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Abstract

In recent years, with the explosion of information on the
Internet, there has been a large amount of data produced,
and analyzing these data is useful and has been widely em-
ployed in real world applications. Since data labeling is
costly, lots of research has focused on how to efficiently label
data through semi-supervised learning. Among the methods,
graph and hypergraph based label propagation algorithms
have been a widely used method. However, traditional hy-
pergraph learning methods may suffer from their high com-
putational cost. In this paper, we propose a Hypergraph Label
Propagation Network (HLPN) which combines hypergraph-
based label propagation and deep neural networks in order
to optimize the feature embedding for optimal hypergraph
learning through an end-to-end architecture. The proposed
method is more effective and also efficient for data labeling
compared with traditional hypergraph learning methods. We
verify the effectiveness of our proposed HLPN method on a
real-world microblog dataset gathered from Sina Weibo. Ex-
periments demonstrate that the proposed method can signifi-
cantly outperform the state-of-the-art methods and alternative
approaches.

Introduction

Deep learning methods have benefited from large-scale la-
beled datasets and have shown great superiority in many ap-
plication scenario such as visual object detection (He et al.
2016), natural language understanding (Wang et al. 2016),
etc. However, in many real-world situations, labeled data
is much more costly than unlabeled data. Therefore, semi-
supervised learning which models the classifier with the
unlabeled data with the clustering or manifold assumption
(Zhou et al. 2004) has attracted much attention in the past
decade to solve this problem.

Label propagation (Zhu and Ghahramani 2002) is a clas-
sical and effective semi-supervised learning procedure. It
propagates labels from the labeled data points to the unla-
beled ones through various algorithms. Zhu et al (Zhu and
Ghahramani 2002) proposed to propagate the labels along
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(a) Whole dataset. (b) Sampled dataset.

Figure 1: Distribution of the real-world hand-written digit
dataset USPS. Left: distribution of the whole dataset; right:
distribution of the sampled dataset.

the density of the whole data, including the labeled and un-
labeled data, iteratively. Recently much research has been
conducted on the label propagation algorithm, e.g., deploy-
ing short-cutting label propagation on the distributed system
(Stergiou, Rughwani, and Tsioutsiouliklis 2018), adaptive
label propagation through embedding (Zhang et al. 2018),
applying to the fast-move data stream with a few labeled ex-
amples (Wagner et al. 2018), etc.

Label propagation algorithms roughly consist of connec-
tion construction of the graph and label propagation by ran-
dom walk according to the propagation probability. There
are two major challenges in these algorithms in real practice.
The first challenge is how to construct effective connections
among the data points. In real world, the distribution of ei-
ther structural or non-structural data in the topological space
may not purely satisfy the assumptions of manifold or clus-
tering. Therefore it is essential to explore the optimal topo-
logical relevance structure where the two vertices connected
in the graph likely belong to the same category. The sec-
ond challenge is how to compute the propagation probabili-
ties for the random walk in the graph. Although acceptable
performances can be achieved in many cases with the uni-
form distribution assumption, optimizing the computation
of propagation probability is challenging and can effectively
improve the performance.

To address these two challenges in existing label propa-
gation methods, we first introduce our intuitive thought. Fig.
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1 shows the distribution of a real world handwritten digits
dataset USPS (Hull 1994). As shown in Fig. 1a, many over-
laps occur in s amples belonging to some categories, and the
distribution does not fit in a smooth manifold and cluster-
ing clearly. While the samples in Fig. 1b, which are a sub-
sampled set of the whole dataset, may be shown easier to
discriminate than the formers intuitively. Meanwhile, neu-
ral networks can automatically embed the samples from the
origin space to a better metric space. Based on these hy-
pothese, we propose a Hypergraph Label Propagation Net-
work (HLPN) method to conduct semi-supervised learning
by considering the the optimal structure. The whole scheme
is illustrated in Fig. 2. Here we take the real-world multi-
modality social network sentiment data in our experiments
as an example, which includes three modalities, i.e., text, vi-
sion and emoticon, for illustration. In this framework, each
input batch consists of both labeled and unlabeled data. We
first embed the input data to a feature space through a deep
neural network. Then, we adopt a hypergraph module to ex-
plore the correlation information among the input samples.
With the transductive label propagation from the labeled
data to unlabeled ones on this hypergraph, we can obtain the
predicted labels for all the unlabeled data in the batch. After
that the cross-entropy loss can be computed and used to op-
timize the parameters in the embedding network. Through
this way, the high-order relationship of data can be formu-
lated in the hypergraph structure and the label propagation
on the hypergraph can be conducted to predict labels for the
unlabeled data.

The contributions of this paper are as follows:
• We propose a new hypergraph-based semi-supervised

learning framework. This framework captures the mani-
fold structure with sparse samples of the whole dataset
and can achieve end-to-end learning. Our proposed
method not only has the advantage of learning on the hy-
pergraph structure but also is efficient, as it does not need
to construct the hypergraph with all the samples of the
whole dataset.

• We evaluate our method in a real-world multi-modality
social network dataset crawled from the Sina Microblog
Website. The results indicate that our method can improve
the performance significantly compared with state-of-the-
art methods.
The rest of this paper is organized as follows. We first in-

troduce the related work. Then we present the detailed algo-
rithm of HLPN. Experimental results and comparisons with
state-of-the-art methods are provided in the following sec-
tion. We finally conclude this paper.

Related Work

In many real-world applications, considering that the lim-
ited number of labeled samples may affect the perfor-
mance of methods and that the information from abundant
unlabeled data may improve the effectiveness, the semi-
supervised method has attracted more and more attention
from both industry and academic. Considering the superior-
ity of exploring the local stationary structures, the research
on graph-based methods has lasted for decades, and has been

widely used in many application, such as image classifica-
tion (Dashtbozorg, Mendoncca, and Campilho 2013), senti-
ment prediction (Ji et al. 2018), software defect prediction
(Zhang, Jing, and Wang 2017), image retrieval (Xu et al.
2013) and so on.

Traditional graph-based methods set the unlabeled sam-
ples as the testing set and generate the labels of testing sam-
ples during the learning process, which can be divided into
transductive learning methods and inductive learning meth-
ods. For the first type of methods, i.e., transductive learning
methods (Zhou et al. 2004; Chen et al. 2015), these methods
need a retraining procedure for new test samples and cannot
adapt to out-of-sample settings. Zhang et al. (Zhang, Jing,
and Wang 2017) utilized a Laplacian score sampling strat-
egy to construct a class-balance labeled training dataset and
construct a nonnegative sparse graph. Then a label propa-
gation algorithm is conducted to iteratively predict the la-
bels of unlabeled samples. For the second type of methods,
i.e., inductive learning methods (Belkin, Niyogi, and Sind-
hwani 2006), these methods have the ability to classify the
new testing samples. Jiang et al. (Jiang et al. 2017) defined
a graph-based sparse prior and a sparse Bayesian model is
obtained based on the traditional Bayesian inference tech-
nique, which is able to make decision in inductive ways.

However, it is known that the graphs structure which is
constructed with features of labeled and unlabeled samples
seriously affects the performance of the graph-based semi-
supervised methods (Jebara, Wang, and Chang 2009). So it
is meaningful to improve the effectiveness of graph structure
and the features of samples in the learning process to avoid
the impact of using low quality graph in graph-based semi-
supervised methods. Jebara et al. (Jebara, Wang, and Chang
2009) proposed a b-matched graph to ensure each node in
the graph has the same number of edges and the graph is ex-
actly regular. Liu et al. (Liu et al. 2019) proposed a meta-
learning method named transductive propagation network
(TPN), which generated a graph structure to exploit the man-
ifold structure in the data. In this method, the parameters
of the feature embedding and the graph construction were
optimized jointly. Li et al. (Li, Wang, and Zhou 2016) pro-
posed a large margin separation method named LEAD to
construct a safe graph-based method, which exploited large
margin graphs while decreased the utilization of small mar-
gin graphs.

Although there are many works concentrating on graph-
based semi-supervised methods, consider that in many real-
world applications, the correlations among different sam-
ples are difficult to explore with the pairwise connection in
graph structure. Hypergraph structure is proposed. The hy-
pergraph structure is constructed according to the similar-
ity between different samples, which is suitable for high-
order relationship modeling. As for the construction of the
hypergraph, it can be achieved by several ways. The most
common way is based on the distances (Gao et al. 2012;
Ji et al. 2018). In the construction process of hyperedges,
each vertex is selected as centroid vertex each time. Then,
the corresponding hyperedge is generated to connect the
centroid vertex and the K nearest neighbors according to the
distance. Hypergraph learning methods have been widely
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Figure 2: Framework of the proposed hypergraph label propagation network.

applied in many applications, such as image classification
(Gao et al. 2012), segmentation (Ji et al. 2018) and so on. Ji
et al. (Ji et al. 2018) proposed a bi-layer multi-modal hyper-
graph method for microblog sentiment prediction to avoid
the influence of modalities missing. Moreover, in many real-
world applications, obtaining labeled data is more difficult
than gathering unlabeled data and the limited labeled sam-
ples may affect the effectiveness of the model. So it is im-
portant to use the unlabeled samples in the learning process.
Thus, many semi-supervised methods (Chen et al. 2015;
Gao et al. 2012; Feng et al. 2019; Jiang et al. 2019) based
on hypergraphs have been proposed, which utilize the infor-
mation of unlabeled samples by transductive learning. For
example, Zhou et al. (Zhou, Huang, and Schölkopf 2007)
employed the hypergraph structure to represent high-order
relationships among the dataset, and extended the spectral
hypergraph clustering method to hypergraph embedding and
transductive classification. According to the above advan-
tages, we constructed our method based on the hypergraph
structure with both the parameters of the feature embedding
and graph structure optimized simultaneously.

Hypergraph Label Propagation Network

In this section, we first introduce the typical hypergraph-
based high-order ralationship exploring method, and then
present the details of the proposed hypergraph label prop-
agation network.

High-Order Relationship Exploring via
Hypergraph

Due to the superiority of the hypergraph on exploring high-
order relationship among data, we first introduce the hyper-
graph structure to model the complex information among
testing samples. Different from simple graph structures
whose edges only connect two vertices, the hyperedges in a
hypergraph can link more than two vertices leading to more
flexible connections among the data and better complex re-
lationship modelling performance.

Given a hypergraph G = (V, E ,W), it generally contains
three components, i.e., a hyperedges set E , a vertex set V
and the weights of the hyperedges W. We employ incidence
matrix H to represent the hypergraph structure, and the entry
(i, e) of H is defined as

h(i, e) =

{
1 if i ∈ e

0 if i /∈ e
, (1)

which indicates the connection between the vertex i and hy-
peredge e.

Each vertex of the hypergraph is associated with
a vertex degree d(v), which is defined as d (v) =∑

e∈E ω (e)h (v, e), and for each hyperedge, its degree is
defined as δ(e) =

∑
v∈V h(v, e). Then, diagonal matrices

Dv and De are used to denote the degrees of vertices and
hyperedges.

Recent learning methods (Wagner et al. 2018) have been
conducted on the hypergraph structure for different objec-
tives, such as classification, embedding and so on. Zhou
et al. (Zhou, Huang, and Schölkopf 2007) proposed a reg-
ularization framework for classification on the hypergraph
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as argmin
F

{λRemp(F) + Ω(F)}. In the framework, λ is

the trade-off parameter to balance the influence of the hy-
pergraph structure regularizer Ω(F) and the empirical loss
Remp(F). F is the to-be-learned label matrix.

Generally, the empirical loss Remp(F) is defined as
Remp(F) = ‖F−Y‖2F, where Y is the label matrix of la-
beled samples. From the smoothness aspect, the regularizer
Ω(F) on the hypergraph structure is defined as

Ω(F) =
1

2

∑
e∈E

∑
u,v∈V

C∑
k=1

w (e)H (u, e)H (v, e)

δ (e)

(
F (u, k)√

d (u)
−F (v, k)√

d (v)

)2

,

(2)
where hypergraph laplacian Δ is defined as Δ = I − Θ =

I −Dv
− 1

2HWDe
−1HTDv

− 1
2 . Here, I is the identity ma-

trix.
Then, the regularization framework can be rewritten as

argmin
F

{
tr
(
FTΔF

)
+ λ‖F−Y‖2F

}
, (3)

which can be solved directly by

F =

(
I+

1

λ

(
I−Dv

− 1
2HWDe

−1HTDv
− 1

2

))−1

Y.

(4)
Although the above traditional hypergraph learning meth-

ods have shown good performance in many tasks, they suffer
from their high computational cost which limits their appli-
cations in practice.

Hypergraph Label Propagation Network

Here, we let {Xi, yi}, i = 1 . . . N denote the multimodal
data, and Xi = {xm

i },m = 1 . . .M , in which N is the
number of data in the whole dataset, M is the number of
modalities and yi is the label of Xi. The first l data are used
for training while the next u = N − l data are used for
testing. One batch input data, i.e., N

′
samples, consist of

two parts: N
′
l labeled ones sampled from the training set

and N
′
u unlabeled ones sampled from the testing set.

Figure 3: The deep neural network modules: Scale Embed-
ding Module (left) and Feature Embedding Module (right).

The proposed network architecture is shown in Fig. 2. We
first employ a feature extraction module which contains bag-
of-words dictionaries of different modalities, the same as (Ji
et al. 2018). By doing so, the output features are in 2547, 49
and 1200 dimensions with respect to the text, emoticon and
visual modalities. We note that the feature extraction meth-
ods can be changed according to different tasks and the fea-
ture dimensions will be also changed then. In terms of the
embedding module, we adopt multiple three-layer percep-
tions abbreviated as fθm in which fθm(xm

i ; θm) maps the
feature and θm is the parameter of the network for modality
m. For simplicity, the number of neurons in the three layers
of all modalities is set as 64, 32 and 16, as shown in the right
of Fig. 3.

Inspired by (Liu et al. 2019), we propose an embedding
module gφm to inference the instance-wise scale parameter
σm
i , as shown in the left of Fig. 3, which is used in comput-

ing the adjacency matrix:

Am = exp

(
−1

2
d

(
fθm(xm

i )

σm
i

,
fθm(xm

j )

σm
j

))
, (5)

where A
m ∈ R

N
′×N

′
is constructed among all the sam-

ples in one batch. This module not only can adjust the met-
ric adaptively for each sample but also generate the proper
probabilistic edge connection.

The hypergraph construction module aims to obtain pre-
dictions for the test set in batch, compute the cross-entropy
loss and update the parameters in the modules before. In
this module, we firstly compute the adjacency matrix Am

for each modality, and construct a hypergraph based on the
k-nearest neighbor method as

H(m)(i, j) =

{
Am(i, j) if i ∈ I

m(i)

0 if i /∈ I
m(i)

, (6)

where H(m) ∈ R
N

′×N
′
, Im(j) means the k-nearest sam-

ples of sample xm
i in the metric space Am of modality m. In

this way, we generate the hypergraph Gm = (Vm, Em,Wm)
for the m-th modality. Note that we have conducted the op-
timization on the feature embedding module and the scale
adjusting for each instance. To avoid over-engineering, we
simply set the weights of hyperedges to be uniform. Then,
we obtain M hypergraphs corresponding to the M modal-
ities. These hypergraphs are next merged through simply
concatenating to one large hypergraph, whose incidence ma-

trix is H ∈ R

(
M×N

′)×N
′
, to fuse the high-order topologi-

cal information from different modalities. After that we con-
duct the tranductive learning on the fused hypergraph, and
according to Eq. 4, the closed-form solution F̂u for the pre-
dicted scores in one batch can be obtained. We then convert
the score matrix F̂u to probabilistic score matrix through
softmax

P (ŷi = j|Xi) =
exp(F̂ij)∑N ′
u

k=1 exp(F̂ik)
, (7)

where ŷi denotes the predicted label for the sample Xi and
F̂ij is the predicting score for the sample Xi belonging to
the jth category.
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Algorithm 1 Hypergraph Label Propagation Network
INPUT: multi-modal data samples {Xi}ni=1, class indicator
matrix Y associated with the labeled data. Hyperparameters
including the depth and width of Multiple Layer Perception
in the feature embedding module and scale embedding mod-
ule, batchsize N

′
, and the number of nearest neighbors k in

constructing the hypergraph in the hypergraph construction
mudule.
OUTPUT: class matrix Ỹ associated with testing samples
in dataset.

TRAINING:
Step 1 Sampling: Uniformly sampling N

′
instances as

one batch set B from the training set and split the N
′

instances into N
′
l labeled set Bl and N

′
u to-predict set Bu,

which can be presented by B = [Bl, Bu].
Step 2 Predicting: Input the batch set B and pre-
dict the labels for to-predict set Bu. All instances in
B are sent to the first module, i.e., feature embed-
ding module fθ(m) , to obtain the embedded features
fθ(m)(x

(m)
i ), i = 1 . . . N

′
. m defines the modality of

data. Then the features are input to scale embedding mod-
ule g

(m)
φ , which output a example-wise scale parameter

σ
(m)
i = g

(m)
φ (fθ(m)(x

(m)
i )). Then the hypergraph con-

struction module generate the k-nearest neighbor hyper-
graph H(m) on the metric Eq. 5. After merging these
hypergrpahs from different modalities, conduct the trans-
ductive learning to predict the labels for the Bu.
Step 3 Updating: Computing the cross-entropy loss on
ground-truth of Bu. Update the parameters in feature em-
bedding module and scale embedding module.
TESTING:
Step 1 Sampling: According to the configuration on
batchsize N

′
, uniformly sampling N

′
l instances from the

training set and N
′
u from the testing set to form a batch.

Step 2 Inference: Predict the labels for the testing sam-
ples and repeat several times to cover all of the testing
set.

END

We use the cross-entropy loss on the test set to update the
paramters θ((m)) and φ(m) in feature embedding module
fθ(m) and scale embedding module g.

Experiments

The Dataset Description and Setting

To evaluate the performance of the proposed method, we
have conducted experiments on a dataset from the Sina
Weibo platform (www.weibo.com) (Ji et al. 2018). The
dataset is collected from the daily top-10 hot topics in Weibo
during Feb. 2014 to Apr. 2014, which consists of three com-
ponents, i.e., 71.7% tweets containing images, 99.8% blogs
containing texts and 31.9% tweets containing emoticons. We
utilize a ANP detector library named SentiBank to transform
the low-level features of the Twitter image set into mid-level

features, and ANPs with confidence coefficients higher than
0.8 are employed.

After data cleansing and preprocessing (Ji et al. 2018), we
got 5K tweets with clean labels in total, including 4196 posi-
tive samples and 1354 negative samples. For generalization,
our experiments are conducted with 10 fold cross-validation,
randomly selecting 4650 samples as a training set, 400 sam-
ples as a validation set and 500 sample as a testing set, and
we compare the average performance on 10-fold the results
of state-of-the-art methods for fair evaluation.

In detail, the experimental settings are configured as fol-
lows. In consideration that the size of the testing set is 500,
and in order to keep consistency between the training and
testing procedures, we set the size of to-predict set Bu in
one batch as 500, same as that of the testing set. For the
scale of labeled set Bl in one batch, we just set the size to
1500. For the testing procedure, the size of Bl is set to 1500,
which is same as the training procedure.

Figure 4: Representative tweet examples of the microblog
dataset from Sina Weibo. Each sample contains an image,
expressions in Chinese, and emoticons.

Compared Methods

To evaluate the effectiveness of the proposed methods,
we compare HLPN with several state-of-the-art methods,
including Cross-media Bag-ofwords Model (Wang et al.
2014), Multi-kernel SVM (Zhang et al. 2011), MHG method
(Chen et al. 2015) and Bi-layer Multi-modal Hypergraph
learning (Ji et al. 2018).

Experimental Results

Experimental results of all compared methods on the real-
world microblog dataset crawled from Sina Weibo are
shown in Fig. 5 and Table 1.

Performance Comparison with Different Modalities
The comparison results on different combinations of modal-
ities are demonstrated in Table 1. According to the experi-
mental results, HLPN achieves the best performance com-
pared with other compared methods on multi-modal predic-
tion. For instance, on the textual modality, compared with
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Table 1: Performance comparisons with the state-of-the-art methods on multi-modal sentiment prediction. “T”,“V” and “E”
represent textual, visual and emoticon modalities, respectively. ”TVE” represents the combination of textual, emoticon and
visual modalities. MK-SVM is based on multiple modalities which is unable to be conducted on a single modality.

Modality Combination
Methods T E V TE TV EV TVE
CBM-NB(Wang et al. 2014) 0.592 0.902 0.593 0.716 0.582 0.722 0.716
CBM-LR(Wang et al. 2014) 0.658 0.813 0.533 0.858 0.600 0.756 0.799
CBM-SVM(Wang et al. 2014) 0.660 0.893 0.603 0.893 0.618 0.814 0.816
MK-SVM (Zhang et al. 2011) - - - 0.859 0.521 0.859 0.862
MHG (Chen et al. 2015) 0.606 0.863 0.579 0.873 0.586 0.864 0.886
Bi-MHG (Ji et al. 2018) 0.683 0.903 0.611 0.895 0.695 0.899 0.900
HLPN 0.883 0.889 0.907 0.896 0.946 0.931 0.947

Figure 5: Performance comparison on different training data
scales.

CBM-NB, CBM-LR, CBM-SVM, MK-SVM, MHG and
Bi-MHG, HLPN achieves gains of 49.2%, 34.2%, 33.8%,
45.7% and 29.3%. On the visual modality, the proposed
method achieves gains of 53.0%, 70.2%, 50.4%, 56.6%
and 48.4%. On the emoticon modality, our method also
shows better performance, which is comparable to Bi-MHG.
The similar results can also be observed on the combina-
tion modalities. For example, on the combination of tex-
tual and visual modalities, HLPN achieves gains of 62.5%,
57.7%, 53.1%, 81.6%, 61.4% and 36.1% compared with the
state-of-the-art methods. On the combination of textual, vi-
sual and emoticon modalities, the proposed method achieves
gains of 32.3%, 18.5%, 16.1%, 9.9%, and 6.9% and 5.2%.
These results justify that the HLPN is effective in explor-
ing the relevance among the multi-modality dataset. Similar
comparison results can be found on other combination of
modalities.

Moreover, based on the comparison results, the perfor-
mance of prediction on multi-modal schemes outperform
the method on single modality schemes. For instance, for
the combination of textual, visual and emoticon modali-
ties, the proposed method achieves gains of 5.6% compared
with the combination of textual and emoticon modalities and
1.7% compared with the combination of emoticon and visual

Table 2: Time-cost comparison with MHG and Bi-MHG on
the combination of all three modalities.

Methods Running Time
MHG (Chen et al. 2015) 178 seconds
Bi-MHG (Ji et al. 2018) 24 hours+
HLPN 36 seconds

modalities. Meanwhile, the performance from the visual and
emoticon modality have been significantly improved in our
method, and it is even higher than that from the emoticon
modality, which indicates that our method can better under-
stand the complex modality data than existing methods. The
performance of the single textual modality is a little lower
than that of the single emoticon modality, while the perfor-
mance of the fused textual and visual modalities is higher
than that of the emoticon and visual modalities, which indi-
cates textual and visual modalities have more complemen-
tary information than emoticon and visual modalities.

Performance Comparison with Different Sizes of Train-
ing Data In order to evaluate the influence of different
size of training data, we have conducted the comparison
experiments with different sizes of training data, i.e., 100,
300, 500, 700, 900, and the experimental results are shown
in Fig. 5, which indicate the superiority of our method.
For example, our method achieves gains of 49.3%, 29.8%,
27.0%, 25.4% and 24.0% compared with CBM-NB, and
9.1%, 5.4%, 4.5%, 4.7% and 4.7% compared with Bi-MHG
on 100, 300, 500, 700 and 900 size of training sets. Ac-
cording to the comparison results, we also find that even
with limited training data, our method achieves better per-
formance. For instance, our method achieves 49.3%, 42.5%,
37.0%, 34.1% and 31.6% with the 100 sample training set,
and 30.7%, 24.1%, 20.4%, 20.9% and 18.0% with the 200
sample training set. This result shows that the robustness of
our method with scarce training samples.

In addition to evaluation on the accuracy, we also test the
efficiency performance of our method. We count the testing
time-cost of HLPN, compared with two effective methods,
i.e., Bi-MHG (Ji et al. 2018) and MHG (Chen et al. 2015).
The results are illustrated in Table 2. It can be seen that our
method is almost five times less time-consuming than MHG,
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and compuared with Bi-MHG, it reduces the time from more
than one day to several seconds. These counts show that our
method can also perform efficiently under the condition of
superior effectiveness.

Ablation Study

In our model, hypergraph construction and the scale embed-
ding module are the two main points, and our assumption
is that the scale embedding module can improve the capac-
ity of the hypergraph. Aiming to prove its effectiveness, we
make an ablation study on the scale embedding module, i.e.,
optimizing the scale σm

i through the scale embedding mod-
ule vs setting the σ

(m)
i as a hyperparameter. The results are

illustrated in Fig. 6. For fair comparison, we tune the σ and
then set it as 10.

Figure 6: Performance comparison between HLPN and
HLPN with the scale embedding module removed for each
modalities.

From the results shown in Figure 6, we find that the
Scale Embedding Module is helpful to the performance of
our proposed method in most cases. Although it works not
quite as obviously when we conduct it on only one modal-
ity, and especially reduces the performance only slightly in
the Emoticon modality, it shows significant improvement
when adopted on multiple modalities. With the combina-
tion of different modalities, such as Text and Visual modal-
ities or others, the classifcation accuracy can improve about
3% or greater. It proves that the Scale Embedding Module
is really effective in our method. From intuition, a subject
can be represented by multi-modality, and the representation
from different modalities is complementary. In our method,
we suppose that the complementary information is latent in
the topological relationship of some space, thus we adopt
the hypergraph structure to mine the relationship. The Scale
Embedding Module plays a key role in this work.

Discussion

It is illustrated in Table 1 that our proposed method achieves
much better results in classification compared with other
state-of-the-art methods and classical methods. As we can
see, the results on the data from “Text” and “Visual” modal-
ities improve significantly, and the result on the combination

of these two modalities also shows the effectiveness of our
proposed method, while for the modality “Emoticon”, our
method is not superior to other compared methods. This is
due to the fact that feature extracted from the “Emoticon”
modality are binary, i.e., 0 or 1, and quite sparse as well.
This property of the feature from “Emoticon” is limited in its
capacity of representation. Under this situation, we can find
that many methods can achieve comparable performance in
classification and infer that the capacity of this feature may
be the bottle-neck for the performance. Even so, the data of
the “Emoticon” modality does not harm the results of “TVE”
modality. This illustrates that the performance of our pro-
posed method will not be reduced seriously when adding
the data of another modality that is not of good quality.

The experimental results show that our method has a
much better performance compared with the state-of-the-art
methods, especially on the condition that the labeled data is
limited. We analyze that it is due to the advantage that our
model has the ability to optimize the representation of the
samples on the topological space. In this architecture, the
neural network can be updated gradually by selecting a sub-
fraction of the dataset rather than the whole data.

Based on the assumption that the distribution of data is
a smooth manifold, the traditional graph or hypergraph-
based semi-supervised learning can be explained solidly and
proved effectively. However, this hypothese limits the capac-
ity of these methods, because data in the real world is com-
plicated, and may not satisfy a smooth manifold of high-
quality, i.e., supposing the smoothness of thedata distribu-
tion may cause the loss of topological information. In our
method we adopt a sub-fraction of the whole data to gener-
ate a sub-hypergraph and update the parameters of a neural
network with the sub-hypergraph, i.e., the effective metric
on samples, to make the model more adaptive to the man-
ifold over this subset of the whole dataset. Our proposed
method samples the sub-structure of the whole manifold to
exploit the sparse topological structure, or “sharp” manifold
and memorizes this information to neural networks. Actu-
ally exploiting the latent manifold and optimizing the metric
on hypergraph-based label propagation through traditional
methods is difficult and a tall to mathematical requirement,
while it can be achieved easily through the combination of
label propagation and a deep neural network. Satisfactory
performance on the real-world multi-modality data proves
its reasonability.

Conclusion
In this work, we propose a Hypergraph Label Propagation
Network (HLPN) that combines the hypergraph-based label
propagation and deep neural networks, towards constructing
the optimal topological hypergraph and conducting trans-
ductive label propagation in an end-to-end manner. We ob-
tain the state-of-the-art result on a real-world multi-modal
microblog tweets dataset for sentiment prediction.

Our future work will focus on two directions. The first
one is to design an end-to-end architecture which optimizes
the parameters of both feature embedding and hypergraph
construction simultaneously and replaces the simple bag-of-
words feature extractor. The second one is that our method
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shows great advantages in multi-modality fusion. We will
organize the model as a building block for the modalities
fusion task.
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