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Abstract

Recently a promising research direction of statistical learn-
ing has been advocated, i.e., the optimal margin distribution
learning with the central idea that instead of the minimal
margin, the margin distribution is more crucial to the gen-
eralization performance. Although the superiority of this new
learning paradigm has been verified under batch learning set-
tings, it remains open for online learning settings, in particu-
lar, the dynamic environments in which the underlying deci-
sion function varies over time. In this paper, we propose the
dynamic optimal margin distribution machine and theoreti-
cally analyze its regret. Although the obtained bound has the
same order with the best known one, our method can signifi-
cantly relax the restrictive assumption that the function vari-
ation should be given ahead of time, resulting in better appli-
cability in practical scenarios. We also derive an excess risk
bound for the special case when the underlying decision func-
tion only evolves several discrete changes rather than varying
continuously. Extensive experiments on both synthetic and
real data sets demonstrate the superiority of our method.

Introduction

Support vector machines (SVMs) and Boosting have al-
ways been two mainstream learning approaches during the
past decades. The former (Cortes and Vapnik 1995) roots in
the statistical learning theory (Vapnik 1995) which aims to
search a large margin separator, while the latter also enjoys
a long history of being explained by margin theory (Freund
and Schapire 1995; Schapire et al. 1998), due to it is resis-
tant to over-fitting empirically (Reyzin and Schapire 2006;
Wang et al. 2011; Zhou 2012).

Recently the margin theory for Boosting has finally been
defended (Gao and Zhou 2013), and disclosed that instead of
optimizing a single margin, margin distribution is more cru-
cial to the generalization performance. Similar conclusions
have also been obtained for SVM-style learning approaches.
Specifically, Zhang and Zhou (2014; 2017; 2019) proposed
the optimal margin distribution machines (ODMs) for bi-
nary and multi-class classification problems respectively,
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and achieved superior generalization performance to the tra-
ditional large margin based methods. After that, the optimal
margin distribution learning has turned into a promising re-
search direction and attracted a lot of attentions, just to name
a few, Zhou and Zhou (2016) exploit it to handle unequal
misclassification cost; Cheng, Zhang, and Wen (2016) use
it for imbalanced data; Ou et al. (2017) applies it to feature
elimination; Zhang and Zhou (2018a; 2018b) extends it to
clustering and semi-supervised learning settings.

Although this new learning paradigm has achieved many
successes under batch learning settings, it remains open
for online learning settings (Rosenblatt 1958; Freund and
Schapire 1999; Li and Long 1999; Kivinen, Smola, and
Williamson 2001; Zhao, Hoi, and Jin 2011), in particular,
the changing environments in which the underlying deci-
sion function varies over time (Hazan and Seshadhri 2009;
Besbes, Gur, and Zeevi 2015). In this paper, we proposes the
dynamic optimal margin distribution machine, whose basic
idea is to simultaneously maintain a set of candidate learn-
ers, dynamically adjust their weights according to the per-
formances, and finally perform a majority vote by combin-
ing their outputs. We also theoretically analyze its dynamic
regret and derives an Õ(

√
TVT )

1 bound, where VT is the
function variation which can capture the change intensity of
the underlying decision function. Although this bound has
the same order with the best known one (Besbes, Gur, and
Zeevi 2015), our method can significantly relax the restric-
tive assumption that the complexity measure VT should be
given ahead of time, leading to better applicability in practi-
cal scenarios. For the special case when the underlying de-
cision function only evolves several discrete changes rather
than varying continuously, i.e., they stay the same most of
time, we also derive an excess risk bound for the proposed
method. Extensive experiments on both synthetic and real
data sets demonstrate the superiority of our method.

The rest of the paper is organized as follows. We first
briefly introduce some preliminaries, and then detail the pro-
posed method. After that we discuss some theoretical analy-
ses, followed by empirical studies. Finally we conclude the
paper with future work.

1We use the notation ˜O(·) to suppress poly-logarithmic depen-
dence on T .
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Preliminaries

For convenience, we first introduce some notation conven-
tions. Throughout the paper, we denote scalars with lower
case letters (e.g., y), and vectors with bold face letters (e.g.,
x). Sets are designated by upper case letters with mathcal
font (e.g., W). Let X ⊆ R

n and Y = {1,−1} denote the
input and output spaces respectively. For any m ≥ 1, the
set of integers {1, . . . ,m} is denoted by [m]. Given an ar-
gument π, we use the 1[π] to denote the indicator function
which outputs 1 if π holds and 0 otherwise. The hinge loss
function is denoted by [a]+ = max{0, a}.
Margin Distribution

It is well-known that SVMs employ the large margin prin-
ciple to select the decision boundary. As a result, the final
classification hyperplane only consists of a small amount
of instances and the rest are totally ignored (Schölkopf and
Smola 2001), which may be misleading in some situations.
See Figure 1 for an illustration (Zhou 2014).

hmin

hdist

Figure 1: Dotted ellipses are two underlying distributions
from which circles and squares are instances sampled. Solid
circle and square are mean instances (not necessarily real
instances in the training data). hmin and hdist are classifica-
tion hyperplanes obtained by optimizing the minimum mar-
gin and margin distribution respectively.

Instead of maximizing the minimal margin, one more ro-
bust strategy is to optimize the margin distribution, which
can exploit the whole data and prevent from being cheated
by noisy instances. To characterize the margin distribution,
the most straightforward way is to employ the first- and
second-order statistics. Moreover, as suggested in (Gao and
Zhou 2013), maximizing the margin mean and minimizing
the margin variance simultaneously can yield a tighter gen-
eralization bound, so we achieve the following formulation:

min
w,γ̄,ξi,εi

1

2
‖w‖2 − ηγ̄ +

λ

m

∑
i∈[m]

(ξ2i + ε2i )

s.t. γ(xi, yi) ≥ γ̄ − ξi,

γ(xi, yi) ≤ γ̄ + εi, ∀i ∈ [m],

(1)

where γ(xi, yi) = yiw
�xi is the margin of labeled instance

(xi, yi), γ̄ is the margin mean, η and λ are the trading-off pa-
rameters. Note that ξi and εi are deviations from the margin

mean, so the last term
∑

i∈[m](ξ
2
i + ε2i )/m is exactly the

margin variance.
Since scaling w does not affect the final classification re-

sults, Eqn. (1) can be simplified by fixing the margin mean
as 1. Besides, introducing different weights for the two dif-
ferent kinds of deviations, i.e., ξi and εi, can make the model
more flexible so as to characterize the margin distributions
more adaptively. Finally, to achieve a sparse solution, we tol-
erate the deviation smaller than the given threshold θ as the
insensitive loss used in support vector regression. Putting the
above all together, we come up with the final formulation of
the optimal margin distribution machine (ODM):

min
w,ξi,εi

F (w) =
1

2
‖w‖2 + λ

m

∑
i∈[m]

ξ2i + με2i
(1− θ)2

s.t. yiw
�xi ≥ 1− θ − ξi,

yiw
�xi ≤ 1 + θ + εi, ∀i ∈ [m],

where μ is the parameter for trading-off the two deviations,
and (1 − θ)2 in the denominator is to scale the second term
as a surrogate loss for 0-1 loss.

Dynamic Environments

The ODM was originally proposed for batch learning set-
ting, under which we assume that there is an unknown (un-
derlying) distributionD overX×Y . Given the labeled train-
ing set S drawn identically and independently (i.i.d.) accord-
ing toD and the hypothesis setH = {h : X 	→ Y}, the goal
is to learn a classifier h ∈ H such that the generalization
error E(x,y)∼D[1h(x) �=y] is small.

However, in some practical applications, the assumption
of batch learning is too limited to be met. Considering the
spam filtering system, emails arrive into the system and need
be classified as spam/valid repeatedly. In addition, no i.i.d.
sampling can be assumed since the data can be even adver-
sarially generated. As opposed to batch learning, the com-
mon tool for handling this kind of sequential data is online
learning (Shalev-Shwartz 2012), which can be formulated as
a repeated game between a learner and an adversary (Cesa-
Bianchi and Lugosi 2006). At the t-th round, the learner se-
lects a decision function parameterized by wt from some
convex set W ⊆ R

n and the adversary chooses a convex
function ft : W 	→ R. Then the function is revealed to the
learner who suffers a loss ft(wt). Since no distributional
assumption is made, there is no notion of generalization. In-
stead the performance of an algorithm is measured by com-
peting with the optimal fixed decision function in hindsight,
i.e., the regret (Zinkevich 2003), defined as the difference
between their cumulative loss:

RegretT =
∑
t∈[T ]

ft(wt)− min
w∈W

∑
t∈[T ]

ft(w). (2)

During the past decades, various online algorithms have
been proposed to yield sublinear regret under different sce-
narios (Shalev-Shwartz, Singer, and Srebro 2007; Hazan,
Agarwal, and Kale 2007). The latest summary of this line
of research can be found in (Hazan 2016).
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Although equipped with rich theories, the notion of regret
defined in Eqn. (2) is not always the right objective to mini-
mize, especially in dynamic environments where the under-
lying decision function can vary over time (Zhao, Cai, and
Zhou 2019; Zhao et al. 2019b) and there is no single fixed
decision function doing well overall. To overcome this lim-
itation, it is natural to consider a more stringent measure,
i.e., dynamic regret (Hall and Willett 2013; Besbes, Gur,
and Zeevi 2015; Mokhtari et al. 2016; Yang et al. 2016;
Zhang et al. 2017; Zhao et al. 2019a), defined as the dif-
ference between the cumulative loss of the learner and that
of a sequence of local minimizers:

D-RegretT =
∑
t∈[T ]

ft(wt)−
∑
t∈[T ]

min
w∈W

ft(w)

=
∑
t∈[T ]

ft(wt)−
∑
t∈[T ]

ft(w
�
t ).

Note that the dynamic regret competes with the optimal w�
t

at each round, which allows the comparator changing over
time. This key characteristic makes it more favored in dy-
namic environments. Moreover, the original regret defined
in Eqn. (2) is also called static regret since only one static
comparator is used.

It is proved that a sublinear dynamic regret can not
be achievable unless some complexity measures are im-
posed (Besbes, Gur, and Zeevi 2015), among which a com-
monly used one is the function variation characterized by:

VT =
∑
t∈[T ]

sup
w∈W

|ft+1(w)− ft(w)|, (3)

which accumulates the maximum variation between two
consecutive functions ft+1 and ft for any feasible w ∈ W .
The brief summaries of other complexity measures, e.g.,
(squared) path-length can be found in (Zhang et al. 2017).
Since these complexity measures are largely compatible and
yield qualitatively comparable results, we only consider the
function variation in this paper.

The Proposed Method

In this section, we detail the proposed method whose basic
idea is to simultaneously maintain a set of candidate learn-
ers to cope with the dynamic environments. The weights of
them are repeatedly adjusted according to the performances,
followed by a majority vote by combining their outputs.

Candidate Learner

Follow the Regularized Leader (FTRL) is one of the most
general online learning framework which can induce low-
regret algorithms. At the t-th round, its update is formed as:

wt+1 = argmin
w∈W

⎧⎨⎩∑
i∈[t]

fi(w) +R(w)

⎫⎬⎭ , (4)

where the first summation term aims to select w which has
minimal loss on all past rounds as the Follow the Leader
(FTL) framework, and R(w) is the regularization term to
stabilize the FTL solutions and obtain better regret bound.

One can solve the Eqn. (4) with standard convex optimiza-
tion methods. However, it turns out that it is without loss of
generality to assume ft(w) is a linear function because by
its convexity the regret can be bounded as

RegretT = max
w∈W

∑
t∈[T ]

(ft(wt)− ft(w))

≤ max
w∈W

∑
t∈[T ]

∇ft(wt)
�(wt −w).

Therefore, we can imagine that the loss function is actually
a linear function ∇ft(wt)

�w, and a regret bound for this
linear problem is clearly also a regret bound for the original
problem. With this reduction and by picking the Euclidean
regularization R(w) = ‖w‖2/(2η), FTRL turns into

wt+1 = argmin
w∈W

⎧⎨⎩∑
i∈[t]

∇fi(wi)
�w +

1

2η
‖w‖2

⎫⎬⎭
= argmin

w∈W

∥∥∥∥∥∥w + η
∑
i∈[t]

∇fi(wi)

∥∥∥∥∥∥
2

,

which means wt+1 is the projection of −η∑i∈[t]∇fi(wi)

onto the convex setW .
Note that ODM can be equivalently rewritten into the fol-

lowing unconstrained form:

min
w

F (w) =
1

2
‖w‖2 + λ

m

∑
i∈[m]

	(w;xi),

where 	(w;xi) is the ODM loss function defined as

	(w;xi) =
[1− θ − yiw

�xi]
2
+ + μ[yiw

�xi − 1− θ]2+
(1− θ)2

.

By setting fi(w) = ‖w‖2/2 + λ	(w;xi) and noting that
W = R

n, we can obtain

wt+1 = −η
∑

i∈[t−1]

∇fi(wi)− η∇ft(wt)

= wt − η(wt + λ∇	(wt;xt)).

Actually this update can also be derived by applying the on-
line gradient descent framework (Zinkevich 2003) to ODM,
therefore we call it online ODM, and adopt it as the can-
didate learner to make use of the power of optimal margin
distribution learning.

Dynamic ODM

Evidently each candidate learner should possess something
special so as to distinguish from others. Otherwise it is com-
pletely unnecessary to maintain them because they will have
the same behavior. On the other hand, each update of FTRL
depends on all the past instances, which may be not very
suitable for dynamic environments. When the underlying de-
cision function changes, these old data can not provide use-
ful information any more, or even only has negative effects
when facing an adversary environment.
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Based on these observations, we personalize each candi-
date learner by leveraging the restarting mechanism (Bes-
bes, Gur, and Zeevi 2015). Specifically, we divide the time
horizon into several epochs and different candidate learn-
ers use a personalized epoch size. In each epoch, the up-
date is based on the instances seen in this epoch only. In
other words, the candidate learners will empty their “mem-
ory” when an epoch is over, and start another epoch with a
random initialization.

Now the key issue turns to the design of epoch sizes. In-
tuitively speaking, the diversity of the candidate learners is
of importance, because they should be able to recover the
underlying decision function with high accuracy no matter
when and how it changes. To this end, we introduce the fol-
lowing set P which consists of N epoch sizes forming a
geometrical sequence with a common ratio of 2:

P = {Δi = 2i−1
√
1/(2C) | i ∈ [N ]},

where Δi is the epoch size used by the i-th candidate learner,
and C is a constant satisfying |ft(w)| ≤ C for any w and
any t ∈ [T ]. The number of candidate learners N is set as
�log(2CT/VT )/2 + 1 where VT is the function variation
defined in Eqn. (3). The reason for setting N in this manner
will be discussed in the theoretical analysis part.

For the i-th candidate learner, it divides the time horizon
T into �T/Δi epochs with equal size Δi. In each epoch,
it carries out the online ODM update for Δi times in total.
Algorithm 1 summarizes the pseudo-code of the update for
the i-th restarted online ODM.

Algorithm 1 Update for the i-th restarted online ODM
Require: Time horizon T , epoch size Δi.

1: j ← 1;
2: while j ≤ �T/Δi do
3: τ ← (j − 1)Δi;
4: Randomly initialize wτ ;
5: for t = τ, . . . , τ +Δi − 1 do
6: wi

t+1 ← (1− η)wi
t + ηλ∇	(wi

t;xt);
7: end for
8: j ← j + 1;
9: end while

The weight for the i-th candidate learner at the t-th round
is denoted by βi

t and initialized as 1/N . In other words, the
algorithm begins with uniform weights over the N candidate
learners. At the t-th round, the weight is adjusted accord-
ing to the exponentially weighted average strategy (Cesa-
Bianchi and Lugosi 2006):

βi
t+1 =

βi
t exp(−εft(wi

t))∑
i∈[N ] β

i
t exp(−εft(wi

t))
,

where ε > 0 is the learning rate to be specified later. Ob-
viously, the larger the loss, the smaller the weight. The
obtained classifier at the t-th round is a weighted combi-
nation of the outputs returned by all the candidates, i.e.,
wt =

∑
i∈[N ] β

i
tw

i
t. Algorithm 2 summarizes the pseudo-

code of the whole algorithm.

Algorithm 2 Dynamic ODM
Require: Time horizon T , learning rate ε, set P .

1: βi
1 ← 1/N for any i ∈ [N ];

2: for t = 1, . . . , T do
3: Receive wi

t from the i-th candidate for any i ∈ [N ];
4: Output the classifier wt ←

∑
i∈[N ] β

i
tw

i
t;

5: Update the weight

βi
t+1 ←

βi
t exp(−εft(wi

t))∑
i∈[N ] β

i
t exp(−εft(wi

t))
;

6: end for

Theoretical Analysis

In this section we analyze the dynamic regret and excess risk
of the proposed method, respectively.

Dynamic Regret

The following lemma suggests that if the function variation
VT is available, by setting the epoch size Δ� =

√
T/VT , we

can obtain an Õ(
√
TVT ) dynamic regret bound.

Lemma 1. Suppose ft(w) is α-strongly convex. Let Δ de-
note the epoch size. The dynamic regret of the restarted on-
line ODM is upper bounded by∑
t∈[T ]

ft(wt)−
∑
t∈[T ]

ft(w
�
t ) ≤

G2T

2αΔ
(logΔ + 1) + 2ΔVT ,

where G is the upper bound on the norm of the gradient of
ft(w), i.e., ‖∇ft(w)‖ ≤ G for any w.

Proof. Let K denote the total number of epochs, i.e., K =
T/Δ, and Ek denote the k-th epoch for any k ∈ [K]. Then,
the dynamic regret can be decomposed as

∑
k∈[K]

(∑
t∈Ek

ft(wt)−
∑
t∈Ek

ft(w
�
t )

)
=
∑

k∈[K]

(Ak +Bk),

where

Ak =
∑
t∈Ek

ft(wt)−min
w

∑
t∈Ek

ft(w),

Bk = min
w

∑
t∈Ek

ft(w)−
∑
t∈Ek

ft(w
�
t ).

Note that Ak is the static regret of epoch Ek, which can be
upper bounded by G2(logΔ+1)/2α (Hazan, Agarwal, and
Kale 2007), so it suffices to bound Bk.

Let w̃k denote the optimal solution of the epoch Ek, and
t1 be the index of the first item in the epoch Ek. Then

Bk =
∑
t∈Ek

ft(w̃k)− ft(w
�
t ) ≤

∑
t∈Ek

ft(w
�
t1)− ft(w

�
t ).

The remaining is to show that for any t ∈ Ek, we have

ft(w
�
t1)− ft(w

�
t ) ≤ 2Vk,
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where Vk is the function variation in the epoch Ek, i.e.,
Vk =

∑
t∈Ek

supw |ft+1(w) − ft(w)|. The result holds by
noticing

ft(w
�
t1) ≤ ft1(w

�
t1) + Vk, ft1(w

�
t ) ≤ ft(w

�
t ) + Vk,

together with ft1(w
�
t1) ≤ ft1(w

�
t ). Hence, Bk can be upper

bounded by 2Δ
∑

k∈[K] Vk = 2ΔVT , and the proof is com-
pleted by combining the upper bounds of Ak and Bk.

Next we prove that if the set P contains some epoch size
Δj satisfying Δ�/2 ≤ Δj ≤ Δ�, then the dynamic regret of
our proposed method can be upper bounded by Õ(

√
TVT ).

The proof needs the following lemma (Cesa-Bianchi and Lu-
gosi 2006, Theorem 2.2).
Lemma 2. For any learning rate ε > 0, we have∑

t∈[T ]

ft(wt)− min
i∈[N ]

∑
t∈[T ]

ft(w
i
t) ≤

εCT

8
+

C logN

ε
.

Now we can present the main theorem of this paper.
Theorem 1. Suppose Δj satisfies Δ�/2 ≤ Δj ≤ Δ�. The
dynamic regret of dynamic ODM is upper bounded by∑

t∈[T ]

ft(wt)−
∑
t∈[T ]

ft(w
�
t ) = Õ(

√
TVT ).

Proof. By setting ε =
√
(8 logN)/T in Lemma 2, we have∑

t∈[T ]

ft(wt) ≤ min
i∈[N ]

∑
t∈[T ]

ft(w
i
t) + C

√
(T/2) logN

≤
∑
t∈[T ]

ft(w
j
t ) + C

√
(T/2) log(log(2CT/VT )).

According to Lemma 1, we have∑
t∈[T ]

(ft(w
j
t )− ft(w

�
t )) ≤

G2T

2αΔj
(logΔj + 1) + 2ΔjVT .

Combine the above two inequalities with Δ�/2 ≤ Δj ≤
Δ�, and we can obtain∑
t∈[T ]

ft(wt) ≤
∑
t∈[T ]

ft(w
�
t ) +

G2T

2αΔj
(logΔj + 1)

+ 2ΔjVT + C
√

(T/2) log(log(2CT/VT ))

≤
∑
t∈[T ]

ft(w
�
t ) +

G2T

αΔ�
(logΔ� + 1) + 2Δ�VT

+ C
√

(T/2) log(log(2CT/VT ))

=
∑
t∈[T ]

ft(w
�
t ) +

√
TVT

(
G2

2α
log

T

VT
+

G2

α
+ 2

)
+ C

√
(T/2) log(log(2CT/VT ))

=
∑
t∈[T ]

ft(w
�
t ) + Õ(

√
TVT ).

Finally, we need verify the existence of Δj . Note that N
is set as �log(2CT/VT )/2+ 1, thus we have

ΔN = 2N−1
√
1/(2C) ≥ 2log

√
2CT/VT

√
1/(2C) = Δ�

which means that there exists an index j ∈ [N ] such that
Δj ≤ Δ� ≤ Δj+1 = 2Δj , and thus Δ�/2 ≤ Δj ≤ Δ�.
This is why we simultaneously maintain multiple candidate
learners and use the geometrical sequence with common ra-
tio 2 as their epoch sizes.

It is worth noting that Besbes, Gur, and Zeevi (2015) have
achieved the same result as Theorem 1, however, their al-
gorithm requires knowing VT ahead of time which is prac-
tically unavailable. By contrast, our method does not need
the unknown function variation in advance, thus it can enjoy
better applicability in practical scenarios. Besides, accord-
ing to the minimax lower bound in (Besbes, Gur, and Zeevi
2015, Theorem 4), the result in Theorem 1 is also optimal
up to logarithmic factors essentially.

Excess Risk

Although the function variation places some restrictions on
the possible evolution of the underlying decision function,
it still allows many different cases. In previous sections, we
focus on the continuous variation case. Now we switch to a
more specific situation when the underlying decision func-
tion stay the same most of time. Actually, this locally sta-
tionary environment appears quite naturally in practice. For
example, think about the problem of product recommenda-
tion. It is often the case that the data from each month will
stay stationary, and the changes only happen in the timing of
month alternations. In such cases, comparing to a best fixed
decision for each month is pretty reasonable.

Suppose
∑

t∈[T−1] 1w�
t �=w�

t+1
≤ K−1 for some constant

K, i.e., there are K − 1 discrete changes in total. Divide the
time horizon T into K epochs with equal size Δ = T/K,
and assume the k-th epoch is associated with a stationary
distribution Dk for any k ∈ [K]. The following theorem
demonstrates an excess risk bound for this situation.
Theorem 2. Let w̄k and w�

k be the output and optimal clas-
sifiers of the k-th epoch, respectively. Define the risk by the
sum of the ODM risk (regularized loss) of each epoch, i.e.,

R(w1, . . . ,wK) =
∑

k∈[K]

Ex[f(wk;x)],

where f(w;x) = ‖w‖2/2 + λ	(w;x). Then the following
excess risk bound

R(w̄1, . . . , w̄K) ≤ R(w�
1 , . . . ,w

�
K) +

G2K2

αT
log(T/K)

holds in expectation, where w̄1, . . . , w̄K are returned by the
algorithm and w�

1 , . . . ,w
�
K are the optimal solution in each

epoch under the batch learning setting.

Proof. Since the online ODM is performed in each epoch
with a suitable step size, we have∑

t∈Ek

f(wt;xt)−
∑
t∈Ek

f(w�
k;xt) ≤ G2

α
logΔ. (5)
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Table 1: Characteristics of experimental data sets collected in dynamic environments.
Data sets #instance #dimension Data sets #instance #dimension
SEA 50,000 3 MG-2C-2D 200,000 2
SEA200G 90,000 10 GEARS-2C-2D 200,000 2
SEA500G 16,000 2 Chess 533 7
CIR500G 16,000 2 Usenet-1 1,500 100
SINE500G 16,000 2 Usenet-2 1,500 100
STA500G 16,000 2 Luxembourg 1,900 32
1CDT 55,283 2 Spam 9,324 500
1CHT 100,000 2 Weather 18,159 8
UG-2C-2D 200,000 3 Powersupply 29,928 2
UG-2C-3D 200,000 5 Electricity 45,312 8

By taking the expectation on the both sides, we obtain∑
t∈Ek

Ext [f(wt;xt)]−
∑
t∈Ek

Ext [f(w
�
k;xt)] ≤ G2

α
logΔ.

Note that Ext
[f(w;xt)] = Ex[f(w;x)], thus

Ex

[∑
t∈Ek

f(wt;x)

]
≤ ΔEx[f(w

�;x)] +
G2

α
logΔ.

According to the Jensen’s inequality, we have f(w̄k;x) ≤∑
t∈Ek

f(wt;x)/Δ. Therefore,

Ex[f(w̄k;x)] ≤ Ex[f(w
�;x)] +

G2

α

logΔ

Δ
.

Summing over all the K epochs concludes the proof.

Empirical Studies

In this section, we empirically evaluate the effectiveness of
the proposed method. Specifically, we first present the data
sets, and then introduce the experimental settings, followed
by the compared baselines, and finally report the results.

Data sets

We adopt 12 synthetic data sets collected in dynamic en-
vironments, including sea, hyperplane, 1CDT, 2CDT,
1CHT, 2CHT, 1CSurr, UG-2C-2D, UG-2C-3D, UG-2C-
5D, MG-2C-2D, and GEARS-2C-2D. Basic information
is included in Table 1, and one may refer to (de Souza et al.
2015) for more details. Besides, to valid the efficacy of our
proposed method in real applications, we further examine
performance on 8 real data sets, including chess, usenet-1,
usenet-2, Luxembourg, spam, whether, powersupply,
and electricity. Note that the data set size ranges from 533
to more than 200,000, and the dimension ranges from 2 to
500, hence these data sets cover a broad range of properties.

Settings

Note that the standard cross-validation in the batch learn-
ing settings is not suitable here, due to inherent tempo-
ral relationships of the streaming data. Therefore, follow-
ing the setup of previous works (Gama et al. 2014; Zhao
et al. 2019b), for the data set with T instances, we select

10 different subsets with consecutive instances starting from
{T/50, T/25, . . . , T/5}. All these subsets are with the same
length 4T/5. The experiments are conducted on these 10
subsets with various initializations, and the average and stan-
dard deviation of accuracy are reported as the final result.

Contenders

We compare the proposed dynamic ODM (D-ODM) with
5 contenders on both synthetic and real data sets, includ-
ing (1) SVM-win: sliding window approach, the classifier
is constantly updated by the nearest data samples in the
window. Base classifiers are SVM (de Souza et al. 2015);
(2) SVM-fix, batch implementation of SVM with a fixed
window size (Syed, Liu, and Sung 1999); (3) SVM-ada,
batch implementation of SVM with an adaptive window
size (Klinkenberg 2004); (4) DWM, dynamic weighted ma-
jority algorithm, an adaptive ensemble based on the tra-
ditional weighted majority algorithm Winnow (Kolter and
Maloof 2003; 2007); (5) AdaBoost.OL (Beygelzimer, Kale,
and Luo 2015), an online adaptive boosting approach with
nice theoretical guarantees.

Results

Table 2 summarizes detailed results obtained on twenty
data sets. As can be seen, the overall performance of our
method is superior or highly competitive to the other com-
pared methods. Specifically, D-ODM performs significantly
better than SVM-win / SVM-fix / SVM-ada / DWM / Ad-
aBoost.OL on 18 / 19 / 20 / 14 / 19 over 20 data sets, and
achieves the best accuracy on 17 data sets. In addition, com-
paring with other methods that do not consider margin dis-
tribution, D-ODM is always better or comparable, almost
never worse than them, as shown in the win / tie / loss counts.

Conclusions

The maturing of margin theory, which disclosed the impor-
tance of margin distribution for generalization performance,
gives rise to a promising research direction, i.e., the op-
timal margin distribution learning. Although the superior-
ity of this new learning paradigm has been verified under
batch learning settings, it remains open for online learn-
ing settings. Aware of this problem, we propose the dy-
namic optimal margin distribution machine and theoretically
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Table 2: Performance comparisons in terms of mean and standard deviation of accuracy (%). The best accuracy on each data
set is bolded. •/◦ indicates the performance of D-ODM is significantly better/worse than compared methods (paired t-tests at
95% significance level). The win/tie/loss counts for D-ODM are summarized in the last row.

Data sets SVM-win SVM-fix SVM-ada DWM AdaBoost.OL D-ODM
SEA 73.94±0.12• 86.19±0.06• 83.47±0.09• 87.04±0.03• 78.95±0.18• 87.49±0.08
hyperplane 83.74±0.03• 87.98±0.03• 81.94±0.07• 88.36±0.25• 72.73±0.14• 89.29±0.12
1CDT 98.71±0.05• 99.77±0.06• 99.77±0.08• 99.90±0.09• 99.52±0.08• 99.98±0.10
2CDT 94.86±0.06• 95.19±0.13• 95.18±0.15• 90.21±0.67• 94.11±0.18• 95.99±0.09
1CHT 98.75±0.18• 99.63±0.17• 99.63±0.18• 99.69±0.26• 99.27±0.50• 99.90±0.05
2CHT 87.70±0.04• 89.48±0.12• 88.89±0.13• 85.92±0.72• 81.23±0.14• 90.05±0.08
1CSurr 97.99±0.04• 94.24±1.08• 93.56±1.08• 96.31±0.50• 93.11±1.39• 98.05±0.18
UG-2C-2D 94.47±0.13• 95.41±0.10• 94.92±0.12• 95.59±0.11 94.69±0.13• 95.99±0.11
UG-2C-3D 93.60±0.73• 95.05±0.64 94.48±0.71• 95.14±0.62 94.31±0.69• 95.58±0.15
UG-2C-5D 74.82±0.45• 91.74±0.26• 90.37±0.35• 92.82±0.23◦ 89.84±0.38• 92.11±0.07
MG-2C-2D 90.20±0.07 84.98±0.06• 84.22±0.06• 90.15±0.06 85.03±0.02• 90.16±0.07
GEARS-2C-2D 95.54±0.01• 95.41±0.01• 95.26±0.02• 95.82±0.02 94.11±0.05• 95.98±0.13

Chess 69.67±1.51• 77.73±1.56• 69.18±3.65• 73.77±0.66• 78.39±2.34 78.44±0.10
Usenet-1 68.92±1.12 64.18±2.24• 67.68±1.86• 64.43±4.53• 65.03±1.31• 68.98±0.06
Usenet-2 74.44±0.71• 73.99±0.69• 72.64±0.84• 73.37±0.93• 70.56±0.93• 75.77±0.05
Luxembourg 88.57±0.28• 98.25±0.19• 97.43±0.42• 92.61±0.40• 89.12±0.97• 98.98±0.16
Spam 83.91±2.20• 92.44±0.80• 91.01±0.94• 91.49±1.09• 88.23±1.31• 93.06±0.26
Weather 68.54±0.55• 67.79±0.65• 77.26±0.33• 70.86±0.42• 71.20±0.41• 79.11±0.29
Powersupply 73.33±0.25• 71.17±0.15• 69.39±0.17• 72.18±0.29• 72.34±0.36• 75.12±0.35
Electricity 74.20±0.08• 62.01±0.59• 58.69±0.58• 78.60±0.41◦ 62.22±0.81• 76.80±0.42
D-ODM: w/t/l 18/2/0 19/1/0 20/0/0 14/4/2 19/1/0

analyze its dynamic regret. We also derive an excess risk
bound of the proposed method. In the future, we will further
consider the adaptive regret (Hazan and Seshadhri 2009;
Daniely, Gonen, and Shalev-Shwartz 2015) for the optimal
margin distribution learning methods.

References

Besbes, O.; Gur, Y.; and Zeevi, A. J. 2015. Non-stationary
stochastic optimization. Operations Research 63(5):1227–
1244.
Beygelzimer, A.; Kale, S.; and Luo, H. 2015. Optimal and
adaptive algorithms for online boosting. In Proceedings of
the 32nd International Conference on Machine Learning,
2323–2331.
Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, learn-
ing, and games. Cambridge, UK: Cambridge University
Press.
Cheng, F.; Zhang, J.; and Wen, C. 2016. Cost-sensitive large
margin distribution machine for classification of imbalanced
data. Pattern Recognition Letters 80(C):107–112.
Cortes, C., and Vapnik, V. N. 1995. Support-vector net-
works. Machine Learning 20(3):273–297.
Daniely, A.; Gonen, A.; and Shalev-Shwartz, S. 2015.
Strongly adaptive online learning. In Proceedings of the
32nd International Conference on Machine Learning, 1405–
1411.
de Souza, V. M. A.; Silva, D. F.; Gama, J.; and Batista, G.
E. A. P. A. 2015. Data stream classification guided by clus-
tering on nonstationary environments and extreme verifica-

tion latency. In Proceedings of the 2015 SIAM International
Conference on Data Mining, 873–881.
Freund, Y., and Schapire, R. E. 1995. A decision-theoretic
generalization of on-line learning and an application to
boosting. In Proceedings of the 2nd European Conference
on Computational Learning Theory, 23–37.
Freund, Y., and Schapire, R. E. 1999. Large margin classi-
fication using the perceptron algorithm. Machine Learning
37(3):277–296.
Gama, J.; Zliobaite, I.; Bifet, A.; Pechenizkiy, M.; and
Bouchachia, A. 2014. A survey on concept drift adaptation.
ACM Computing Surveys 46(4):44:1–44:37.
Gao, W., and Zhou, Z.-H. 2013. On the doubt about margin
explanation of boosting. Artificial Intelligence 203:1–18.
Hall, E. C., and Willett, R. 2013. Dynamical models and
tracking regret in online convex programming. In Pro-
ceedings of the 30th International Conference on Machine
Learning, 579–587.
Hazan, E.; Agarwal, A.; and Kale, S. 2007. Logarithmic
regret algorithms for online convex optimization. Machine
Learning 69(2-3):169–192.
Hazan, E., and Seshadhri, C. 2009. Efficient learning al-
gorithms for changing environments. In Proceedings of the
26th International Conference on Machine Learning, 393–
400.
Hazan, E. 2016. Introduction to online convex optimization.
Foundations and Trends in Optimization 2(3-4):157–325.
Kivinen, J.; Smola, A. J.; and Williamson, R. C. 2001. On-

6827



line learning with kernels. In Advances in Neural Informa-
tion Processing Systems, 785–792.
Klinkenberg, R. 2004. Learning drifting concepts: Example
selection vs. example weighting. Intelligent Data Analysis
8(3):281–300.
Kolter, J. Z., and Maloof, M. A. 2003. Dynamic weighted
majority: A new ensemble method for tracking concept drift.
In Proceedings of the 3rd IEEE International Conference on
Data Mining, 123–130.
Kolter, J. Z., and Maloof, M. A. 2007. Dynamic weighted
majority: An ensemble method for drifting concepts. Jour-
nal of Machine Learning Research 8:2755–2790.
Li, Y., and Long, P. M. 1999. The relaxed online maxi-
mum margin algorithm. In Advances in Neural Information
Processing Systems, 498–504.
Mokhtari, A.; Shahrampour, S.; Jadbabaie, A.; and Ribeiro,
A. 2016. Online optimization in dynamic environments:
Improved regret rates for strongly convex problems. In Pro-
ceedings of the 55th IEEE Conference on Decision and Con-
trol, 7195–7201.
Ou, G.; Wang, Y.; Pang, W.; and Coghill, G. M. 2017. Large
margin distribution machine recursive feature elimination.
In The 4th International Conference on Systems and Infor-
matics, 1518–1523.
Reyzin, L., and Schapire, R. E. 2006. How boosting the mar-
gin can also boost classifier complexity. In Proceedings of
23rd International Conference on Machine Learning, 753–
760.
Rosenblatt, F. 1958. The perceptron: a probabilistic model
for information storage and organization in the brain. Psy-
chological Review 65(6):386–407.
Schapire, R. E.; Freund, Y.; Barlett, P.; and Lee, W. S. 1998.
Boosting the margin: a new explanation for the effectives of
voting methods. Annuals of Statistics 26(5):1651–1686.
Schölkopf, B., and Smola, A. J. 2001. Learning with ker-
nels: support vector machines, regularization, optimization,
and beyond. Cambridge, MA: MIT Press.
Shalev-Shwartz, S.; Singer, Y.; and Srebro, N. 2007. Pega-
sos: Primal estimated sub-gradient solver for svm. In Pro-
ceedings of the 24th International Conference on Machine
Learning, 807–814.
Shalev-Shwartz, S. 2012. Online learning and online convex
optimization. Foundations and Trends in Machine Learning
4(2):107–194.
Syed, N. A.; Liu, H.; and Sung, K. K. 1999. Handling con-
cept drifts in incremental learning with support vector ma-
chines. In Proceedings of the 5th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 317–321.
Vapnik, V. N. 1995. The Nature of Statistical Learning The-
ory. New York, NY: Springer.
Wang, L.; Sugiyama, M.; Jing, Z.; Yang, C.; Zhou, Z.-H.;
and Feng, J. 2011. A refined margin analysis for boost-
ing algorithms via equilibrium margin. Journal of Machine
Learning Research 12:1835–1863.

Yang, T.; Zhang, L.; Jin, R.; and Yi, J. 2016. Tracking slowly
moving clairvoyant: Optimal dynamic regret of online learn-
ing with true and noisy gradient. In Proceedings of the 33rd
International Conference on Machine Learning, 449–457.
Zhang, T., and Zhou, Z.-H. 2014. Large margin distribution
machine. In Proceedings of the 20th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, 313–322.
Zhang, T., and Zhou, Z.-H. 2017. Multi-class optimal dis-
tribution machine. In Proceedings of the 34th International
Conference on Machine Learning, 4063–4071.
Zhang, T., and Zhou, Z.-H. 2018a. Optimal margin distribu-
tion clustering. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence, 4474–4481.
Zhang, T., and Zhou, Z.-H. 2018b. Semi-supervised op-
timal margin distribution machines. In Proceedings of the
27th International Joint Conference on Artificial Intelli-
gence, 3104–3110.
Zhang, T., and Zhou, Z.-H. 2019. Optimal margin distribu-
tion machine. IEEE Transactions on Knowledge and Data
Engineering.
Zhang, L.; Yang, T.; Yi, J.; Jin, R.; and Zhou, Z.-H. 2017.
Improved dynamic regret for non-degeneracy functions. In
Advances in Neural Information Processing Systems, 732–
741.
Zhao, P.; Wang, G.; Zhang, L.; and Zhou, Z.-H. 2019a.
Bandit convex optimization in non-stationary environments.
arXiv preprint abs/1907.12340.
Zhao, P.; Wang, X.; Xie, S.; Guo, L.; and Zhou, Z.-H. 2019b.
Distribution-free one-pass learning. IEEE Transaction on
Knowledge and Data Engineering.
Zhao, P.; Cai, L.-W.; and Zhou, Z.-H. 2019. Handling con-
cept drift via model reuse. Machine Learning.
Zhao, P.; Hoi, S. C. H.; and Jin, R. 2011. Double updat-
ing online learning. Journal of Machine Learning Research
12:1587–1615.
Zhou, Y.-H., and Zhou, Z.-H. 2016. Large margin dis-
tribution learning with cost interval and unlabeled data.
IEEE Transactions on Knowledge and Data Engineering
28(7):1749–1763.
Zhou, Z.-H. 2012. Ensemble Methods: Foundations and
Algorithms. Boca Raton, FL: CRC Press.
Zhou, Z.-H. 2014. Large margin distribution learning. In
Proceedings of the 6th IAPR International Workshop on Ar-
tificial Neural Networks in Pattern Recognition, 1–11.
Zinkevich, M. 2003. Online convex programming and gen-
eralized infinitesimal gradient ascent. In Proceedings of the
20th International Conference on Machine Learning, 928–
936.

6828


