 0.114 0.043 0.106 0.062 0.079 0.089 0 0.992 0 0.862 0.001 0.548 0.522
y2 0.210 0.213 0.262 0.279 0.267 0.290 0.342 0.296 0.510 0.312 0.791 0.725 0.796 0.978
y3 0.624 0.106 0.070 0.558 0.525 0.092 0.498 0.487 0.163 0.207 0.643 0.546 0.256 0.572
y4 0.052 0.405 0.360 0.342 0.263 0.400 0.361 0.089 0.260 0.212 0.461 0.205 0.326 0.383
y5 0.091 0.034 0.081 0.025 0.090 0.747
y6 0.079 0.049 0.079 0.001 0.030 0.463
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Figure 4: The scatterplots and association detection for the six examples. According to the properties of the new statistics,
significant main effects (nCor), detected interaction effects (COI) and essential independent variables (COE) are marked as red,
blue, and green respectively. nCor were tested for significance using Fisher’s transformation with the same confidence limits
(α = 5%) that are ±0.062 for examples 1-4 and ±0.098 for the last two.

Grubmuller 2005). The hypothesis test introduced in (Zhang,
Zhu, and Longden 2007; Reshef et al. 2011; Székely, Rizzo,
and Bakirov 2007; Lopez-Paz, Hennig, and Scholkopf 2013)
was used to detect significant associations at 95% confidence
level (α = 0.05). For MIC and other MI measures, the em-
pirical confidence limits were obtained through using 1000

surrogate sets of random data (Reshef et al. 2018).

Tables 2 presents the experimental results. (i) None of
these measures can capture every underlying relationship
with satisfactory results, and particularly the association be-
tween x1 and y1 which is missed out by all the methods
except RDC. Generally, the multivariate measures achieve
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Figure 5: Six typical examples of the associations detected by nCor and COI, including three interactions (a-i) and three main
effects (j-l). In (g-l), f̂L(·) and f̂N (·) respectively indicate that the line or curve (surface), and R2 are obtained through using
linear regression or ANN.
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better performance than the bivariate ones. By using these
methods, however, there are still some missed detections.
(ii) Despite exceeding the confidence interval, these mea-
sures cannot assign appropriate scores to correctly state the
importance of each independent variable to predicting or
classifying the dependent variable. For instance, the val-
ues of CODCF (x2, y1), RDC(x1x2, y1), MIC(x1, y5),
and MIC(x2, y5) just slightly exceed the confidence lim-
its, whereas the corresponding variables are strongly as-
sociated. dCor(x2, y1) = 0.11 and r2MI(x2, y1) = 0.99,
however, the real R2 is in fact about 0.3. (iii) Although
RDC, dCor and MI can handle both bivariate and mul-
tivariate data, they still cannot be used to distinguish be-
tween interactions and main effects. The detection results
of the two measures are sometimes ambiguous and confus-
ing so that it is quite difficult to properly discern interac-
tion effects from these values. For example, r2MI(x2, y1) >
r2MI(x1x2, y1), but there is a strong interaction h(x1, x2),
and y1 only can be predicted properly by using x1 and x2 si-
multaneously. In example 2, r2MI(x1x2, y2), r2MI(x1x3, y2),
and r2MI(x2x3, y2) yield very similar values, and especially
MI(x1x3, y2) > MI(x1, y2) + MI(x3, y2), but actually
an exact interaction h(x1, x3) does not exist. In addition,
RDC(x1x3, y2) > RDC(x2x3, y2) > RDC(x1x2, y2),
however, y2 precisely contains terms x1x2 and x2x3.

Figure 3 shows the scatterplots of the six examples and
the correlation detection results. As shown in the figures,
the scatterplots display a variety of patterns. Especially
between y1, y4 and x1, there is even no any pattern that
can be discovered by visual inspection of the scatterplots,
since the data points just look like completely random. In
contrast to the existing methods, nCor base statistics suc-
cessfully detect the underlying relationships without any
missed or false judgement. By COI test, all the interac-
tion effects are precisely discerned from the associations
along with a rough assessment of the effect strength. In
example 2, COI(x1x2x3, y2)/COI(x1x2, y2) = 2.9 and
COI(x2x3, y2)/COI(x1x2, y2) = 0.52 are approximately
equal to the theoretical values of the corresponding variance
ratios which can be derived as Var(3x1x2x3)/Var(x1x2) =
3 and Var(0.7x2x3)/Var(x1x2) = 0.49. Moreover, a nega-
tive COE(x3, y4) indicates that x3 is redundant. That is to
say, although nCor(x3, y4) yields a considerable value, x3 is
not essential to analyzing y4 since the predictive information
carried by x3 is fully overlapping with x2.

Association detection in large data set

nCor based statistics were used to explore a real-world data
set that consists of 357 social, economic, health, and political
indicators for 202 countries around the world for the time
period from 1960 through 2005. It was originally collected
from the World Health Organization (WHO) and partner orga-
nizations (Rosling 2008; W.H.O. 2009). By the new method,
we detected a huge number of interesting associations includ-
ing both nonlinear main effects and interactions. For more
statistical results see supplementary material.

Figure 5 shows six typical associations detected by the new
measures. To confirm that nCor is an effective estimate of R2,
linear regression and feedforward artificial neural network

(ANN) were implemented to identify the detected relation-
ships to obtain the real R2 of the data. (i) Fig. 5 (a) depicts
a superposition of two relationships which has been studied
previously (Reshef et al. 2011) that, most data points obey
a steeper trend, and the others obey a less steep trend. Ob-
viously, it is impossible to separate the two trends of health
expenditure (y) when considering the national income (xi)
alone. By COI test, we found another indicator, called indus-
try contribution to economy (xj), which does not directly
affect but interactively influences y (Figs. 5 (b, c)). When
looking at y in the space of xi and xj , the less steep minority
of points can be precisely separated from the others by three
lines. (ii) Similarly, Figs. 5 (d-f) show another example which
is even more persuasive. The COI test detect a strong inter-
action effect implying the fact that neither a low population
growth rate (xi) nor a short healthy life expectancy (xj) is
unique to the counties with extremely high deaths among
children due to HIV/AIDS (the outliers of y), but a combina-
tion of the two is. (iii) The third example is an association
consisting of both main and interaction effects. Fig. 5 (g-i)
show the relationships among the three variables, as well as
the curves, surface, and the R2 obtained from the best fitted
ANNs (10 ANNs was trained for each case). By means of
nCor, we can not only accurately reveal the composition of
the association, but also properly foretell the R2 of the data.
(iv) Figs. 5 (j-l) show three pairwise associations which are
diagnosed respectively as weak, strong, and only nonlinear
effects, and then confirmed by linear regression and ANN.
Fig. 5 (l) suggests that even with a qualitative independent
variable, nCor still exhibits an excellent detection power.

Conclusion

Data-driven research is becoming increasingly popular in
fields as varied as biology, physics, political science, and
economics. In such kind of studies, association detection
is one of the most critical issues, and may provide a lot
of valuable insight into large and complex data sets that
is otherwise difficult to obtain. nCor inherits the merits of
the Person correlation coefficient in the linear case, but is
generally applicable to measuring all types of functional
relationships. The three nCor based statistics can be used to
distinguish and characterize the associations from the aspects
of nonlinearity, interactivity, and variable redundancy. These
measures, as illustrated in the empirical studies, are simple
but powerful, and may have a wide range of applications
from quick association detection to various data analysis and
interpretation.
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Székely, G.; Rizzo, M.; and Bakirov, N. 2007. Measuring and
testing dependence by correlation of distances. The Annals
of Statistics 35:2769–2794.
Wang, Q.; Shen, Y.; and Zhang, J. Q. 2005. A nonlinear
correlation measure for multivariable data set. Physica D
200:287–295.
W.H.O. 2009. WHO statistical information system (WHO-
SIS). http://www.who.int/whosis/en/.
Zhang, L. F.; Zhu, Q. M.; and Longden, A. 2007. A set of
novel correlation tests for nonlinear system variables. Inter-
national Journal of Systems Science 38(1):47–60.
Zhu, Q. M.; Zhang, L. F.; and Longden, A. 2007. Develop-
ment of omni-directional correlation functions for nonlinear
model validation. Automatica 43(9):1519–1531.

6794


