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Abstract

Image segmentation is critical to lots of medical applications.
While deep learning (DL) methods continue to improve per-
formance for many medical image segmentation tasks, data
annotation is a big bottleneck to DL-based segmentation be-
cause (1) DL models tend to need a large amount of la-
beled data to train, and (2) it is highly time-consuming and
label-intensive to voxel-wise label 3D medical images. Sig-
nificantly reducing annotation effort while attaining good per-
formance of DL segmentation models remains a major chal-
lenge. In our preliminary experiments, we observe that, using
partially labeled datasets, there is indeed a large performance
gap with respect to using fully annotated training datasets.
In this paper, we propose a new DL framework for reducing
annotation effort and bridging the gap between full annota-
tion and sparse annotation in 3D medical image segmenta-
tion. We achieve this by (i) selecting representative slices in
3D images that minimize data redundancy and save annota-
tion effort, and (ii) self-training with pseudo-labels automat-
ically generated from the base-models trained using the se-
lected annotated slices. Extensive experiments using two pub-
lic datasets (the HVSMR 2016 Challenge dataset and mouse
piriform cortex dataset) show that our framework yields com-
petitive segmentation results comparing with state-of-the-art
DL methods using less than ∼ 20% of annotated data.

Introduction

3D image segmentation is one of the most important tasks
in medical image applications, such as morphological and
pathological analysis (Lee et al. 2015b; Hou et al. 2019), dis-
ease diagnosis (Pace et al. 2015), and surgical planning (Ko-
rdon et al. 2019). Recently, 3D deep learning (DL) models
have been widely used in medical image segmentation and
achieved state-of-the-art performance (Ronneberger, Fis-
cher, and Brox 2015; Yu et al. 2017; Liang et al. 2019),
most of which were trained with fully annotated 3D im-
age stacks. The performance of DL models (when applied
to testing images) is highly dependant on the amount and
variety of labeled data used in model training. However,
obtaining medical image annotation data is highly difficult
and expensive, and full annotation of 3D medical images
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Figure 1: (a) Examples showing similarity in consecutive
slices of the HVSMR 2016 heart dataset and of the neuron
dataset of mouse piriform cortex. (b) Sparse annotation in
a 3D image (top: image, bottom: annotation); only selected
slices are manually annotated to train deep learning models.
(c) Performance on the HVSMR 2016 dataset using differ-
ent amounts of annotated training data. Let sk denote the
setting of selecting slices at an equal distance (i.e., label one
out of every k slices). The segmentation performance drops
drastically as the annotation ratio sk decreases.

is a monotonous, labor-intensive, and time-consuming job.
For example, a typical 3D abdominal CT scan is of size
300× 512× 512, and would take hours of a medical expert
to label certain objects of interest in it. How to reduce anno-
tation effort (e.g., cost, time, and available experts) while at-
taining the best possible performance of DL models remains
a challenging problem for 3D medical image segmentation.

A common method to alleviate annotation burden is
sparse 3D fully convolutional networks (FCNs) (Çiçek et al.
2016). As shown in Fig. 1(a), there can be a great deal of re-
dundancy in consecutive 2D slices along an axis of a 3D im-
age, and it is unnecessary to annotate each and every one of
them. (Çiçek et al. 2016) showed that a small number of an-
notated 2D slices could be used as supervision (see Fig. 1(b))
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to train a 3D FCN, and satisfactory segmentation perfor-
mance was obtained. Compared with conventional 3D FCN
models, when calculating the loss, sparse 3D FCN models
take only annotated voxels into consideration and perform
back-propagation to optimize the networks. However, there
are two major issues. (1) The more sparsely one annotates
the data, the worse the performance becomes. In our prelimi-
nary experiments, we use equal-interval annotation (EIA) as
a baseline. Although unseen testing stacks can be segmented
during inference, the performance decreases drastically if
fewer slices are annotated compared with FCNs trained with
full annotation (see Fig. 1(c)). (2) Which slices are most
valuable for annotation? This is not well addressed. A subset
of selected slices should be both informative and diverse so
that the subset would cover typical patterns/topology of 3D
objects and reduce redundancy. Although a series of sample
selection based methods (Yang et al. 2017; Zhou et al. 2017;
Zheng et al. 2019a) were proposed to deal with 2D image
segmentation, for 3D images, this is not well studied.

Another line of related approaches is based on semi-
supervised learning (SSL) (Zhang et al. 2017; Zhou et al.
2019), where abundant and easily-obtainable unannotated
data are utilized for training to boost performance. However,
the focus of conventional SSL-based methods is somewhat
different from our goal to reduce annotation effort: SSL has
an underlying assumption that annotated data should be rep-
resentative enough to cover the true data distribution, but
which data samples should be selected for annotation is ne-
glected in previous work. Besides, selected 3D stacks still
need dense voxel-wise annotation. Our aim is complemen-
tary to SSL-based approaches; we can further reduce anno-
tation effort, and SSL could in turn improve performance by
adding more unannotated data in a later stage.

In this paper, we propose a new framework to adapt an
annotation sparsification strategy into semi-supervised seg-
mentation. For an unannotated 3D image, we select effective
slices with high influence and diversity using a representa-
tive selection algorithm, which allows a considerable relief
of manual annotation. Then we train light-weight networks
using sparsely annotated data to perform segmentation on
the remaining, unannotated slices and obtain pseudo-labels,
which fills the annotation gap in the 3D image. Finally, we
use these pseudo-labels as dense supervision to conduct self-
training with the original training data. To achieve this goal,
we need to address three vital challenges: (1) How to provide
useful clues about the most influential and diverse slices for
manual annotation? (2) How to make the most out of the
sparse annotation and generate high quality pseudo-labels?
(3) How to conduct self-training using dense pseudo-labels?

For the first challenge, we leverage a pre-trained network
to extract image features, and devise a max-cover based
method to select the most representative slices. For the sec-
ond challenge, we observe that the generated pseudo-labels
(PLs) by an FCN with sparse annotation contain noise, and
different types of FCNs possess different characteristics. For
example, inferred PLs from 2D FCNs along the three axes
may be inconsistent with one another, but 2D FCNs have a
quite large field of view thus large structures could be rec-
ognized. In contrast, inferred PLs from 3D FCNs are much

smoother since 3D image information could be utilized, but
some regions-of-interest may be missing due to their limited
field of view. Hence, we adopt the predictions of both 2D
and 3D FCNs as supervision for better knowledge distilla-
tion. Such heterogeneous predictions are likely to get closer
to the correct labels of unannotated slices, and thus the per-
formance gap can be reduced accordingly. For the third chal-
lenge, we utilize a self-training based network to combine
the merits of multiple sets of PLs, which offers the benefits
of weakening noisy labels and reducing over-fitting.

In summary, our contribution in this work is three-fold.
(a) We propose a new training strategy based on represen-
tative slice selection and self-training for 3D medical im-
age segmentation. (b) The most representative slices are se-
lected for manual annotation, thus saving annotation effort.
(c) Self-training using heterogeneous pseudo-labels bridges
the performance gap with respect to full annotation. Exten-
sive experiments show that using only less than 20% anno-
tated slices, our model achieves comparative results as fully-
supervised methods.

A Brief Review of Related DL Techniques
3D Medical Image Segmentation. An array of 2D (Ron-
neberger, Fischer, and Brox 2015; Wolterink et al. 2017;
Shen et al. 2017) and 3D (Çiçek et al. 2016; Yu et al. 2017;
Liang et al. 2019; Zheng et al. 2019b) FCNs has been devel-
oped that significantly improved segmentation performance
on various 3D medical image datasets (Pace et al. 2015;
Shen et al. 2017). Scale-level (Ronneberger, Fischer, and
Brox 2015) and block-level (He et al. 2016; Huang et al.
2017) skip-connections allow substantially deeper architec-
ture design and ease the training by alleviating the vanishing
gradient problem. Other advances such as batch normaliza-
tion (Ioffe and Szegedy 2015) and deep supervision (Lee et
al. 2015a) also help network training and optimization. In
this study, we utilize these advanced techniques in our 2D
and 3D FCNs for segmentation.
Sparse Medical Image Annotation. Sparse annotation was
not well addressed in medical image segmentation until re-
cently. Where to annotate and how to utilize sparse annota-
tion for training are two basic issues. Active learning (AL)
based frameworks (Yang et al. 2017; Zhou et al. 2017) re-
duced annotation effort by incrementally selecting the most
informative samples from unlabeled sets and querying hu-
man experts for annotation iteratively. Recently, (Zheng et
al. 2019a) decoupled these two iterative steps in AL frame-
works by applying unsupervised networks to encode input
samples and extract latent vectors, and ordering the sam-
ples based on their representativeness in one-shot, achiev-
ing competitive performance. These approaches succeeded
in dealing with 2D images because repeated patterns appear
over and over again (e.g., cells, glands, etc), but are not po-
tent enough for a large portion of 3D image datasets which
have more complex object topology and fewer samples (see
Fig. 1(a)). A pioneer work (Çiçek et al. 2016) shed some
light on sparse 3D FCN training using 2D annotated slices
and yielded good performance. Our framework combines
these previous methods to address the two basic issues for
sparse annotation to obtain good segmentation performance.
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Figure 2: An overview of our proposed framework. (a) Representative slice selection. (b) Manual annotation and Pseudo-label
(PL) generation from the base-models using sparse annotation. (c) Meta-model training using PLs.

Weakly-/Semi-Supervised Learning. Weakly-supervised
learning (WSL) based methods explore various weak an-
notation forms (e.g., points (Bearman et al. 2016), scrib-
bles (Lin et al. 2016), and bounding boxes (Khoreva et
al. 2017; Zhao et al. 2018; Yang et al. 2018)). But, none
of them is suitable for a large portion of 3D medical im-
ages. For example, not all cardiovascular substructures are
convex and an object could be wrapped by another (e.g.,
myocardium and blood pool in Fig. 1(a)), or objects are
closely packed and are in arbitrary orientation (e.g., neu-
ron cells in Fig. 1(a)). Semi-supervised learning (SSL) based
methods exploit additional unannotated images to improve
segmentation performance. The self-training approach is
the earliest SSL one and recently became popular in DL
schemes (Zhang et al. 2017; Radosavovic et al. 2018). It uses
the predictions of a model on unlabeled data to re-train the
model itself iteratively. Another array of work is based on
multi-view learning (Blum and Mitchell 1998) which splits
a dataset based on different attributes and utilizes the agree-
ment among different learners. (Zhou et al. 2019) incorpo-
rated multi-view learning using multi-view properties of 3D
medical data to achieve better performance. However, a ma-
jor limitation of WSL/SSL based approaches is that they still
require annotation of a certain amount of full 3D stacks.

We embed a new annotation sparsification strategy into
the self-training scheme to address the problem. It further
makes use of the underlying assumptions of self-training:
the independent and identical distribution of labeled and
unlabeled data, and the smoothness of manifold in high-
dimensions (Niyogi 2013). Consequently, sparse annotation
in each 3D stack would produce accurate pseudo-labels.

Methodology

We propose a new annotation sparsification approach which
saves considerable annotation effort via representative slice
selection from each 3D stack and improves segmentation
performance via self-training using pseudo-labels (PLs).
Problem Formulation: Under the fully-supervised setting,

given a set of 3D images, X = {Xi}mi=1, and their corre-
sponding ground-truth Y = {Yi}mi=1, consider a 3D image
Xi ∈ RW×H×D with its associated ground-truth C-class
segmentation masks, Yi ∈ {1, 2, . . . , C}W×H×D, where
W , H , and D are the numbers of voxels along the x-, y-,
and z-axis of Xi respectively and Y(w,h,d)

i = [Y(w,h,d,c)
i ]c

provides the label of voxel (w, h, d) as a one-hot vector.
Conventionally, when training a 2D FCN, we can split a

3D volume Xi along an orthogonal direction. For example,
{X V

i = {IVi,n}NV
n=1}V ∈{xy,xz,yz}, where NV is the num-

ber of 2D slices obtained from plane V and IVi,n is a 2D
slice from plane V (e.g., Ixyi,n ⊂ RW×H and NV = D if
V = xy). Similarly, {YVi = {YV

i,n}NV
n=1}V ∈{xy,xz,yz}. If

the 3D data are approximate-isotropic, we can split each vol-
ume in the xy, xz, and yz planes respectively, and get three
sets of 2D slices. Each set S = {(I�,Y�)}L�=1, where L is
the total number of slices. The goal of segmentation is to de-
sign a function H so that Ŷ� = H(I�) is close to Y�. The
parameters θH of H are learned to minimize the segmenta-
tion loss Lseg(I�,Y�) = −∑

Y�log Ŷ� on the whole set
S. Under the sparse annotation setting, only a subset S′ ⊆ S
is annotated, and the objective is:

min
θH

1

|S′|
∑

I�∈S′
Lseg(I�,Y�) (1)

When training a 3D FCN, the parameters θH are opti-
mized by minimizing the loss Lseg(Xi,Yi) = −∑Yilog Ŷi
over the whole set {(Xi,Yi)}mi=1. Under the sparse annota-
tion setting, only a part of all the voxels is annotated. Fol-
lowing (Çiçek et al. 2016), the objective function is:

min
θH

1

|M(X)|
∑

Xi∈X
Lseg(Xi,Yi) · M(Xi) (2)

where M(Xi) = 1Δ(v) and Δ(v) = 1 if and only if a voxel
v in Xi is annotated (otherwise, Δ(v) = 0). Similarly, it is
for M(X) in the dataset. As shown in Fig. 2, our proposed
approach consists of three steps:
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• Step I: Representative Slice Selection. Pre-train an auto-
encoder (AE) using {X V

i }mi=1, and extract the compressed
vector from AE as the feature vector of each input 2D slice
IVi,n. Select image slices according to their representative-
ness captured by the feature vectors.

• Step II: Pseudo-Label (PL) Generation. Train 2D and 3D
base-models by Eq. (1) and Eq. (2) using sparsely anno-
tated 2D slices. The trained base-models are applied to
{Xi}mi=1 to get corresponding PLs {ŶVi }V ∈{xy,xz,yz,3D}.

• Step III: FCN self-training. A 3D FCN is trained with
noisy PLs to learn from multiple-views of the 3D medical
images.

Representative Selection

Intuitively, one could annotate 3D images by a sub-volume
based method or a slice based method. The former method
could be impractical in real-world applications for several
reasons: (1) human can only annotate 2D slices well; (2)
even if a sub-volume is selected, experts have to choose a
certain plane (e.g., the xy, xz, or yz plane) and annotate
consecutive 2D slices one by one, where a lot of redundancy
may exist (e.g., see Fig. 1(a)). The latter method, proposed in
(Çiçek et al. 2016), trains a sparse 3D FCN model with some
annotated 2D slices, which is more practical and expert-
friendly. Considering that regions-of-interest have various
topology shapes and feature patterns in different views of
3D data, we hence propose to select some 2D slices from
each orthogonal plane for manual annotation.

Feature Extractor with a Pre-trained VGG-19. Auto-
encoder (AE) can be used to learn efficient data encoding in
an unsupervised manner (Rumelhart, Hinton, and Williams
1986). It consists of two sub-networks: an encoder that takes
an input sample x and compresses it into a latent representa-
tion z, and a decoder that reconstructs the sample from the
latent representation back to the original space.

z ∼ Enc(x) = qφ(z|x), x̃ ∼ Dec(z) = pψ(x|z) (3)

where {φ, ψ} are network parameters and the optimization
objective is to minimize the reconstruction loss, Lrec, on the
given dataset X:

ψ∗, φ∗ = argmin
ψ,φ

Lrec(x, (φ ◦ ψ)x). (4)

To accelerate the training process and extract rich fea-
tures, in our implementation, we use the VGG-19 (Simonyan
and Zisserman 2014) model pre-trained on ImageNet (Deng
et al. 2009) as the backbone network. To further facilitate the
customized dataset, we fine-tune the model with our medi-
cal images. More specifically, we tile a few fully-connected
(FC) layers to the last convolution layer of the VGG-19 net-
work, and add a light-weight decoder to form an AE. The pa-
rameters of the convolution layers of the VGG-19 are fixed,
and the remaining network is fine-tuned with the combina-
tion of images from the three orthogonal planes.

Representative Slice Selection. Having trained the fea-
ture extractor, we feed an image I to the encoder model,
and the output feature vector, If , of the last FC layer can be

viewed as a high-level representation of the image I . We can
measure the similarity between two images Ii and Ij as:

sim(Ii, Ij) = Cosine similarity(Ifi , I
f
j ) (5)

To measure the representativeness of a set Sx of images for
a single image I in another set Sy , we define:

f(Sx, I) = max
Ii∈Sx

sim(Ii, I) (6)

It means I is represented by its most similar image Ii in Sx.
In our scenario, we need to find a subset SVi of slices

from every 3D stack along each plane (i.e., SVi ⊂ X V
i =

{IVi,n}NV
n=1, where V ∈ {xy, xz, yz}) such that SVi is the

most representative for the corresponding X V
i . To measure

how representative SVi is for X V
i , we define the coverage

score of SVi for X V
i as:

F (SVi ,X V
i ) =

∑

Ij∈XV
i

f(SVi , Ij) (7)

This forms a maximum set cover problem which is known
to be NP-hard. Its best possible polynomial time approxima-
tion solution is based on a greedy method with an approxi-
mation ratio 1 − 1

e (Hochbaum 1997). Therefore, we itera-
tively choose one image slice from X V

i and put it into SVi :

I∗ = argmax
I∈XV

i \SV
i

(F (SVi ∪ {I},X V
i )− F (SVi ,X V

i )) (8)

This selection process essentially sorts the image slices
in X V

i based on their representativeness decreasingly. We
record the order of the selected slices. The better represen-
tative slices have higher priorities for manual annotation.

Under the equal-interval annotation (EIA) setting, we se-
lect slices at an equal distance, i.e., labeling one out of every
k slices, denoted by sk. The number of EIA-selected slices
along the z-axis is K = �D/sk	, where D is the number of
voxels along the z-axis. Given the same annotation budget,
sk, in our representative annotation (RA) setting, we select
the K most representative slices along the z-axis.

Pseudo-Label Generation

After obtaining sparse annotation from human experts, fol-
lowing (Çiçek et al. 2016), we can train a sparse 3D FCN
by Eq. (2). Although 3D FCNs can better utilize 3D im-
age information, they adopt a sliding-window strategy to
avoid the out of memory problem, thus having a relatively
small field of view. Compared with 3D FCNs, 2D FCNs
take 2D images as input and can be much deeper and have
a larger field of view using the same amount of compu-
tational resources. Hence, we propose to utilize 2D FCNs
as well (by Eq. (1)), which make the most out of multi-
ple sets of 2D slices to capture heterogeneous features from
different views of 3D data. Naturally, we can train three
2D FCNs on three sets of 2D slices separately. The draw-
backs are: (1) multiple versions of 2D models are trained,
and (2) each 2D model only observes the 3D volume from
a specific view and does not explore full geometric distri-
bution of the 3D data. Thus, we treat the three 2D slice
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Figure 3: Pseudo-labels generated with an annotation budget
s20. (a) A raw image X1; (b) manual annotation Y1; (c)-(f)
{ŶV1 }V ∈{xy,xz,yz,3D}, respectively.

sets {{X V
i }V ∈{xy,xz,yz}}mi=1 equally. In each forward pass

of a 2D FCN model, it randomly chooses a stack Xi and
a plane V , and crops a patch from a slice as input. This
resembles data augmentation that forces the 2D model to
learn more from the 3D data. During inference, we apply the
trained 2D FCNs to all the sets of 2D slices respectively, and
obtain three sets of predictions in the three orthogonal di-
rections respectively, i.e., {{ŶVi }V ∈{xy,xz,yz}}mi=1. Besides,
the trained sparse 3D FCN can produce the fourth set of pre-
dictions, {Ŷ3D

i }mi=1. We use all these as pseudo-labels (PLs)
for the next step. As shown in Fig. 3, PLs generated with
sparse annotation contain noise, and different types of FCNs
possess different characteristics: PLs from the 2D FCNs are
inconsistent in the third orthogonal direction, but more struc-
tures could be recognized; PLs from the 3D FCN are much
smoother, but some regions-of-interest may be missing.

Self-Training with Pseudo-Labels

In the previous steps, we obtain four sets of PLs, Ŷ =

{{ŶVi }V ∈{xy,xz,yz,3D}}mi=1 for the training set X =
{Xi}mi=1. Here we aim to train a meta-model that summa-
rizes the noisy PLs and attains better prediction accuracy.

Following the practice in (Zheng et al. 2019c), our meta-
model is designed as a Y-shape DensVoxNet (Yu et al. 2017)
(see Fig. 4), which takes two pieces of input, Xi and A(Ŷi).
A(·) is the averaging function that forms a compact repre-
sentation of Ŷi of the PLs. This representation shows the
image areas where the PLs hold agreement or disagreement
(i.e., average prediction values close to 1 or 0). In addition,
using the average of all the PLs of Xi to form part of the
meta-model’s input can be viewed as a preliminary ensemble
of the base-models and ease the training of the meta-model.

Rather than defining a fixed learning objective for the
meta-model training, we train the meta-model in two main
stages: (1) Initially, we train the meta-model in order to set
up a near-optimal (or sub-optimal) configuration: The meta-
model is aware of all the available PLs, and its position in the
hypothesis space is influenced by the raw image and the PL
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Figure 4: The meta-model structure. For readability, BN and
ReLU are omitted, the number of channels is given above
each unit, and the number of Conv units in each DenseBlock
is shown in the block.

data distribution; (2) In the second training stage, we train
the meta-model to fit the nearest PLs to help the training
process converge. More technical details are given below.

In the first training stage, we seek to minimize the overall
cross-entropy loss for all the image samples with respect to
all the PLs:

min
θH

m∑

i=1

∑

V

�mce(θH(Xi, A(Ŷi)), ŶVi ), (9)

where θH is the meta-model’s parameters and �mce is a
multi-class cross-entropy loss. In every training iteration, for
one image sample Xi, we randomly choose a set of PLs from
ŶVi (V ∈ {xy, xz, yz, 3D}) and set it as the “ground truth”
for Xi in the current training iteration. Randomly choosing
PLs for the model to fit ensures the supervision signals not
to impose any bias towards any base-model, and allows im-
age samples with diverse PLs to have a better chance to be
influenced by other image samples.

In the second training stage, the meta-model itself chooses
the nearest PLs to fit (based on its current model parame-
ters), and updates its model parameters based on its current
choices. This nearest-neighbor-fit (NN-fit) process iterates
until the meta-model fits the nearest neighbors well enough.
Since the overall training loss is based on cross-entropy, to
make the NN-fit have direct effects on the convergence of the
model training, we use cross-entropy to measure the “dis-
tance” between a meta-model’s output and a PL.

Experiments

To show the effectiveness and efficiency of our new frame-
work, we evaluate it on two public datasets: the HVSMR
2016 Challenge dataset (Pace et al. 2015) and the mouse
piriform cortex dataset (Lee et al. 2015b).
3D HVSMR Dataset. The HVSMR 2016 dataset consists of
10 3D MR images (MRIs) for training and another 10 MRIs
for testing. The goal is to segment myocardium and great
vessel (blood pool) in cardiovascular MRIs. The ground
truth of the testing data is kept secret by the organizers for
fair comparison. The results are evaluated using three crite-
ria: Dice coefficient, average distance of boundaries (ADB),
and symmetric Hausdorff distance. Finally, an overall score
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Table 1: Quantitative results on the HVSMR 2016 dataset. DVN∗: For fair comparison, we re-implement it and achieve better
performance than what was reported in the original paper, and we use it as the backbone in all our experiments. The up arrows
(↑) indicate that higher values are better for the corresponding metrics, and vice versa.

Model Annotation
budget

Myocardium Blood Pool Overall
Score (↑)Dice (↑) ADB[mm] (↓) Hausdorff[mm] (↓) Dice (↑) ADB[mm] (↓) Hausdorff[mm] (↓)

3D U-Net (Çiçek et al. 2016)

Full

0.694 1.461 10.221 0.926 0.940 8.628 -0.419
VoxResNet (Chen et al. 2018) 0.774 1.026 6.572 0.929 0.981 9.966 -0.202

Wolterink et al. (Wolterink et al. 2017) 0.802 0.957 6.126 0.926 0.885 7.069 -0.036
DVN (Yu et al. 2017) 0.821 0.964 7.294 0.931 0.938 9.533 -0.161

DVN∗ 0.809 0.785 4.121 0.937 0.799 6.285 0.13
Sparse DVN∗ w/ RA

s5
0.792 1.024 6.906 0.932 0.898 7.396 -0.095

Sparse DVN∗ w/ RA+ST (Ours) 0.830 0.678 3.614 0.937 0.770 7.034 0.166

is computed as
∑
class(

1
2Dice − 1

4ADB − 1
30Hausdorff ) for

ranking, which reflects the overall accuracy of the results.
Mouse Piriform Cortex Dataset. The mouse piriform cor-
tex dataset aims to segment neuron boundaries in serial sec-
tion EM images. This dataset contains 4 stacks of 3D EM
images. Following the setting in (Lee et al. 2015b; Shen et al.
2017), we split the dataset into the training set (the 2nd, 3rd,
and 4th stacks) and testing set (the 1st stack), which are fixed
throughout all experiments. Also, as in (Lee et al. 2015b;
Shen et al. 2017), the results are evaluated using the Rand F-
score (the harmonic mean of the Rand merge score and the
Rand split score).
Implementation Details. Our feature extractor network is
implemented with PyTorch. The decoder is initialized with
a Gaussian distribution (μ = 0, σ = 0.01) and trained with
2k epochs (with batch size 128; input sizes 1282 and 2562

for the HVSMR and mouse piriform cortex datasets, respec-
tively). All our FCNs are implemented using TensorFlow.
The weights of our 2D base-models are initialized using the
strategy in (He et al. 2015). The weights of our 3D base-
model and meta-model are initialized with a Gaussian distri-
bution (μ = 0, σ = 0.01). All our networks are trained using
Adam (Kingma and Ba 2015) with β1 = 0.9, β2 = 0.999,
and ε = 1e-10 on an NVIDIA Tesla V100 graphics card
with 32GB GPU memory. The initial learning rates are all
set as 5e-4. Our 2D base-models decrease the learning rates
to 5e-5 after 10k iterations; our 3D base-model and meta-
model adopt the “poly” learning rate policy with the power
variable equal to 0.9 (Yu et al. 2017). To leverage the limited
training data, standard data augmentation techniques (i.e.,
image flipping along the axial planes and random rotation
with 90, 180, and 270 degrees) are employed to augment the
training data. Due to large intensity variance among differ-
ent images, all the images are normalized to have zero mean
and unit variance before feeding to the networks.

Main Experimental Results

Our approach consists of two major components: represen-
tative annotation (RA) and self-training (ST). To evaluate
the effectiveness of our proposed strategy, we first compare
our approach using sparse annotation (denoted by RA+ST)
with the state-of-the-art methods using full annotation on
the two datasets. Then, we demonstrate the robustness of
our method under different annotation budgets (e.g., sk, k =
5, 10, 20, 40, 80 for the HVSMR dataset) comparing to the
state-of-the-art DenseVoxNet (DVN) (Yu et al. 2017).

Figure 5: Evaluation of several methods on the HVSMR
2016 dataset with different annotation budgets sk. Given an
sk, RA and EIA select different sets of slices for annota-
tion and FCN training. “Sparse DVN∗ w/ RA” and “Sparse
DVN∗ w/ EIA” are baselines. The dashed line is the perfor-
mance using the fully supervised DVN∗.

Table 1 gives the segmentation results on the HVSMR
2016 dataset. Note that among the state-of-the-art meth-
ods on the leaderboard, DVN achieves the highest Dice
score and outdoes others on the overall score. Our re-
implementation DVN∗ of DVN is an enhanced version and
outperforms other methods by a large margin. We use DVN∗
as the baseline for all our experiments, for fair comparison.
First, compared with the fully supervised DVN∗, we obtain
a significant improvement on nearly all the metrics, which
demonstrates that our method is more effective. More im-
portantly, if we measure annotation effort using the num-
ber of voxels selected as representatives by our method, s5
is equivalent to ∼ 60% of all voxels, which shows the ef-
ficiency of our method. Compared with sparse 3D DVN∗,
our method bridges the performance gap between sparse
and full annotations. Second, our approach can further save
more annotation effort. We conduct experiments with differ-
ent annotation ratios; the results are shown in Fig. 5. One
can note that the performance gap between the sparse- and
fully-annotated 3D DVN∗ is reduced by our approach with
even sparser annotation. Our RA+ST-s40 and RA+ST-s20
closely approach or outperform the fully supervised DVN∗,
i.e., our method is able to save up to ∼ 85% of voxel-wise
annotation. Some qualitative results are shown in Fig. 6. One
can see that our method (RA+ST) achieves superior perfor-
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Figure 6: Some visual qualitative results on the HVSMR 2016 dataset (some errors are marked by arrows). (a) Results of the
2D and 3D base-models using annotated slices selected by RA. After self-training using pseudo-labels, our approach produces
more accurate results which are comparative to that generated by 3D FCN with full annotation. (b) By comparing our strategy
RA+ST (the top row of (b)) with EIA+ST (the bottom row of (b)), using slices selected by RA yields superior performance. (c)
We show some slices selected by RA (for an s5 budget) from a 3D stack with the xy-plane. After being projected to 2D space
by t-SNE, each point represents one selected slice and the consecutive points form a curve. Selected slices are marked with blue
dots and those shown along with thumbnails are labeled with their slice IDs. We also indicate the index positions of the slices
selected by RA along the z-axis, as shown by the vertical line on the left of (c) that represents the z-axis of the stack.

Table 2: Quantitative results on the mouse piriform cortex
dataset. The up arrow (↑) indicates that higher values are
better for the V RandFscore metric.

Method Anno. budget V RandFscore (↑)
N4 (Ciresan et al. 2012)

Full

0.9304
VD2D (Lee et al. 2015b) 0.9463

VD2D3D (Lee et al. 2015b) 0.9720
M2FCN (Shen et al. 2017) 0.9866

DVN∗ 0.9959
DVN∗

s4
0.9970

DVN∗ w/ RA+ST (Ours) 0.9971

DVN∗
s16

0.9940
DVN∗ w/ RA+ST (Ours) 0.9961

DVN∗
s64

0.9951
DVN∗ w/ RA+ST (Ours) 0.9957

mance than the 2D and 3D base-models, and approaches that
of the fully supervised FCN (using more annotation).

We further evaluate our method on the mouse piriform
cortex dataset, using similar experimental settings as those
for the HVSMR 2016 dataset. Table 2 shows such results.
First, we compare our method with an array of 3D FCN-
based models, which are all trained with full annotation. Ta-
ble 2 demonstrates that our method with sparse annotation
surpasses each such single 3D FCN with full annotation.
Second, one can see that with different annotation ratios,
the performance gap is reduced consistently. In particular,
our RA+ST-s64 < DVN∗-Full < RA+ST-s16, that is, our
method can save up to ∼ 80% of voxel-wise annotation.

Analysis and Discussions

On Representative Annotation (RA). As shown in Fig. 5,
we compare our strategy with a different annotation strategy:
equal-interval annotation (EIA). One can see that “RA+ST”

is better than “EIA+ST”, which demonstrates that our rep-
resentative slice selection algorithm helps select more in-
formative and diverse samples to represent the data (see
Fig. 6(c)). Given the same annotation budget, these RA-
selected slices are more valuable for expert annotation.
On Self-Training. As shown in Fig. 5, by comparing
“Sparse DVN∗ w/ RA+ST” with “Sparse DVN∗ w/ RA”,
and “Sparse DVN∗ w/ EIA+ST” with “Sparse DVN∗ w/
EIA”, one can see that utilizing pseudo-labels (PLs) for
self-training, the performance is significantly improved. It
demonstrate that though PLs generated from sparse annota-
tion may be noisy, they fill the spatial gaps of voxel-wise
supervision in the 3D stack. Thus our self-training utilizes
the PLs and bridges the final performance gap with respect
to full annotation.

Conclusions

In this paper, we proposed a new annotation sparsification
strategy for 3D medical image segmentation based on rep-
resentative annotation and self-training. The most valuable
slices are selected for manual annotation, thus saving anno-
tation effort. Heterogeneous 2D and 3D FCNs are trained us-
ing sparse annotation, which generate diverse pseudo-labels
(PLs) for unannotated voxels in 3D data. Self-training utiliz-
ing PLs further improves the segmentation performance and
bridges the performance gap with respect to full annotation.
Our extensive experiments on two public datasets show that
using less than 20% annotated data, our new strategy obtains
comparative results with fully supervised training.
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