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Abstract

Maximum likelihood (ML) and adversarial learning are two
popular approaches for training generative models, and from
many perspectives these techniques are complementary. ML
learning encourages the capture of all data modes, and it is
typically characterized by stable training. However, ML learn-
ing tends to distribute probability mass diffusely over the
data space, e.g., yielding blurry synthetic images. Adversarial
learning is well known to synthesize highly realistic natural
images, despite practical challenges like mode dropping and
delicate training. We propose an α-Bridge to unify the advan-
tages of ML and adversarial learning, enabling the smooth
transfer from one to the other via the α-divergence. We re-
veal that generalizations of the α-Bridge are closely related
to approaches developed recently to regularize adversarial
learning, providing insights into that prior work, and further
understanding of why the α-Bridge performs well in practice.

1 Introduction

Given observed data samples, a well-known task concerns
fitting a generative model to the unknown underlying data dis-
tribution. Two popular approaches for that task are classical
maximum likelihood (ML) learning and recently-developed
adversarial learning. Both of these approaches are equiva-
lent to minimizing a corresponding divergence between the
model distribution and the data distribution (Bishop 2006;
Goodfellow et al. 2014).

ML learning seeks to find model parameters that maximize
the log-likelihood of the model over the observed data sam-
ples, which is equivalent to minimizing the forward Kullback-
Leibler (KL) divergence between the model distribution and
the data distribution (McLachlan and Krishnan 2007). When
considering models with latent variables, variational infer-
ence (VI) (Jordan et al. 1999; Blei and Jordan 2006) is an
important class of approximate ML learning, in which a
variational expression constitutes a lower bound on the log-
likelihood, and learning proceeds by seeking to maximize
this bound. There has been significant recent work on utiliz-
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ing neural networks within VI (Kingma and Welling 2014;
Dai and Wipf 2019).

Because of the properties of the forward KL, ML learning
tends to associate positive mass with each data sample, form-
ing a zero-avoiding phenomenon (Minka and others 2005).
Accordingly, all data modes are “covered” by the model distri-
bution; by contrast, adversarial learning is often characterized
by a mode-dropping phenomenon (Srivastava et al. 2017).
Another advantage of ML learning (forward KL) is that its
training procedure is typically much more stable than that of
adversarial learning. The instability of adversarial learning
is in part because the mode dropping may vary as a function
of learning iteration. On the other hand, the zero-avoiding
phenomenon of ML learning may loosely distribute prob-
ability mass among data modes. An example consequence
is that generative models trained with ML tend to generate
blurry images (Goodfellow et al. 2014; Larsen et al. 2015;
Arjovsky, Chintala, and Bottou 2017). Adversarially-learned
models, by contrast, are capable of synthesizing highly realis-
tic natural images (Goodfellow et al. 2014; Nowozin, Cseke,
and Tomioka 2016; Zhang et al. 2018; Gulrajani et al. 2017;
Brock, Donahue, and Simonyan 2019).

The original generative adversarial network (GAN) mini-
mizes the Jensen-Shannon (JS) divergence between the model
distribution and that of the data (Goodfellow et al. 2014). In
(Nowozin, Cseke, and Tomioka 2016) it was shown that learn-
ing based on minimizing any f -divergence can be formulated
as an adversarial learning objective (with the JS divergence
as a special case). In this paper, we focus on the reverse
KL divergence as in (Li et al. 2019) because (i) it naturally
relates to ML learning (by reversing the KL); (ii) (Lucic
et al. 2018) showed that most GANs with the same budget
can reach similar performance with enough hyperparameter
optimization and random restarts; (iii) adversarial learning
with the f -divergence (Nowozin, Cseke, and Tomioka 2016)
reduces to estimating a log-likelihood ratio between the true
and model distributions, and the reverse-KL is as good as any
other f -divergence choice for this purpose (Li et al. 2019);
and (iv) forward and reverse KL divergences are two ends of
the α-Bridge developed in this paper.

It is interesting to note that ML learning (based on the
forward KL) and adversarial learning (with the reverse
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Table 1: Comparing maximum likelihood and adversarial
learning.

Property
Method Maximum Likelihood Adversarial

(Forward KL) (Reverse KL)
Mode covering (zero-avoiding) � �

Stable training � �
Inference � �

Realistic generated samples � �

KL as an important example) seem to have complemen-
tary advantages and disadvantages (Nguyen et al. 2017), as
shown in Table 1. To unify their advantages, an intuitive ap-
proach would directly combine them. However, as stated
in (Larsen et al. 2015; Mathieu et al. 2016) and empiri-
cally shown in (Zhang et al. 2019), such a naive method
does not work well. Another intuitive approach would, for
example, directly initialize the reverse-KL-based adversar-
ial learning with the parameters learned from ML learning.
For the second approach, empirical results in Figure 1 in-
dicate that catastrophic forgetting (Kirkpatrick et al. 2017;
Liang et al. 2018) happens when adversarially finetuning
the ML-learned parameters. Appendix F discusses/compares
other potential approaches to combine adversarial and ML
learning. To unify the advantages from ML and adversarial
learning in a principled way, we propose a novel α-Bridge,
via the α-divergence, to smoothly connect the forward and
reverse KL, through which one can transfer the advantages
from one to the other. In addition to the practical value of
the α-Bridge, our subsequent analysis on the α-divergence
is deemed an important methodological perspective on how
ML and adversarial learning are related and may be linked.

The main contributions of this paper are as follows. (i) An
α-Bridge is proposed to connect the forward and reverse KL
in a principled manner, which can be interpreted as a novel
way to “bridge” the two research fields of ML and adversarial
learning. (ii) The gradient of the α-divergence is shown to
have two equivalent expressions, one that utilizes the gradi-
ent information from ML learning (forward KL), while the
other uses the gradient information from adversarial learning
(reverse KL). (iii) The twin gradients of α-divergence have
complimentary variance properties, α-Bridge elegantly com-
bines the advantages of both and manages a low Monte Carlo
(MC) variance along the varying of α. (iv) Two generaliza-
tions of our α-Bridge are revealed, that are closely related to
CycleGAN (Zhu et al. 2017) and ALICE (Li et al. 2017), two
methods for regularizing (stabilizing) adversarial learning.
(v) It is demonstrated empirically that the proposed α-Bridge
is capable of benefiting from the advantages of ML learning,
transferring information from ML to adversarial learning,
and is capable of transplanting the variational posterior in
ML learning into an inference arm for adversarial learning.

2 Preliminaries

Given observed data x, drawn from unknown underlying data
distribution q(x), and a parameterized model distribution
pθ(x) with parameters θ, the task is to learn θ∗ so that pθ∗(x)
best fits the observed data, or identically pθ∗(x) is closest to
q(x). For that task, two popular research fields include ML

Figure 1: Demonstration of adversarial learning forgetting
the information learned/initialized by ML learning on 25-
Gaussians (the first two) and MNIST (the last two). From
left to right are the snapshots of ML initialization and 20
following iterations of adversarial learning, respectively. See
Appendix D for details.

learning (with “closeness” of pθ∗(x) and q(x) quantified via
the forward KL) and adversarial learning (with the reverse KL
as an important example of how “closeness” is measured).

2.1 Maximum Likelihood Learning (Forward
KL)

A classic method to match a model pθ(x) to the data distribu-
tion q(x) is ML learning (or maximum likelihood estimation),
namely,
θ∗ = argmax

θ
Eq(x)[log pθ(x)] = argmin

θ
DKL[q(x)‖pθ(x)],

(1)
where DKL[q(x)‖pθ(x)]=Eq(x)[log q(x)−log pθ(x)] is the
forward KL. The gradient wrt θ is

∇θDKL[q(x)‖pθ(x)] = Eq(x)[−∇θ log pθ(x)]. (2)
For more modeling capacity, it is often convenient to define
pθ(x) as the marginal of some parameterized joint distribu-
tion pθ(x, z), with latent variable z. Although log pθ(x) is
usually intractable, variational inference (Jordan et al. 1999;
Kingma and Welling 2014; Blei, Kucukelbir, and McAuliffe
2017) seeks to solve the ML learning in (1) via maximizing
the evidence lower bound (ELBO)
ELBO(θ,φ) = Eq(x)qφ(z|x)

[
log pθ(x, z)− log qφ(z|x)

]
,

(3)
where qφ(z|x) is the variational approximation with parame-
ters φ, and the bound is tight when qφ(z|x) = pθ(z|x). The
gradient wrt θ becomes

∇θELBO(θ,φ) = Eq(x)qφ(z|x)[−∇θ log pθ(x, z)].

In practice, Eq(x)[·] are approximated as averages over a
finite set of observed samples.

2.2 Adversarial Learning (Reverse KL)

Recent progress has resulted in many techniques for adver-
sarial training of generative models (Goodfellow et al. 2014;
Gulrajani et al. 2017; Nowozin, Cseke, and Tomioka 2016;
Brock, Donahue, and Simonyan 2019). The original GAN
(Goodfellow et al. 2014) seeks to solve
min
θ

max
β

Eq(x)[log σ(fβ(x))] + Epθ(x)[log(1− σ(fβ(x)))],

(4)
where σ(fβ(x)) � Dβ(x) is called the discriminator,
σ(a) = 1/[1+exp(−a)], and samples are drawn from pθ(x)
by the generative process

x ∼ δ(x|Gθ(z)), z ∼ p(z), (5)
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where δ(x|a) is the Dirac delta function located at a, Gθ(z)
is called the generator, and p(z) is an easy-to-sample distri-
bution. It is shown (Goodfellow et al. 2014) that the optimal
β∗ for (4) satisfies

fβ∗(x) = log q(x)− log pθ(x). (6)
Accordingly, (4) seeks to minimize the Jensen-Shannon (JS)
divergence for parameters θ (Goodfellow et al. 2014).

Alternatively, one could also consider a similar GAN objec-
tive based on the reverse KL divergence DKL[pθ(x)‖q(x)]
(Nowozin, Cseke, and Tomioka 2016; Li et al. 2019), on
which we focus in this paper; as discussed in the Introduc-
tion, many GANs are closely related (Nowozin, Cseke, and
Tomioka 2016) and can reach similar performance with the
same budget (Lucic et al. 2018), and therefore a focus on the
reverse KL is not deemed particularly limiting. The log-ratio
estimate in (6) is exploited both in the reverse KL and its
gradient as

DKL[pθ(x)‖q(x)] = Epθ(x)[−fβ∗(x)]

∇θDKL[pθ(x)‖q(x)] =
Ep(z)δ(x|Gθ(z))

[− [∇θGθ(z)][∇xfβ∗(x)]
]
.

(7)

3 Connecting Maximum Likelihood and

Adversarial Learning via α-Bridge
Maximum likelihood and adversarial learning have many
complementary strengths and weaknesses, motivating devel-
opment of a method that achieves their principled integration.
Toward that end, we propose what we term an α-Bridge, de-
signed using the α-divergence (Cichocki and Amari 2010).
The α-Bridge smoothly connects the forward and reverse KL
divergences, making it possible to transfer advantages from
one to the other.

Given model distribution pθ(x) and the underlying data
distribution q(x), the α-divergence measuring the dissimilar-
ity between these two distributions is defined as

Dα[pθ(x)‖q(x)] = 1

α(1− α)

[
1−

∫
pθ(x)

αq(x)1−αdx
]
.

(8)
The α-divergence has many attractive properties (Cichocki
and Amari 2010), for example, (i) it is unique (Amari 2009);
(ii) limα→0 Dα[pθ(x)‖q(x)] = DKL[q(x)‖pθ(x)]; (iii)
limα→1 Dα[pθ(x)‖q(x)] = DKL[pθ(x)‖q(x)]; and (iv) the
α-divergence is a continuous function of α. These proper-
ties motivate development of a smooth “bridge” via the α-
divergence, named the α-Bridge, to continuously transfer
between forward and reverse KL. Before discussing the pro-
posed α-Bridge in detail, below we first reveal its key foun-
dation, in the context of this paper: the α-divergence has
two equivalent expressions for its gradient, which utilize the
gradient information either from the forward or reverse KL.

3.1 Twin Gradients of α-Divergence

Given the α-divergence defined in (8), with straightforward
derivation, we have

∇θDα[pθ(x)‖q(x)] =
1

1− α

[
−
∫

pθ(x)
α−1q(x)1−α∇θpθ(x)dx

]
.

(9)

An interesting fact of (9) is that one can turn it into an
expectation-based expression wrt either the data distribution
q(x) or the model one pθ(x), resulting in two different ex-
pressions for the same gradient (see Appendix A for details).
By forming expectations wrt q(x), we have
∇θDα[pθ(x)‖q(x)] =

1

1− α
Eq(x)

[
−
[pθ(x)
q(x)

]α
∇θ log pθ(x)

]
� ∇θDF

α ,
(10)

where ∇θDF
α is used for brevity. The gradient information

from the forward KL in (2) serves as a building block for (10).
However, it is different from the direct gradient of the forward
KL in that ∇θDF

α has an adaptive ratio-related weight term
1

1−α

[pθ(x)
q(x)

]α
within the expectation (when α → 0+ this

term vanishes, leading to the gradient of the forward KL
in that limit). For the gradient expression related to pθ(x)
modeled in (5), we have
∇θDα[pθ(x)‖q(x)] � ∇θDR

α =

Ep(z)δ(x|Gθ(z))

[
[∇θGθ(z)]

[ q(x)

pθ(x)

]1−α[
∇x log

pθ(x)

q(x)

]]
.

(11)
Similarly we use ∇θDR

α for brevity. Compared to (7), ∇θDR
α

utilizes the gradient information from the reverse KL, with
another adaptive weighting term

[ q(x)
pθ(x)

]1−α
(which vanishes

in the limit α → 1−, yielding the gradient of the reverse KL
in that limit). For more general model pθ(x) beyond (5), the
GO gradient (Cong et al. 2019) can be utilized to calculate
∇θDR

α .
It is important to note that ∇θDF

α and ∇θDR
α are two

equivalent gradient expressions for the same objective
Dα[pθ(x)‖q(x)], even though they utilize different gradient
information (accordingly different MC variance properties
as detailed below) from the forward and reverse KL, respec-
tively. Thus, we call them the twin gradients of α-divergence.
In the limits on α, the former is associated with the forward
KL and the latter with the reverse KL, but for α ∈ (0, 1) the
twin gradients are not associated with either; this explains
why the proposed α-Bridge in Sec. 3.2 is different from a
(possibly convex) combination of the forward and reverse
KL.

Since ∇θDF
α and ∇θDR

α are equivalent expressions for
∇θDα[pθ(x)‖q(x)], any convex combination of them re-
mains an unbiased gradient estimator, which may be inter-
preted as exploiting the information from one side to regular-
ize the other side. We propose to use an α-related dynamic
combination as
∇θDα[pθ(x)‖q(x)] = (1− γα)∇θDF

α + γα∇θDR
α ,

(12)
where γα is specified as a smooth increasing function1 of

1It is consistent with the instinct that, as smoothly transfer-
ring from the forward to reverse KL, the used information from
the forward/reverse KL should smoothly decrease/increase corre-
spondingly. Appendix E shows a series of experiments demonstrat-
ing several intuitive choices for γα. We empirically find that the
sigmoid-like function γα = σ(cα+d)−σ(d)

σ(c+d)−σ(d)
(with hyperparameters

c, d) works well. Accordingly, we use such γα in our experiments
and leave as future research how to optimally choose γα.

6903



(a) μ = 3, σ = 1

(b) μ = 1, σ = 1

Figure 2: Illustration of different MC variance
properties of different gradient estimators of
∇{μ,σ}Dα[N (x;μ, σ2)||N (x; 0, 1)] for α ∈ (0, 1). 1
MC sample is used to estimate the gradient. The results are
based on 100 random trials.

α satisfying γ0 = 0, γ1 = 1, ensuring equation (12) ex-
actly recovers the gradient of the forward/reverse KL when
α = 0/α = 1. Such a γα is motivated by the smoothness of
the α-divergence. When α → 0 the α-divergence smoothly
approaches the forward KL with increasingly-similar gradi-
ents; intuitively to calculate the gradient ∇θDα[pθ(x)‖q(x)],
one should prefer ∇θDF

α more as it uses the ML gradient
information. Similarly, ∇θDR

α is preferred when α → 1
as it uses the adversarial gradient information and the α-
divergence now smoothly approaches the reverse KL. With a
simple example, Figure 2 confirms that intuition by showing
that the twin gradients ∇θDF

α and ∇θDR
α have complemen-

tary variance properties, the former/latter having lower MC
variance when α → 0/α → 1. Figure 2 also shows that com-
bining the twin gradients as in (12) unifies the advantages
from both sides and presents a better gradient estimator with
lower MC variance for α ∈ (0, 1). The twin gradients can
be interpreted as control variants to each other. This is the
foundation of our paper, which is further exploited in the
following to develop our α-Bridge. We are taking the con-
vex combination of two different forms of the same gradient,
which is distinct from just taking a convex combination of
the different gradients from the forward and reverse KL.

3.2 α-Bridge via Twin Gradients

Based on the twin gradients discussed above, we propose a
novel α-Bridge to dynamically transfer between forward KL
(ML learning) and reverse KL (adversarial learning), so as to
unify the advantages from both ends2. In this paper, we are
motivated by applications associated with GAN, with a goal

2See Appendix H for detailed discussions on other potential
generalizations of α-Bridge.

Algorithm 1 α-Bridge (from forward to reverse KL)

Input: Data samples xi ∼ q(x), an implicit model pθ(x)
Output: θ∗ such that pθ∗(x) is closest to the underlying

data distribution q(x)
# Step I: ML learning (forward KL, α = 0)

1: ML learning for the generator parameter θ with the gra-
dient in (14). Maximizing the ELBO in (3) for training
the variational parameters φ. Pretrain the discriminator
parameters β with the objective in (4).

# Step II: Transferring from α → 0+ to α → 1−
2: for α gradually increasing from 0+ to 1− do
3: Train θ by minimizing the α-divergence

Dα[pθ(x)‖q(x)] with the gradient in (15);
4: Train φ by maximizing the ELBO in (3);
5: Train β with the objective in (4);
6: end for
# Step III: Adversarial learning (reverse KL, α = 1)

7: Refine θ, φ, and β with the objectives in (7), (3), and
(4), respectively.

of generating realistic samples from our model. Accordingly,
we set our α-Bridge to transfer from the forward KL to the
reverse KL, in order to gradually transfer the advantages (see
Table 1) of ML learning to adversarial learning. Specifically,
we propose to train pθ(x) via the α-Bridge with the following
three successive steps.

In Step I , we adopt ML learning (forward KL, α = 0)
for efficient initialization thanks to its mode-covering and
stable-training properties. One can skip this step if pretrained
models from ML learning are available. From the perspective
of practical implementation, one often need to approximately
calculate the gradient in (2), as pθ(x) may be intractable for
example for the implicit model in (5). For this issue, we first
add small Gaussian noise3 on top of the generative process of
pθ(x) to form a semi-implicit surrogate model (Yin and Zhou
2018) p̃θ(x) : x ∼ N (x|x′, σ2I),x′ ∼ pθ(x

′), for which
we have ∇θ log pθ(x) = limσ2→0 ∇θ log p̃θ(x). Observing
that p̃θ(x) is equivalent to

p̃θ(x) : x ∼ N (x|Gθ(z), σ
2I), z ∼ p(z), (13)

which has computable joint distribution p̃θ(x, z), we then
use the ELBO technique to get

∇θ log pθ(x) ≈ ∇θ log p̃θ(x)

= Eq(x)qφ∗ (z|x)
[∇θ log p̃θ(x, z)

]
,

(14)

with an additional variational inference arm.
In the middle Step II , we continue the training of pθ(x)

by gradually changing α from 0+ to 1−, so as to transfer
what’s learned during Step I to the next Step III (reverse-
KL-based adversarial learning, α = 1). The gradient of
the α-divergence in (12) is used during training. The same
techniques discussed above is adopted to calculate the
∇θ log pθ(x) term within ∇θDF

α in (10). To calculate the

3We need not to add the noise if pθ(x) is modeled as (13) in the
first place, for example to take into consideration the widely-existing
observation noise of data. See Appendix B for details.
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density-ratio-related terms in both ∇θDF
α and ∇θDR

α (see
(10) and (11)), we follow the common practice in the GAN
literature to solve (4) for fβ∗(x) in (6). Accordingly, we have
pθ(x)
q(x) = e−fβ∗ (x), ∇x log pθ(x)

q(x) = −∇xfβ∗(x), and

∇θDα[pθ(x)‖q(x)] ≈
1− γα
1− α

Eq(x)qφ∗ (z|x)
[− e−αfβ∗ (x)∇θ log p̃θ(x, z)

]
+

γαEp(z)δ(x|Gθ(z))

[
− [∇θGθ(z)]e

(1−α)fβ∗ (x)[∇xfβ∗(x)
]]
,

(15)
which combines the gradient information from ML and ad-
versarial learning with automatic weights related to both α
and the GAN discriminator.

Finally in Step III , we use the zero-forcing reverse-KL-
based adversarial learning (α = 1) to continually refine the
generator parameters θ and the discriminator parameters φ
using (7) and (4), respectively. The corresponding training
process is summarized in Algorithm 1.

3.3 Connections to Prior GAN-Learning
Regularization

Considering the aforementioned twin gradients and the α-
Bridge, we next present an interpretation of the gradient
in (15), with which we reveal two generalizations that are
highly related to CycleGAN (Zhu et al. 2017) and ALICE
(Li et al. 2017). Details are given in Appendix C. With x

denoting the stop-gradient operator4, the gradient in (15) can
be reformulated as

∇θDα[pθ(x)‖q(x)] ≈

∇θ

⎡
⎢⎣
1− γα
1− α

Eq(x)qφ∗ (z|x)
[e−αfβ∗ (x)

2σ2
‖x−Gθ(z)‖22

]

+ γαEpθ(x)

[− e(1−α)fβ∗ ( x )fβ∗(x)
]

⎤
⎥⎦ ,

(16)
where the first term can be interpreted as weighted half cycle-
consistency (Li et al. 2017; Zhu et al. 2017; Kim et al. 2017),
and the second one is related to the reverse-KL-based ad-
versarial learning. Based on the interpretation in (16), one
can readily verify (see Appendix C) that by generalizing the
α-Bridge derivations as in (16) to consider both marginals

Dα[pθ(x)‖q(x)] +Dα[qφ(z)‖p(z)]

∇≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− γα
1− α

Eq(x)q
φ

(z|x)
[e−αfβ∗ (x)

2σ2
‖x−Gθ(z)‖22

]

+
1− γα
1− α

Ep(z)p
θ
(x|z)

[e−αgγ∗ (z)

2σ2
‖z − Eφ(x)‖22

]

+ γαEpθ(x)

[
− e(1−α)fβ∗ ( x )fβ∗(x)

]

+ γαEqφ(z)

[
− e(1−α)gγ∗ ( z )gγ∗(z)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where
∇≈ means both sides have approximately equal gra-

dients mimicking (16), and gγ∗(z) = log p(z) − log qφ(z)

4tf.stop gradient/torch.no grad in TensorFlow/PyTorch.

corresponds to the optimal discriminator in the z space. Sim-
ilarly, by considering both joint distributions

Dα[pθ(x, z)‖q φ
(x, z)]] +Dα[qφ(x, z)‖p θ

(x, z)]]

∇≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1− γα
1− α

Eq
φ

(x,z)

[− e−αhη∗ (x,z) log pθ(x|z)
]

+
1− γα
1− α

Ep
θ
(x,z)

[
− eαhη∗ (x,z) log qφ(z|x)

]

+ γαEpθ(x,z)

[− e(1−α)hη∗ ( x ,z)hη∗(x, z)
]

+ γαEqφ(x,z)

[
e−(1−α)hη∗ (x, z )hη∗(x, z)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

one can generalize the α-Bridge to a model very much resem-
bling ALICE (Li et al. 2017). We believe that the connections
revealed above, and the techniques developed earlier, may be
helpful for constituting a foundation that unifies ML learning,
adversarial learning, and intuitive (regularization) properties
like cycle-consistency.

4 Related Work

Motivated by the complementary properties of ML and ad-
versarial learning, many methods have been considered for
combining these two popular research fields, to unify their
advantages. A direct combination of the VAE with GAN
objectives was considered in (Larsen et al. 2015), only to “ob-
serve the devil in the details” during model development and
training. Accordingly gradients were heuristically controlled
in back-propagation. It is also stated in (Mathieu et al. 2016)
that naively combining those two objectives unstabilizes the
system and does not lead to perceptually better generation,
which is consistent with the empirical results from (Zhang et
al. 2019). The principle combination of ML and adversarial
learning deserves a thorough exploration. Instead of directly
combining their objectives, the α-Bridge dynamically trans-
fers (information) between both sides to bypass the unstable
problem. Many other works combining ML and adversarial
learning were motivated differently. On the one hand, with
the target of ML learning unchanged, (Makhzani et al. 2015;
Mescheder, Nowozin, and Geiger 2017) exploited GAN
techniques to better handle the KL term between the prior
and posterior of the latent variables, within the ELBO.
On the other hand, keeping the target of adversarial learn-
ing, a variational auto-encoder/autoencoder was used as
a building block within GAN discriminators, mainly for
stabilizing training (Berthelot, Schumm, and Metz 2017;
Ulyanov, Vedaldi, and Lempitsky 2018). A symmetric KL
divergence was exploited to build objectives (Pu et al. 2017;
Chen et al. 2018). Since those methods employed discrimi-
nators to estimate/replace the ratios within both the forward
and reverse KL, the likelihood (gradient) information from
forward KL was ignored. By comparison, the α-Bridge has
the advantage of benefiting from the gradient information
from ML learning. Although combining ML and adversarial
learning is enticing, no previous work has achieved this in a
principled manner. The proposed α-Bridge seeks to fill this
gap.
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Figure 3: Demonstration on the dynamic evolution of the
generated samples (blue) from the compared methods during
training. Columns correspond to 1K, 2K, 4K, 6K, and 10K
iterations. Real data samples are shown in red.

5 Experiments

We demonstrate the proposed α-Bridge from three perspec-
tives. First we show that the α-Bridge, dynamically transfer-
ring advantages from ML to adversarial learning, exhibits
a more stable training with improved robustness to hyper-
parameters (this is expected because of the aforementioned
discussions of control variants interpretation and connections
to prior GAN regularization methods). We then show that the
α-Bridge is capable of smoothly transferring the information
learned during ML learning to adversarial learning, circum-
venting the forgetting issue shown in Figure 1. Finally we
highlight the versatility of the α-Bridge, by showing its capa-
bility in transplanting the variational approximation within
ML learning into an inference arm for adversarial learning.
See Appendix G for the detailed experimental settings and
the corresponding analysis/discussions.

5.1 Stability and Robustness

The 25-Gaussians example from (Tao et al. 2018) is adopted,
where the data are generated from a 2D Gaussian mixture
model with 25 components, as shown in Figure 3. For direct
comparison, reverse-KL-based GANs are chosen as baselines,
with recent techniques to stabilize their training, i.e., gradient
penalty (GP) (Mescheder, Geiger, and Nowozin 2018) and
spectral normalization (SN) (Miyato et al. 2018). Note it is
shown in (Lucic et al. 2018) that most GANs with the same
budgets can reach similar performance with enough hyperpa-
rameter optimization and random restarts. Thus reverse-KL-
based GANs further stabilized by GP/SN are considered as
fairly good baselines (named as RKL-GP and RKL-SN, re-
spectively)5. The inception score (IS) (Salimans et al. 2016)
and the log-likelihood estimated with kernel density esti-
mation (Parzen 1962) are used to measure the plausibility
of generated samples and the data-mode-covering level of
learned models, respectively. Baseline methods are carefully

5Empirically, RKL-GP and RKL-SN show comparable/better
results than WGAN-GP (Gulrajani et al. 2017) on 25-Gaussians.
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Figure 4: Quantitative performance of the methods along
the training process. Inception score (a)/(c) and estimated
log-likelihood (b)/(d) when Adam (Kingma and Ba 2014)
hyperparameter β1 = 0.1 / β1 = 0.5. Higher is better for
both metrics. The curves are calculated over 10 random trials.
Two vertical dashed lines are used to indicate the three steps
of the α-Bridge.

tuned with their best settings adopted for fair comparison
(see Appendix G.2).

Figure 4 shows the results of the considered methods. It is
clear that α-Bridge, thanks to its smooth transferring nature,
is capable of benefiting from the advantages of ML learning,
resulting in more stable training (see Figures 4a and 4c) while
keeping most data modes covered (see Figures 4b and 4d).
Comparing Figures 4a-4b to Figures 4c-4d shows α-Bridge
is relatively more robust to hyperparameters than baseline
methods (see Appendix G.2 for more details). Figure 3 shows
one training curve of the compared methods, highlighting
α-Bridge’s ability to benefit from the advantages of ML learn-
ing. To address the concern of how α-Bridge performs on
real datasets, we conduct another experiment on CIFAR10
(Krizhevsky and Hinton 2009) and observe an improved per-
formance of (IS, FID(Heusel et al. 2017))=(7.225, 28.083)
over (6.558, 33.707) of the vanilla DCGAN baseline (see
Appendix G.4 for more results).

5.2 Smooth Transfer of Information from ML to
Adversarial Learning

Besides inheriting the advantages of ML learning, another
advantage of the α-Bridge is a smooth transfer of the infor-
mation learned during ML to adversarial learning. For an
explicit demonstration, we run α-Bridge on the MNIST (Le-
Cun et al. 1998) and CelebA (Liu et al. 2015) datasets, and
present the generated samples along the training process, as
shown in Figure 5. ML learning, i.e., Step I of Algorithm 1,
provides fairly good initialization on both datasets; thanks to
the zero-avoiding nature of ML learning, one might antici-
pate an initialization covering all data modes, similar to the
phenomena observed in Figure 3. When it comes to the trans-
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Figure 5: Random samples generated along the training pro-
cess of the α-bridge on MNIST (top) and CelebA (bottom).
Note most information is transferred from ML to adversarial
learning, such as the class, rotation, and style of generated
digits, and the basic tone, gender, expression, pose of the
head, hair style of generated faces.

ferring Step II , α-Bridge smoothly inherits what’s learned
in ML learning at the beginning, and then gradually adds
more detailed information (such as sharper edges on MNIST
digits and clearer background on CelebA faces) to generate
increasingly realistic images. After the transferring Step II ,
one observes generated images exhibiting the features from
adversarial learning, whose image quality is further refined
by the adversarial Step III of Algorithm 1. By reviewing
the whole process shown in Figure 5, one observes that α-
Bridge is capable of smoothly transferring most information
from ML to adversarial learning, in contrast to the forgetting
shown in Figure 1.

5.3 Transplanting ML Variational Posterior into
Inference Arm for Adversarial Learning

In addition to inheriting the advantages and information from
ML learning, we find that the smooth dynamical training of
Algorithm 1 also enables α-Bridge to transplant the varia-
tional approximation within ML learning into an inference
arm for adversarial learning. Such a capacity is appealing
because it enables exploiting the generative power of GANs
for various practical applications. See Appendix G.6 for tech-
nical details.

To verify the effectiveness of the transplanted inference
arm, Figure 6 (top) shows the encoder-decoder reconstruc-
tion for the generated fake images. It is apparent that the
reconstructions are fairly good, confirming the effectiveness
of the inference arm. One can also exploit that arm for ma-
nipulation of GAN generated images, as shown in Figure 6

Figure 6: Using the inference arm transplanted by α-Bridge
to reconstruct (top) and manipulate (bottom) GAN generated
images. φ and θ denote the inference arm qφ(z|x) and the
generator Gθ(z), respectively.

(bottom). Detailed implementations for reconstruction and
manipulation are given in Appendix G.6. It is clear that with
this inference arm, one can modify the semantic concepts
of the generated images like bangs, hair, gender, etc. Such
capacity is valuable for transferring the generative power of
GANs to various down-steaming tasks.

6 Conclusions

Motivated by the fact that maximum likelihood (ML) and
adversarial learning have complementary characteristics, we
have proposed a novel α-Bridge, constituted via the α-
divergence, to unify their advantages in a principled man-
ner. Our α-Bridge has as its foundation newly recognized
twin gradients of the α-divergence, one of which utilizes the
gradient information from the ML (forward KL) perspec-
tive, and the other from the adversarial learning (reverse KL)
perspective. We also have revealed two generalizations of
α-Bridge that closely resemble CycleGAN (Zhu et al. 2017)
and ALICE (Li et al. 2017).
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