
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Joint Adversarial Learning for
Domain Adaptation in Semantic Segmentation

Yixin Zhang, Zilei Wang
Department of Automation, University of Science and Technology of China

zhyx12@mail.ustc.edu.cn, zlwang@ustc.edu.cn

Abstract

Unsupervised domain adaptation in semantic segmentation is
to exploit the pixel-level annotated samples in the source do-
main to aid the segmentation of unlabeled samples in the tar-
get domain. For such a task, the key point is to learn domain-
invariant representations and adversarial learning is usually
used, in which the discriminator is to distinguish which do-
main the input comes from, and the segmentation model tar-
gets to deceive the domain discriminator. In this work, we
first propose a novel joint adversarial learning (JAL) to boost
the domain discriminator in output space by introducing the
information of domain discriminator from low-level features.
Consequently, the training of the high-level decoder would be
enhanced. Then we propose a weight transfer module (WTM)
to alleviate the inherent bias of the trained decoder towards
source domain. Specifically, WTM changes the original de-
coder into a new decoder, which is learned only under the
supervision of adversarial loss and thus mainly focuses on
reducing domain divergence. The extensive experiments on
two widely used benchmarks show that our method can bring
considerable performance improvement over different base-
line methods, which well demonstrates the effectiveness of
our method in the output space adaptation.

Introduction

Recently, deep convolutional neural network (DCNN) has
innovated the field of computer vision (Simonyan and Zis-
serman 2015; Ren et al. 2015; Long, Shelhamer, and Darrell
2015). Its success is largely due to the availability of large-
scale and high-quality datasets such as ImageNet (Deng et
al. 2009), Pascal VOC (Everingham et al. 2010), COCO (Lin
et al. 2014) and Cityscapes (Cordts et al. 2016). Never-
theless, data annotation, especially pixel-level labeling, is
labor-intensive and time-consuming, e.g., the average time
to annotate a ground-truth image for semantic segmentation
in Cityscapes is up to 1 hour (Cordts et al. 2016; Richter et
al. 2016). An appealing approach to the issue is to utilize
the synthetic data that can be automatically generated and
annotated by rendering engine (Richter et al. 2016; Ros et
al. 2016). However, the model trained on synthetic data can
not generalize well to real-world images, which is caused by

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the domain shift between the source (synthetic) and target
(real-world) domains (Hoffman et al. 2016). Domain adap-
tation (Ben-David et al. 2007) is exactly proposed to reduce
the domain shift. In this paper, we focus on unsupervised do-
main adaptation in semantic segmentation, where none of
image annotation in the target domain is required. A com-
mon practice for domain adaptation is to build invariance
across domains by minimizing the measure of domain shift
such as correlation distances (Ganin and Lempitsky 2014;
Tzeng et al. 2017; Long et al. 2016; 2015). In recent works
for semantic segmentation, the distribution consistency be-
tween the source and target domains is usually enforced via
adversarial learning in the pixel space (Hoffman et al. 2018;
Wu et al. 2018; Zhang et al. 2018), feature space (Hoffman
et al. 2016; Chen et al. 2017; Sankaranarayanan et al. 2018;
Zhu et al. 2018) or output space (Tsai et al. 2018; 2019;
Luo et al. 2019b). As output space contains richer structured
information shared by two domains, it is proven to be more
appropriate for semantic segmentation (Tsai et al. 2018).
However, how to effectively cooperate adversarial learning
to mitigate the domain shift is still an open question.

In this work, we develop a novel framework for domain
adaptation in semantic segmentation, which performs adver-
sarial learning in a different way. Figure 1 shows the illustra-
tion of our method. Dotted line represents low-level domain
discriminator which makes the distribution of two domains
closer. Arrow represents weight transfer module which can
refine the class boundary, thus the segmentation model gen-
eralizes well on the target domain.

We analyze the predicted probabilities of domain discrim-
inator in output space adversarial training, and find that for
a trained model, the segmentation performance is related to
the prediction of domain discriminator which takes segmen-
tation map as input and produces a domain label for each
pixel. For a target segmentation map, the more easily the do-
main discriminator classifies it as source domain, the better
performance the segmentation model will achieve. As the
segmentation model should deceive domain discriminator,
the misclassification indicates the target segmentation map
is more similar to source ones. This motivates us to find a
more proper way to guide the adversarial training and we
propose joint adversarial learning. Specifically, the segmen-
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tation model should deceive not only the high-level domain
discriminator, but also the low-level domain discriminator
which is only trained by low-level segmentation maps.

Figure 1: The illustration of the proposed method. The pro-
posed joint adversarial learning (dotted line) uses low-level
domain discriminator and the weight transfer module (ar-
row) transfers original semantic decoder to a new one that
generalizes better in the target domain.

Besides, when introducing joint adversarial learning, we
find that the decoder is more easily biased towards source
domain which makes the model incapable to generalize well
in the target domain. That is because the training of decoder
is guided by both the segmentation loss and domain clas-
sification loss, while the ground truth for the segmentation
loss is only from the source (synthetic) domain. To tackle
the issue, we further proposed a weight transfer module to
alleviate the bias in the decoder. Specifically, weight trans-
fer module takes the weights of decoder as input and assign
the output weights to a new decoder which is initialized with
identity mapping. This can preserve the knowledge learned
on synthetic annotations. Then the decoder with the trans-
ferred weights is trained only with the domain adversarial
loss. In this case two domains become symmetrical and thus
more domain-invariant output can be predicted.

In summary, the main contributions of this work lie in
three aspects: (1) we propose joint adversarial learning
for domain adaptation in semantic segmentation. It utilizes
the domain discriminator trained by low-level segmentation
maps. In this way, the domain adversarial loss is further
boosted. (2) We propose a weight transfer module to re-
move the bias towards the source domain in the decoder.
(3) The extensive experiments on GTA5→Cityscapes and
SYNTHIA→Cityscapes demonstrate the effectiveness and
generalization.

Related Work

Domain adaptation has been a long standing research area.
In order to minimize the discrepancy of distributions be-
tween source and target domains, some approaches use
Maximum Mean Discrepancy (MMD) and its kernel vari-
ants (Long et al. 2015; 2016), while others use adversarial
approaches (Ganin and Lempitsky 2014; Tzeng et al. 2017).

Hoffman et al. (Hoffman et al. 2016) firstly introduce the
task of domain adaptation in semantic segmentation by ap-
plying adversarial learning on feature representations. Then
some work focuses on learning more domain-invariant fea-
tures by a residual network (Hong et al. 2018) or informa-

tion bottleneck (Luo et al. 2019a). Instead of directly using
internal features, some work (Sankaranarayanan et al. 2018;
Zhu et al. 2018) reconstructs the original image from fea-
tures by an extra generator, and conducts adversarial learn-
ing on reconstructed images. There exists some work et
al. (Saito et al. 2018b; 2018a; Lee et al. 2019) use an-
other perspective of adversarial learning: given two decoders
that produce different predictions of the same target im-
age, decoders are trained to maximize the discrepancy, while
feature semantic encoder is trained to minimize it. Apart
from feature space DA, some methods reduce domain gap
in the pixel space (Hoffman et al. 2018; Wu et al. 2018;
Zhang et al. 2018) which render the source images with the
style of target images and the source labels are still available.

Recently, more approaches perform adversarial learning
in output space. Tsai et al. (Tsai et al. 2018) first pro-
pose to conduct adversarial learning on output space and
they use multi-level adaptation to improve the performance.
They (Tsai et al. 2019) further propose a classification
module on semantic output to produce patch-level repre-
sentations where adversarial learning is conducted on. In
CLAN (Luo et al. 2019b), adversarial force is increased
by focusing on category level transferability. Specifically,
they assign lower weight for well-aligned output and higher
weight for poorly-aligned. In ADVENT (Vu et al. 2019),
they consider adversarial learning on entropy map to enforce
high prediction certainty on target predictions. Bidirectional
Learning (Li, Yuan, and Vasconcelos 2019) achieves state-
of-the-art performance by combining image style translation
and output space adaptation, two models can be learned al-
ternatively and promote to each other, they also adopt self-
supervised learning by using the pseudo target labels to re-
tain the model.

Our work follow the output space adaptation and focus
on enhancing the adversarial learning. It can generalize well
when using output space adaptation and shows consistent
improvements combined with image style translation and
pseudo label training. The proposed weight transfer module
(WTM) is similar to CETL (Chen, Zhang, and Dong 2018).
The differences mainly exist in two aspects: 1) They use two
different encoders and the decoder is shared. We use shared
encoders and different decoders. 2) They use a shared gener-
ator to reconstruct the input image and thus transfer knowl-
edge from source encoder to target one. We use the proposed
WTM to transfer source knowledge.

Our Approach
In this work, we focus on the unsupervised domain adap-
tation problem in semantic segmentation. Formally, we are
given a source domain Ds = {(xs

i ,y
s
i )}ns

i=1 of ns labeled
examples and a target domain Dt = {xt

j}nt
j=1 of nt unla-

beled examples. The source domain and target domain are
sampled from joint distributions P (Xs,Ys) and Q(Xt,Yt)
respectively, and note that P �= Q. Our work aims to learn
a segmentation model G that reduces the shifts in the joint
distribution across domains and thus generalizes well in tar-
get domain. Here we split segmentation model G into se-
mantic encoder Enc and decoder Dec. In the context of ad-
versarial training, domain discriminator is required which
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Figure 2: (a) The illustration of proposed joint adversarial learning. (b) The framework of our proposed methods combining
joint adversarial learning and weight transfer module. (c) Domain Adaptation Module used after decoder Dec1 and Dec2.
Note that the models with green background are used for evaluation in the target domain.

is denoted as D. In what follows, we will first review out-
put space adaptation (Tsai et al. 2018) as our background.
Then we will dive deeply into the proposed joint adversar-
ial learning and weight transfer module, and elaborate on
how these approaches can improve the adversarial training.

Background

We take AdaptSegNet (Tsai et al. 2018) as our background
among different adversarial training methods. The choice is
attributed to two reasons: Firstly, the segmentation map con-
tains more shape and structure information, thus the output
space adversarial learning is superior to feature level adver-
sarial learning. Secondly, for a given image, different de-
coders (e.g. low-level and high-level decoders) produce sim-
ilar prediction. As a result, the domain discriminator trained
by one set of segmentation maps can be smoothly transferred
to another set. This is in accord with the spirit of proposed
joint adversarial learning.

The main component in AdaptSegNet is Domain Adap-
tation (DA) Module as shown in figure 2(c), and the frame-
work of AdaptSegNet can be referenced as figure 2(a) with-
out joint adversarial gradient flow.

In DA Module, two losses are involved: segmentation loss
and output space domain adversarial loss. The segmenta-
tion loss aims at learning discriminative representations with

source labeled images:

min
G

Lseg(Xs) = − 1

h× w

∑

h,w

∑

c∈C

Ys log(P
hwc
s ), (1)

where Ps = G(Xs) ∈ R
H×W×C is the predicted segmen-

tation map (after softmax layer), H × W is the image size
and C is the number of categories.

The adversarial loss acts as a min-max game (Goodfel-
low et al. 2014), where the training process contains two
stages with opposite optimizing objectives. The loss func-
tion of training domain discriminator presents as follows:

min
D

Ldis(Xs, Xt) = − 1

h× w

∑

h,w

log(1−D(Pt)
hw) (2)

+ log(D(Ps)
hw),

D(P ) ∈ R
H×W is the domain prediction of segmentation

map, where 0 indicates the target domain and 1 indicates the
source domain.

For the adversarial training of segmentation model, target
domain output is used:

min
G

Ladv(Xt) = − 1

h× w

∑

h,w

log(D(G(Xt))
hw). (3)

AdaptSegNet use an auxiliary decoder to perform a two-
level output space adaptation. Here we use number i ∈
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{1, 2} to represent different levels where i = 1 means low-
level and i = 2 means high-level. We further split the en-
coder Enc into Enc1 and Enc2 which denote for low-level
and high-level feature encoders. As a result, Dec1 and Dec2
are detached after Enc1 and Enc2 respectively. Then the
overall loss function for segmentation network can be sum-
marized as follows:

min
G

L(Xs, Xt) =
∑

i

λi
segLi

seg(Xs) + λi
advLi

adv(Xt),

(4)

Figure 3: Analysis of domain discriminator predicted proba-
bility on the target domain. (a) The tendency of mIoU when
the predicted probability increase. Higher probability indi-
cates the corresponding segmentation map being classified
as source domain. (b) In the proposed JAL, the mean proba-
bilities where misclassification by domain discriminator are
increased.

Joint Adversarial Learning

For better understanding of domain adversarial learning, we
analyze the predicted probabilities of domain discriminator.
Figure 3(a) indicates the relationship of segmentation per-
formance and discriminator probabilities. It can be observed
that segmentation performance is almost positively related to
the discriminator prediction. As higher probability indicates
the source domain (Eq. 2), we can infer that after training
finished, the more the domain discriminator misclassifies,
the better performance the segmentation model can achieve.
In this way, a better balance between segmentation model
and domain discriminator can be reached. This is consistent
with the objective of domain adversarial training since the
segmentation model should deceive domain discriminator,
thus more misclassification in domain discriminator means
that the target segmentation map becomes more similar to
source ones.

This motivates us to find a discriminator that can achieve a
better balance between segmentation model and domain dis-
criminator. In this case, the segmentation model can deceive
the discriminator more successfully. We have tested discrim-
inator with more parameters or multiple discriminators, but
the improvements are marginal. Finally, we focus on seg-
mentation model itself and propose a novel joint adversarial
learning (JAL). As shown in Figure 2(a), the segmentation
model should deceive not only the high-level domain dis-
criminator, but also the low-level domain discriminator. It
is worth noting that low-level domain discriminator is only
trained by low-level segmentation maps, and the high-level

maps are not involved. Specifically, only one loss is added:

min
G

Ladv jal(Xt) = − 1

h× w

∑

h,w

log(D1(G(Xt))), (5)

where D1 denotes the domain discriminator in low-level DA
Module. G(Xt) represents Dec2(Enc2(Enc1(Xt))).

Figure 3(b) shows the class-wise probabilities produced
by different domain discriminators. It can be found that
low-level domain discriminator tends to classify the target
segmentation map as the source domain. The experiment
is based on benchmark GTA5→ Cityscapes with VGG16
backbone, and JAL shows great improvement over baseline
(36.7% vs. 35.0%).

Although JAL could improve the performance of VGG16
backbone, it behaves differently with ResNet101. As shown
in figure 4, JAL outperforms AdaptSegNet (Tsai et al. 2018)
at first, but as training prolonging, JAL gradually performs
worse than AdaptSegNet. This phenomenon is similar to
overfitting in AdaptSegNet when the training iteration in-
creases. The difference is that we add an adversarial loss
and the overfitting comes earlier.

In AdaptSegNet, the overfitting phenomenon is caused by
two aspects: Firstly, the segmentation model is supervised
by source label and no target ground truth is provided, thus
the model will capture more specific details in the source
domain. In the context of output space adaptation, these de-
tails mean the differences of shape (e.g. the shape of traffic
sign), spatial layout and even the label distribution (e.g. the
class train is rarer in GTA5 than in Cityscapes). Secondly,
domain adversarial learning reduces domain gap by pushing
the distribution of segmentation maps in the target domain
to those in the source domain. As a result, training more it-
eration makes the model bias towards source domain and
hinder generalization in the target domain. In the proposed
JAL, the auxiliary adversarial loss aggravates the overfitting
phenomenon and ResNet101 which is more powerful makes
the overfitting severer.

Figure 4: We show the tendency of mIoU on the target do-
main by different methods. After 70k iteration, JAL starts
to performs worse than AdaptSegNet. Adding the proposed
WTM can address this problem. The experiments are con-
ducted with the same random seed.
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Weight Transfer Module

From the above analysis, the key to addressing the overfit-
ting phenomenon is alleviating the bias towards the source
domain. AdaptSegNet uses early stopping, but in JAL, if we
stop at turning point (iteration 70k in figure 4), the model
is not fully trained. We argue that when adopting shared
weights for both segmentation loss and domain adversarial
loss, it is hard to control the effect of source segmentation
loss without harming the whole training. As our goal is to
remove bias towards the source domain, we propose to build
a new decoder that is not directly affected by source seg-
mentation loss. We achieve this by weight transfer module
(WTM). Specifically, WTM transfers the original decoder
to a new one and the new decoder is only trained by ad-
versarial loss. It is also important for the new decoder to
be discriminative among different classes, thus we initialize
weight transfer module as unit mapping. During training, the
transferred decoder keeps similar with the original decoder
and the knowledge learned from the source domain can be
transferred.

As single adversarial loss is not a strong constraint, we
choose the transfer function to be simple and easy to learn.
In the implementation, we use a single convolution layer as
WTM, and we add it on both low-level and high-level de-
coders as shown in Figure 2(b). The weights of new decoders
can be formulated as follows:

WDecT1
= WTM1 ∗WDec1 , (6)

WDecT2
= WTM2 ∗WDec2 ,

where ∗ represents convolution operation, WTM1 is low-
level weight transfer module. WDec1 and WDecT1

represent
the weights of the original and transferred low-level decoder
respectively. WTM2,WDec2 ,WDecT2

are denoted in a sim-
ilar way. The transferred decoder takes the same features as
the original decoder, and produces transferred segmentation
maps.

P 1T
s = DecT1 (Enc1(Xs)), P

2T
s = DecT2 (Enc(Xs)), (7)

P 1T
t = DecT1 (Enc1(Xt)), P

2T
t = DecT2 (Enc(Xt)),

where Enc(X) represents Enc2(Enc1(X)).
As the new decoders are only trained by adversarial loss,

we use the third domain discriminator Dwtm. For the train-
ing of Dwtm, the segmentation map from transferred low-
level decoder is used:

min
Dwtm

Ldis wtm(Xs, Xt) = − 1

h× w

∑

h,w

(8)

[log(Dwtm(P 1T
s )hw) + log(1−Dwtm(P 1T

t )hw)],

Dwtm is used for both low-level and high-level adversar-
ial learning:

min
G,WTMi

Li
adv wtm(Xt)=− 1

hw

∑

h,w

log(Dwtm(P iT
t )hw),

(9)
where i = {1, 2}. When i = 2, the domain discriminator
Dwtm is also used to train high-level decoder thus the joint
adversarial learning is introduced.

It is worth noting that once the training finished, we first
transfer decoder Dec2 to DecT2 , then semantic encoder Enc
and decoder DecT2 are used together for testing.

The overall loss function for segmentation model can be
formulated as follows:

min
G,WTMi

L(Xs, Xt)=
∑

i

λi
segLi

seg(Xs)+ (10)

λi
advLi

adv(Xt) + λi
adv wtmLi

adv wtm(Xt),

where i = {1, 2}, and λi
seg, λ

i
adv, λ

i
adv wtm are used to bal-

ance different losses.

Experiments

Experimental Details

Datasets. We use the popular synthetic-2-real do-
main adaptation set-ups, e.g., GTA5→Cityscapes and
SYNTHIA→Cityscapes. Cityscapes (Cordts et al. 2016)
is a real-world dataset which contains urban street images
collected from a moving vehicle captured in 50 cities around
Germany and neighboring countries. Training set of 2975
images is involved in the training phase. GTA5 (Richter
et al. 2016) consists of 24, 966 synthesized frames ren-
dered by the gaming engine GTAV. Here 19 classes are
adopted for training and evaluation. SYNTHIA (Ros et al.
2016) contains with 9, 400 synthesized images. Inheriting
from existing methods (Zhang, David, and Gong 2017;
Wu et al. 2018; Zhu et al. 2018; Zou et al. 2018), we train
our models with 16 classes and evaluating on 16- and
13-class subsets. In both set-ups, 500 images of Cityscapes
validation set are employed to evaluation.

Network architectures. We utilize the DeepLab-
v2 (Chen et al. 2018) framework as semantic segmentation
model. Following (Chen et al. 2018), we modify the stride
and dilation rate of the last two convolution blocks. After the
final convolution layer, we use the Atrous Spatial Pyramid
Pooling (ASPP) (Chen et al. 2018) as the final decoder. We
experiment on two different backbones: VGG16 (Simonyan
and Zisserman 2015) and ResNet101 (He et al. 2016). For
low-level adaptation, we add ASPP decoder on conv5 of
VGG16 and conv4 of ResNet101 (choice of position of low-
level decoder can be referenced in supplementary material).

For different domain discriminators used in this work, we
adopt the same network architecture. Specifically, we use a
similar structure with DCGAN (Radford, Metz, and Chintala
2016), which consists of 5 convolution layers with kernel 4×
4 with channel numbers {64,128,256,512,1} and stride of 2.
Each convolution layer is followed by a Leak-ReLU (Maas,
Hannun, and Ng 2013) with the slope of −0.2.

In WTM, we transfer original ASPP decoder (Chen et al.
2018) to a new one. The ASPP decoder contains four con-
volution kernels with different dilation rates. Each one has
the shape of 1024 × 19 × 3 × 3. Here we conduct trans-
formation process in a convolutional way where the original
weights are regarded as input map. The kernel size of trans-
fer function is set to 1. As a result, weight transfer module is
a convolutional layer with kernel size 1024× 1024× 1× 1.

Implementation details. All images are resized and
cropped to 1024 × 512. Segmentation model is trained by
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Table 1: Results of adapting GTA5 to Cityscapes. ”V” and
”R” denotes backbone of VGG16 and ResNet101.

Method Backbone mIoU

AdaptSegNet (Tsai et al. 2018) V 35.0
Patch Adv (Tsai et al. 2019) V 37.5
CLAN (Luo et al. 2019b) V 36.1
ADVENT (Vu et al. 2019) V 35.6

Source Only V 30.5
Ours(DecT2 ) V 38.5

AdaptSegNet (Tsai et al. 2018) R 42.4
Patch Adv (Tsai et al. 2019) R 43.2
CLAN (Luo et al. 2019b) R 43.2
ADVENT (Vu et al. 2019) R 42.7

Source Only R 36.8
Ours(DecT2 ) R 43.5

SGD optimizer with learning rate 0.00025, momentum 0.9
and weight decay 0.0001. Domain discriminators are trained
by Adam optimizer with learning rate 0.0001. As for weight
transfer module, we use SGD optimizer with learning rate
0.0001, momentum 0.9 and weight decay 0. We use the poly-
nominal annealing procedure in (Chen et al. 2018) to sched-
ule the learning rate. The max iteration is 250k, and we use
early stopping at 150k. For hyper-parameters in Eq. (10), We
set λ1

adv=0.0002, λ2
adv=0.001, λ1

seg=0.1, and λ2
seg=1.0 fol-

lowing AdaptSegNet. We also set λ1
adv wtm = 0.0002 and

λ2
adv wtm = 0.001.

Overall Results

GTA5→Cityscapes: We report semantic segmentation per-
formance in Table 1. We report the mIoU of decoder DecT2
as our final results.

With VGG16 backbone, our method outperforms other
methods. With ResNet101 backbone, our method achieves
slightly better result compared other methods (Tsai et al.
2019; Luo et al. 2019b) based on output space adaptation.
For Patch Adv, we report the result of ResNet101 without
pixel-level adaptation and pseudo label training. We also
show the combination of these methods and proposed com-
ponents in ablation study where a stronger baseline is used.
For ADVENT (Vu et al. 2019) which conducts adaptation
based on entropy map, we report the performance of their
adversarial learning method which also adopts a two-level
adaptation. It can be seen that compared with replacing the
softmax prediction output with entropy map, out method
which resorts to low-level output can bring more improve-
ment. Figure 5 shows the visualization of domain discrim-
inator output for target domain images. It can be seen that
more target domain regions are classified as source domain,
and segmentation results of corresponding regions are im-
proved.

SYNTHIA→Cityscapes: Table 2 shows results on the
16- and 13-class subsets of the Cityscapes validation set. Our
method shows great superiority compared with other meth-

Table 2: Results of adapting SYNTHIA to Cityscapes. ”V”
and ”R” denotes backbone of VGG16 and ResNet101. mIoU
and mIoU* represents performance of 16- and 13-class re-
spectively.

Method Backbone mIoU mIoU*

AdaptSegNet (Tsai et al. 2018) V - 37.6
Patch Adv (Tsai et al. 2019) V 33.7 39.6
CLAN (Luo et al. 2019b) V - 39.3
ADVENT (Vu et al. 2019) V 31.4 36.6

Source Only V 28.0 32.4
Ours(DecT2 ) V 36.2 42.2

AdaptSegNet (Tsai et al. 2018) R - 46.7
Patch Adv (Tsai et al. 2019) R 40.0 46.5
CLAN (Luo et al. 2019b) R - 47.8
ADVENT (Vu et al. 2019) R 40.8 47.6

Source Only R 33.9 38.9
Ours(DecT2 ) R 41.6 48.3

Figure 5: Visualization of segmentation maps and corre-
sponding domain discriminator predictions. For the proba-
bilities produced by domain discriminator, we scale them to
[0,255]. In accordance with Eq 2, brightness (higher prob-
ability) indicates the input segmentation map belongs to
the source domain. Here the benchmark GTA5→Cityscapes
with ResNet101 is used. The image is from Cityscapes vali-
dation set.

ods of both VGG16 and ResNet101 backbones. As images
in SYNTHIA cover more diverse viewpoints than the ones in
GTA5 and Cityscapes, ADVENT (Vu et al. 2019) uses class-
ratio prior to prevent the model to get biased towards some
easy classes for VGG16 backbone. Our method outperforms
ADVENT by +4.8% indicating that it is more stable for dif-
ferent synthetic scenes.
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Ablation study

In this section, we perform several exploratory studies to
give more insight into the functionality and effectiveness of
the proposed approach.

Different Methods for Enhancing Adversarial
Learning

We also try other methods for enhancing adversarial learn-
ing. The result is given in Table 3. Baseline represents the
domain discriminator described before. For ASPP discrimi-
nator, we add an ASPP module before the baseline discrim-
inator. To get a wider discriminator, we increase the number
of channels in each layer, the width denotes for the multipli-
cation coefficient of channel number. We also compare the
proposed JAL with multiple discriminators which are trained
by high-level segmentation maps. Although these methods
could improve the performance, they are limited when intro-
duce more parameters or discriminators. The proposed JAL
can largely improve the performance which indicates the ef-
fectiveness of boosting the adversarial learning.

Table 3: Different methods for enhancing adversarial learn-
ing. The experiments are conducted on GTA5→Cityscapes
benchmark with VGG16 backbone.

Methods Settings mIoU
Baseline width=1 35.0

ASPP Discriminator −− 35.3

Multi Discriminator
N=2 35.4
N=3 35.5
N=4 35.5

Wider Discriminator width=2 35.6
width=4 35.6

JAL −− 36.7

The Effect of Each Component

In this section, we want to explore how each component af-
fects adversarial learning. Table 4 shows the ablation study
results of joint adversarial learning (JAL) and weight trans-
fer module (WTM). The first row represents the baseline
model which adopts two-level output space domain adap-
tation. The second row corresponds to the situation adding
JAL. With VGG16 backbone, JAL brings +1.7% gain over
baseline. With ResNet101 backbone, JAL does not perform
well due to the overfitting phenomenon as described before.

Row 4 − 6 shows the effect of WTM. For VGG16 and
ResNet101 backbones, WTM shows consistent improve-
ments compared when added to both high-level and low-
level decoders. Although the improvement brought by WTM
is relatively small, it can greatly benefit the adversarial learn-
ing combined with JAL. These two modules are complemen-
tary and WTM is necessary in case of deeper network like
ResNet101.

Combination of Stronger Baseline

To validate the generalization of the proposed method, we
choose another stronger baseline Bidirectional Learning (Li,

Table 4: Component wise ablation studies corresponding to
the GTA5 → Cityscapes setting.

JAL
WTM WTM mIoU mIoU

on Dec1 on Dec2 VGG16 Res101
1 35.0 42.4
2

√
36.7 41.5

3
√

35.9 42.6
4

√
36.1 42.7

5
√ √

36.4 42.9
6

√ √ √
38.5 43.5

Yuan, and Vasconcelos 2019) which achieves the state of art
performance. Bidirectional Learning uses CycleGAN (Zhu
et al. 2017) to render the source images to target style. The
adapted segmentation model works as a perceptual loss to
further promote the image style translation. The image trans-
lation model and domain adaptation model are trained itera-
tively and the max iteration number is set to 2.

We combined our method with Bidirectional Learning in
two different settings as shown in Table 5. ST represents im-
age style translation. SSL denotes for self-supervised learn-
ing which is added in domain adaptation step. It can be
found that our method can bring consistent improvements
over different baselines and is complementary to pixel-level
adaptation and pseudo target training.

Table 5: Combination of Bidirectional Learning and our
methods on GTA5 → Cityscapes setting. We adopt the back-
bone of ResNet101.

Settings Iteration Baseline +Ours Δ

ST 1 42.7 43.8 1.1
2 43.3 44.2 0.9

ST+SSL 1 47.2 48.0 0.8
2 48.5 49.3 0.8

Conclusion

In this paper, we propose a novel method named joint adver-
sarial learning for domain adaptation in semantic segmen-
tation. It uses the low-level domain discriminator to provide
auxiliary adversarial loss for the training high-level decoder.
Besides, we propose weight transfer module to remove the
bias towards the source domain. It transfers the original de-
coder to a new decoder which is only trained by adversarial
loss, thus the two domains become symmetrical and more
domain-invariant output can be predicted. Extensive experi-
mental results on two widely used benchmarks validate the
effectiveness and generalization of our method.
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Advent: Adversarial entropy minimization for domain adaptation
in semantic segmentation. In CVPR.
Wu, Z.; Han, X.; Lin, Y.-L.; Gokhan Uzunbas, M.; Goldstein, T.;
Nam Lim, S.; and Davis, L. S. 2018. Dcan: Dual channel-wise
alignment networks for unsupervised scene adaptation. In ECCV.
Zhang, Y.; Qiu, Z.; Yao, T.; Liu, D.; and Mei, T. 2018. Fully
convolutional adaptation networks for semantic segmentation. In
CVPR.
Zhang, Y.; David, P.; and Gong, B. 2017. Curriculum domain
adaptation for semantic segmentation of urban scenes. In ICCV.
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Unpaired
image-to-image translation using cycle-consistent adversarial net-
works. In ICCV.
Zhu, X.; Zhou, H.; Yang, C.; Shi, J.; and Lin, D. 2018. Penal-
izing top performers: Conservative loss for semantic segmentation
adaptation. In ECCV.
Zou, Y.; Yu, Z.; Vijaya Kumar, B.; and Wang, J. 2018. Unsu-
pervised domain adaptation for semantic segmentation via class-
balanced self-training. In ECCV.

6884


