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Abstract

We investigate the piecewise-stationary combinatorial semi-
bandit problem. Compared to the original combinatorial
semi-bandit problem, our setting assumes the reward distri-
butions of base arms may change in a piecewise-stationary
manner at unknown time steps. We propose an algorithm,
GLR-CUCB, which incorporates an efficient combinatorial
semi-bandit algorithm, CUCB, with an almost parameter-free
change-point detector, the Generalized Likelihood Ratio Test
(GLRT). Our analysis shows that the regret of GLR-CUCB is
upper bounded by O(√NKT log T ), where N is the num-
ber of piecewise-stationary segments, K is the number of
base arms, and T is the number of time steps. As a comple-
ment, we also derive a nearly matching regret lower bound
on the order of Ω(

√
NKT ), for both piecewise-stationary

multi-armed bandits and combinatorial semi-bandits, using
information-theoretic techniques and judiciously constructed
piecewise-stationary bandit instances. Our lower bound is
tighter than the best available regret lower bound, which is
Ω(
√
T ). Numerical experiments on both synthetic and real-

world datasets demonstrate the superiority of GLR-CUCB
compared to other state-of-the-art algorithms.

1 Introduction

The multi-armed bandit (MAB) problem, first proposed
by Thompson (1933), has been studied extensively in the
statistics and machine learning communities, as it models
many online decision making problems such as online rec-
ommendation (Li, Karatzoglou, and Gentile 2016), compu-
tational advertising (Tang et al. 2013), and crowdsourcing
task allocation (Hassan and Curry 2014). The classical MAB
is modeled as an agent repeatedly pulling one of K arms and
observing the reward generated, with the goal of minimiz-
ing the regret which is the difference between the reward
of the optimal arm in hindsight and the reward of the arm
chosen by the agent. This classical problem is well under-
stood for both stochastic (Lai and Robbins 1985) and adver-
sarial settings (Auer et al. 2002). The stochastic setting is
when the reward of each arm is generated from a fixed dis-
tribution, and it is well known that the problem-dependent
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lower bound is of order Ω(log T ) (Lai and Robbins 1985),
where T is the number of time steps. Several algorithms
have been proposed and proven to achieve O(log T ) re-
gret (Agrawal and Goyal 2012; Auer, Cesa-Bianchi, and Fis-
cher 2002). The adversarial setting is when at each time
step the environment generates the reward in an adversar-
ial manner, whose minimax regret lower bound is of order
Ω(

√
T ). Several algorithms achieving order-optimal (up to

poly-logarithm factors) regret have been proposed in recent
years (Hazan and Kale 2011; Bubeck, Cohen, and Li 2018;
Li, Chen, and Giannakis 2019).

Many real-world applications, however, have a combina-
torial nature that cannot be fully characterized by the clas-
sical MAB model. For example, online movie sites aim
to recommend multiple movies to the users to maximize
their utility under some constraints (e.g., recommend at
most one movie for each category). This phenomenon mo-
tivates the study of combinatorial semi-bandits (CMAB),
which aims to identify the best super arm, a set of base
arms with the highest aggregated reward. Several algo-
rithms for stochastic CMAB with provable guarantees based
on optimism principle have been proposed recently (Chen,
Wang, and Yuan 2013; Kveton et al. 2015; Combes et al.
2015). All of these algorithms use some oracle to over-
come the curse of dimensionality of the action space for
solving some combinatorial optimization problem at each
iteration. In addition, these algorithms achieve the optimal
O(C log T ) regret upper bound, where C is an instance-
dependent parameter. Adversarial CMAB is also well stud-
ied. Several algorithms achieve optimal regret of order
O(

√
T ) based on either Follow-the-Regularized-Leader or

Follow-the-Perturbed-Leader, both of which are general
frameworks for adversarial online learning algorithm de-
sign (Hazan 2016). Moreover, one recent study has devel-
oped an algorithm that is order-optimal for both stochastic
and adversarial CMAB (Zimmert, Luo, and Wei 2019).

Although both stochastic and adversarial CMAB are well-
studied, understanding of the scenario lying in the “mid-
dle” of these two settings is still limited. Such a “middle”
setting where the reward distributions of base arms slowly
change over time may be a more realistic model in many
applications. For instance, in online recommendation sys-
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tems, users’ preference is unlikely to be either time-invariant
or to change significantly and frequently over time. Thus
in this case it would be too ideal to assume the stochastic
CMAB model and too conservative to assume the adversar-
ial CMAB model. Similar situations appear in web search,
online advertisement, and crowdsourcing (Yu and Mannor
2009; Pereira et al. 2018; Vempaty, Varshney, and Varshney
2014). As such, we investigate a setting lying between these
two standard CMAB models, namely piecewise-stationary
combinatorial semi-bandit, which we will define formally
in Section 2. Piecewise-stationary CMAB is a natural gen-
eralization of the piecewise-stationary MAB model (Hart-
land et al. 2007; Kocsis and Szepesvári 2006; Garivier and
Moulines 2011), and can be interpreted as an approximation
to the slow-varying CMAB problem. Roughly, compared
to the stochastic CMAB, we assume reward distributions
of base arms remain fixed for certain time periods called
piecewise-stationary segments, but can change abruptly at
some unknown time steps, called change-points.

Previous works on piecewise-stationary MAB may
be divided into two categories: passively adaptive ap-
proaches (Garivier and Moulines 2011; Besbes, Gur, and
Zeevi 2014; Wei and Srivatsva 2018) and actively adaptive
approaches (Cao et al. 2019; Liu, Lee, and Shroff 2018;
Besson and Kaufmann 2019; Auer, Gajane, and Ortner
2019). Passively adaptive approaches make decisions based
on the most recent observations and are unaware of the
underlying distribution changes. On the contrary, actively
adaptive approaches incorporate a change-point detector
subroutine to monitor the reward distributions, and restart
the algorithm once a change-point is detected. Numerous
empirical experiments have shown that actively adaptive ap-
proaches outperform passively adaptive approaches (Mellor
and Shapiro 2013), which motivates us to adopt an actively
adaptive approach.

Our main contributions include the following:

• We propose a simple and general algorithm for piecewise-
stationary CMAB, named GLR-CUCB, which is based
on CUCB (Chen, Wang, and Yuan 2013) with a novel
change-point detector, the generalized likelihood ratio
test (GLRT) (Besson and Kaufmann 2019). The advan-
tage of GLRT change-point detector is that it is almost
parameter-free and thus easy to tune compared to previ-
ously proposed change-point detection methods used in
nonstationary MAB, such as CUSUM (Liu, Lee, and Shroff
2018) and SW (Cao et al. 2019).

• For any combinatorial action set, we derive the problem-
dependent regret bound for GLR-CUCB under mild
assumptions (see Section 4). When the number of
change-points N is known beforehand, the regret of
GLR-CUCB is upper bounded by O(C1NK2 log T +
C2

√
NKT log T ) (nearly order-optimal within poly-

logarithm factor in T ), where K is number of base
arms. When N is unknown, the algorithm achieves
O(C1NK2 log T + C2N

√
KT log T ). Here, C1 and C2

are problem-dependent constants which do not depend on
T , N , or K.

• We derive a tighter minimax lower bound for both

piecewise-stationary MAB and piecewise-stationary
CMAB on the order of Ω(

√
NKT ). Since piecewise-

stationary MAB is a special instance of piecewise-
stationary CMAB in which every super arm is a single
arm, thus any minimax lower bound holds for piecewise-
stationary MAB also holds for piecewise-stationary
CMAB. To the best of our knowledge, this is the best
existing minimax lower bound for piecewise-stationary
CMAB. Previously, the best available lower bound is
Ω(

√
T ) (Garivier and Moulines 2011), which does not

depend on N or K.

• We demonstrate that GLR-CUCB performs significantly
better than state-of-the-art algorithms through experi-
ments on both synthetic and real-world datasets.

The remainder of this paper is organized as follows: the
formal problem formulation and some preliminaries are in-
troduced in Section 2, then the proposed GLR-CUCB algo-
rithm in Section 3. We derive the upper bound on the regret
of our algorithm in Section 4, and the minimax regret lower
bound in Section 5. Section 6 gives our experiment results.
Finally, we conclude the paper. Due to the page limitation,
we postpone proofs and additional experimental results to
the appendix1.

2 Problem Formulation and Background

In this section, we start with the formal definition of
piecewise-stationary combinatorial semi-bandit as well as
some technical assumptions in Section 2.1. Then, we intro-
duce the GLR change-point detector used in our algorithm
design, and its advantage in Section 2.2.

2.1 Piecewise-Stationary Combinatorial
Semi-Bandits

A piecewise-stationary combinatorial semi-bandit is charac-
terized by a tuple (K,F , T , {fk,t}k∈K,t∈T , rμt (St)). Here,
K = {1, . . . ,K} is the set of K base arms; F ⊆ 2K is
the set of all super arms; T = {1, . . . , T} is a sequence
of T time steps; fk,t is the reward distribution of arm k at
time t with mean μk,t and bounded support within [0, 1];
rμt

(St) : F × [0, 1]K �→ R is the expected reward function
defined on the super arm St and mean vector of all base arms
μt := [μ1,t, μ2,t, . . . , μK,t]

� at time t. Like Chen, Wang,
and Yuan (2013), we assume the expected reward function
rμ (S) satisfies the following two properties:

Assumption 2.1 (Monotonicity). Given two arbitrary mean
vectors μ and μ′, if μk ≥ μ′

k, ∀k ∈ K, then rμ (S) ≥
rμ′ (S).

Assumption 2.2 (L-Lipschitz). Given two arbitrary mean
vectors μ and μ′, there exists an L < ∞ such that
|rμ (S)− rμ′ (S)| ≤ L‖PS(μ − μ′)‖2, ∀S ∈ F , where
PS(·) is the projection operator specified as PS(μ) =

[μ1I{1 ∈ S}, . . . , μkI{k ∈ S}, . . . , μKI{K ∈ S}]� in
terms of the indicator function I{·}.

1https://arxiv.org/abs/1908.10402
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In the piecewise i.i.d. model, we define N , the number of
piecewise-stationary segments in the reward process, to be

N = 1 +

T−1∑
t=1

I{∃k ∈ K s.t. fk,t = fk,t+1}.

We denote these N − 1 change-points as ν1, ν2, . . . , νN−1

respectively, and we let ν0 = 0 and νN = T . For each
piecewise-stationary segment t ∈ [νi−1 + 1, νi], we use
f i
k and μi

k to denote the reward distribution and the ex-
pected reward of arm k on the ith piecewise-stationary seg-
ment, respectively. The vector encoding the expected re-
wards of all base arms at the ith segment is denoted as
μi = [μi

1, · · · , μi
K ]�, ∀i = 1, · · · , N . Note that when a

change-point occurs, there must be at least one arm whose
reward distribution has changed, however, the rewards dis-
tributions of all base arms do not necessarily change.

For a piecewice-stationary combinatorial semi-bandit
problem, at each time step t, the learning agent chooses a
super arm St ∈ F to play based on the rewards observed
up to time t. When the agent plays a super arm St, the
reward {XIt}It∈St of base arms contained in super arm
St are revealed to the agent and the reward of super arm
Rt(St) as well. We assume that the agent has access to an α-
approximation oracle, to carry out combinatorial optimiza-
tion, defined as follows.
Assumption 2.3 (α-approximation oracle). Given a mean
vector μ, the α-approximation oracle Oracleα(μ) out-
puts an α-suboptimal super arm S such that rμ (S) ≥
αmaxS∈F rμ (S).
Remark 2.1. The approximation oracle assumption was first
proposed in Chen, Wang, and Yuan (2013) for the combi-
natorial semi-bandit setting. This assumption is reasonable
since many combinatorial NP-hard problems admit approx-
imation algorithms, which can be solved efficiently in poly-
nomial time (Ausiello, Crescenzi, and Protasi 1995). There
are also many combinatorial problems which are not NP
hard and can be solved efficiently. One example is the top-
m arm identification problem in the bandit setting (Cao et
al. 2015), where any efficient sorting algorithm suffices.

As only an α-approximation oracle is used for optimiza-
tion, it is reasonable to use expected α-approximation cu-
mulative regret to measure the performance of the learning
agent, defined as follows.
Definition 2.4 (Expected α-approximation cumulative re-
gret). The agent’s policy is evaluated by its expected α-
approximation cumulative regret,

R(T ) = E

[
α

T∑
t=1

max
S∈F

rμt
(S)−

T∑
t=1

rμt
(St)

]
,

where the expectation E[·] is taken with respect to the selec-
tion of {St|St ∈ F}.

2.2 Generalized Likelihood Ratio Change-Point
Detector for Sub-Bernoulli Distribution

Sequential change-point detection is a classical problem
in statistical sequential analysis, but most existing works

make additional assumptions on the pre-change and post-
change distributions which might not hold in the bandit
setting (Siegmund 2013; Basseville and Nikiforov 1993).
In general, designing algorithms with provable guarantees
for change-point detection with little assumption on pre-
change and post-change distributions is very challenging.
In our algorithm design, we will use the GLR change-point
detector (Besson and Kaufmann 2019), which works for
any sub-Bernoulli distribution. Compared to other existing
change-point detectors used in piecewise-stationary MAB,
the GLR change-point detector has less parameters to be
tuned and needs less prior knowledge for the bandit instance.
Specifically, GLR change-point detector only needs to tune
the threshold δ, and does not require the smallest change
in expectation among all change-points. On the contrary,
CUSUM (Liu, Lee, and Shroff 2018) and SW (Cao et al.
2019) both need more parameters to be tuned and need to
know the smallest magnitude among all change-points be-
forehand, which limits their practicality.

To define the GLR change-point detector, we need some
more definitions for clarity. A distribution f is said to be sub-
Bernoulli if EX∼f [e

λX ] ≤ eφμ(λ), where μ = EX∼f [X];
φμ(λ) = log(1 − μ − μeλ) is the log moment generating
function of a Bernoulli distribution with mean μ. Notice that
the support of reward distribution fk,t, ∀k ∈ K, t ∈ T is a
subset of the interval [0, 1], thus all {fk,t} are sub-Bernoulli
distributions with mean {μk,t}, due to the following lemma.

Lemma 2.5 (Lemma 1 in Cappé et al. (2013)). Any distri-
bution f with bounded support within the interval [0, 1] is a
sub-Bernoulli distribution that satisfies:

EX∼f [e
λX ] ≤ eφμ(λ).

Suppose we have either a time sequence {Xt}nt=1 drawn
from a sub-Bernoulli distribution for any t ≤ n or two sub-
Bernoulli distributions with an unknown change-point s ∈
[1, n − 1]. This problem can be formulated as a parametric
sequential test:

H0 : ∃f0 : X1, . . . , Xn
i.i.d.∼ f0,

H1 : ∃f0 = f1, τ ∈ [1, n− 1] : X1, . . . , Xτ
i.i.d.∼ f0

and Xτ+1, . . . , Xn
i.i.d.∼ f1.

The GLR statistic for sub-Bernoulli distributions is:

GLR(n) = sup
s∈[1,n−1]

[s× kl(μ̂1:s, μ̂1:n) + (n− s)×

kl (μ̂s+1:n, μ̂1:n)], (1)

where μ̂s:s′ is the mean of the observations collected be-
tween s and s′, and kl(x, y) is the binary relative entropy
between Bernoulli distributions,

kl(x, y) = x log

(
x

y

)
+ (1− x) log

(
1− x

1− y

)
.

If the GLR in Eq. (1) is large, it indicates that hypothesis H1

is more likely. Now, we are ready to define the sub-Bernoulli
GLR change-point detector with confidence level δ ∈ (0, 1).
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Definition 2.6. The sub-Bernoulli GLR change-point detec-
tor with threshold function β(n, δ) is

τ := inf{n ∈ N : sup
s∈[1,n−1]

[s× kl(μ̂1:s, μ̂1:n) + (n− s)

× kl(μ̂s+1:n, μ̂1:n)] ≥ β(n, δ)},

where β(n, δ) = 2Q
(

log(3n
√
n/δ)

2

)
+ 6 log(1 + log(n)),

and Q(·) is the same as in Eq. (13) in Kaufmann and Koolen
(2018).

The pseudo-code of sub-Bernoulli GLR change-point de-
tector is summarized in Algorithm 1 for completeness.

Algorithm 1 Sub-Bernoulli GLR Change-Point Detector:
GLR(X1, · · · , Xn; δ)

Require: observations X1, . . . , Xn and confidence level δ.
1: if sups∈[1,n−1] [s × kl(μ̂1:s, μ̂1:n) + (n − s) ×

kl(μ̂s+1:n, μ̂1:n)] ≥ β(n, δ) then
2: Return True
3: else
4: Return False
5: end if

3 The GLR-CUCB Algorithm

Our proposed algorithm, GLR-CUCB, incorporates an ef-
ficient combinatorial semi-bandit algorithm CUCB (Chen,
Wang, and Yuan 2013) with a change-point detector run-
ning on each base arm (See Algorithm 2). The GLR-CUCB
requires the number of time steps T , the number of base
arms K, uniform exploration probability p, and the confi-
dence level δ as inputs. Let τ denote the last change-point
detection time, and nk denote the number of observations of
base arm k after τ , which are both initialized as zero at the
beginning of the algorithm.

At each time step, the GLR-CUCB first determines if it
will enter forced uniform exploration (to ensure each base
arm collects sufficient samples for the change-point detec-
tion) according to the condition in line 3. If it is in a forced
exploration, a random super arm St that contains a (line 4)
is played, to ensure sufficient number of samples are col-
lected for each base arm. Otherwise, the next super arm
St to be played is determined by the α-approximation or-
acle Oracleα(·) (line 6) given the UCB indices (line 19).
Then, the learning agent plays the super arm St, and gets
the reward Rt (St) of the super arm St and the rewards
{XIt}It∈St of the base arm It’s that are contained in the
super arm St (line 8). In the next step, the algorithm up-
dates the statistics for each base arm (lines 10-11) in order
to run the GLR change-point detector (Algorithm 1) with
confidence level δ (line 12). If the GLR change-point detec-
tor detects a change in distribution for any of the base arms,
the algorithm sets τ to be the current time step and all nk’s
to be 0 (line 13-14) before going into time step t+1. Lastly,
the UCB indices of all base arms are updated (line 19).
Remark 3.1. The uniform exploration is necessary for this
algorithm, and similar strategy has been adopted in Liu, Lee,
and Shroff (2018); Cao et al. (2019). Intuitively, uniform

Algorithm 2 The GLR-CUCB Algorithm

Require: T ∈ N, K ∈ N, exploration probability p ∈ (0, 1),
confidence level δ ∈ (0, 1).

1: Initialization: ∀k ∈ K, nk ← 0; τ ← 0.
2: for all t = 1, 2, . . . , T do

3: if p > 0 and a← (t− τ) mod
⌊

K
p

⌋
∈ K then

4: Randomly choose St with a ∈ St.
5: else
6: St = Oracleα (UCB).
7: end if
8: Play super arm St and get the reward Rt(St) and

XIt,t, ∀It ∈ St.
9: for all It ∈ St do

10: ZIt,nIt
← XIt,t.

11: nIt ← nIt + 1.
12: if GLR

(
ZIt,1, · · · , ZIt,nIt

; δ
)
= True then

13: nk ← 0, ∀k ∈ K.
14: τ ← t.
15: end if
16: end for
17: for all k = 1, · · · ,K do
18: if nk �= 0 then

19: UCB(k)← 1
n�

∑nk
n=1 Zk,n +

√
3 log(t−τ)

2nk
.

20: end if
21: end for
22: end for

exploration ensures each base arm gathers sufficient sam-
ples to guarantee quick change detection whereas pure UCB
exploration is incapable of this. One more rigorous argu-
ment is given in Garivier and Moulines (2011), which shows
that theoretically pure UCB exploration performs badly on
piecewise-stationary MAB.
Remark 3.2. Thompson sampling (TS) often performs better
than UCB policy in empirical simulations, but it has been
shown that one cannot incorporate an approximate oracle in
TS for even MAB problems (Wang and Chen 2018). Thus
our algorithm adopts UCB policy for the bandit component
to ensure compatibility with approximation oracle.

4 Regret Upper Bound

In this section, we analyze the T -step regret of our proposed
algorithm GLR-CUCB. Recall T is the time horizon, N is the
number of piecewise-stationary segments, ν1, . . . , νN−1 are
the change-points, and for each segment i ∈ [N ], μi ∈ R

K

is the vector encoding the expected rewards of all base arms.
A super arm S is bad with respect to the ith piecewise-
stationary distributions if rμi(S) ≤ αmaxS̃∈F rμi(S̃). We
define Si

B = {S|rμi(S) ≤ αmaxS̃∈F rμi(S̃)} to be the
set of bad super arms with respect to the ith piecewise-
stationary segment. We define the suboptimality gap in the
ith stationary segment as follows:

Δmin,i
opt = αmax

S̃∈F
rμi(S̃)−max{rμi(S)|S ∈ Si

B},

Δmax,i
opt = αmax

S̃∈F
rμi(S̃)−min{rμi(S)|S ∈ Si

B}.
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Furthermore, let Δmax
opt = maxi∈[N ] Δ

max,i
opt and Δmin

opt =

mini∈[N ] Δ
min,i
opt be the maximum and minimum sub-optimal

gaps for the whole time horizon, respectively. Lastly, de-
note the largest gap at change-point νi as Δi

change =

maxk∈K
∣∣μi+1

k − μi
k

∣∣, ∀1 ≤ i ≤ N − 1, and Δ0
change =

maxk∈K
∣∣μ1

k

∣∣. We need the following assumption for our
theoretical analysis.
Assumption 4.1. Define di = di(p, δ) =⌈
{4K/p

(
Δi

change

)2
}β(T, δ) + K

p

⌉
and assume

νi − νi−1 ≥ 2max{di, di−1}, ∀i = 1, . . . , N − 1,
where νN − νN−1 ≥ 2dN−1.

Tuning δ and p properly (See Corollary 4.3), and applying
the upper bound on Q(x) by Kaufmann and Koolen (2018)
with x ≥ 5,

Q(x) ≤ x+ 4 log(1 + x+
√
2x),

the length of each piecewise-stationary segment is
Ω(

√
T log T ). Roughly, we assume the length of each sta-

tionary segment to be sufficiently long, in order to let the
GLR change-point detector detect the change in distribution
within a reasonable delay with high probability. Similar as-
sumption on the length of stationary segments also appears
in other literature on piecewise stationary MAB (Liu, Lee,
and Shroff 2018; Cao et al. 2019; Besson and Kaufmann
2019). Note that Assumption 4.1 is only required for the the-
oretical analysis; Algorithm 2 can be implemented regard-
less of this assumption. Now we are ready to state the regret
upper bound for Algorithm 2.
Theorem 4.2. Running GLR-CUCB with Assump-
tions 2.1, 2.2, and 4.1, the expected α-approximation
cumulative regret of GLR-CUCB with exploration probabil-
ity p and confidence level δ satisfies

R(T ) ≤
N∑
i=1

C̃i

︸ ︷︷ ︸
(a)

+Δmax
opt Tp︸ ︷︷ ︸
(b)

+

N−1∑
i=1

Δmax,i+1
opt di

︸ ︷︷ ︸
(c)

+3NTΔmax
opt Kδ︸ ︷︷ ︸

(d)

,

where C̃i =

(
6L2K2 log T/

(
Δmin,i

opt

)2
+ π2/6 +K

)
Δmax,i

opt .

Theorem 4.2 indicates that the regret comes from four
sources. Terms (a) and (b) correspond to the cost of ex-
ploration, while terms (c) and (d) correspond to the cost of
change-point detection. More specifically, term (a) is due to
the UCB exploration, term (b) is due to the uniform explo-
ration, term (c) is due to the expected delay of GLR change-
point detector, and term (d) is due to the false alarms of GLR
change-point detector. We need to carefully tune the explo-
ration probability p and confidence level δ of GLR change-
point detector to balance the trade-off.

The following corollary directly follows Theorem 4.2 by
properly tuning the parameters in the algorithm.
Corollary 4.3. Let Δmin

change = mini∈[N−1] Δ
i
change, we have

1. (N is known) Choosing δ = 1
T , p =

√
NK log T

T , gives

R(T ) = O
(

NK2 log TΔmax
opt(

Δmin
opt

)2 +
√
NKT log TΔmax

opt(
Δmin

change

)2

)
.

2. (N is unknown) Choosing δ = 1
T , p =

√
K log T

T , gives

R(T ) = O
(

NK2 log TΔmax
opt(

Δmin
opt

)2 +
N

√
KT log TΔmax

opt(
Δmin

change

)2

)
.

Remark 4.1. The effect of oracle is reducing the dependency
on number of base arms K from |F| to K2 during explo-
ration (first term in the regret appeared in Corollary 4.3). In
the worst case, |F| can be exponential with respect to K. Re-
call that if we use standard MAB algorithms for exploration,
the dependency on K is |F|.
Remark 4.2. As T becomes larger, the regret is dominated
by the cost of change-point detection, which has similar or-
der compared to the regret bound of piecewise-stationary
MAB algorithms. This is reasonable since our setting as-
sumes that we have access to the rewards of the base arms
contained in the super arm played by the agent.
Remark 4.3. When T is large, the order of the regret bound
is similar to the regret bound of adversarial bandit. But note
that regret definition for adversarial bandit and piecewise-
stationary bandit is different. For the first case, the regret
is evaluated with respect to one fixed arm which is optimal
for the whole horizon. But for the second case, the regret is
evaluated with respect to point-wise optimal arm, which is
much more challenging.

We can use Corollary 4.3 as a guide for parameter tuning.
The above corollary indicates that without knowledge of the
number of change-points N , we pay a penalty of a factor of√
N in the long run.
For the detailed proof of Theorem 4.2, please refer to Ap-

pendix A. Here we sketch the proof with some additional
lemmas. We start by proving the regret of GLR-CUCB under
the stationary scenario.
Lemma 4.4. Under the stationary scenario, i.e. N = 1, the
α-approximation cumulative regret of GLR-CUCB is upper
bounded as:

R(T ) ≤ Δmax,1
opt TP(τ1 ≤ T ) + Δmax,1

opt Tp+ C̃1.

The first term is due to the possible false alarms of the
change-point detection subroutine, the second term is due to
the uniform exploration, and the last term is due to the UCB
exploration. We upper bound the false alarm probability in
Lemma 4.5 as follows.
Lemma 4.5 (False alarm probability in the stationary sce-
nario). Consider the stationary scenario, i.e. N = 1, with
confidence level δ > 0; we have that

P (τ1 ≤ T ) ≤ Kδ.

Remark 4.4. By setting δ = 1
T , we will have P (τ1 ≤ T ) ≤

K
T . Asymptotically, the false alarm probability will go to 0.

In the next lemma, we show the GLR change-point detec-
tor is able to detect change in distribution reasonably well
with high probability, given all previous change-points were
detected reasonably well. The formal statement is as follows.
Lemma 4.6. (Lemma 12 in Besson and Kaufmann (2019))
Define the event C(i) that all the change-points up to ith one
have been detected successfully within a small delay:

C(i) = {∀j ≤ i, τj ∈ {νj + 1, · · · , νj + dj}} . (2)
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Then, P[τi ≤ νi|C(i−1)] ≤ Kδ, and P[τi ≥ νi+di|C(i−1)] ≤
δ, where τi is the detection time of the ith change-point.

Lemma 4.6 provides an upper bound for the conditional
expected detection delay, given the good events {C(i)}.
Corollary 4.7 (Bounded conditional expected delay).
E
[
τi − νi|C(i)

]
≤ di.

Given these lemmas, we can derive the regret upper bound
for GLR-CUCB in a recursive manner. Specifically, we prove
Theorem 4.2 by recursively decomposing the regret into a
collection of good events and bad events. The good events
contain all sample paths that GLR-CUCB reinitialize the
UCB indices of base arms after all change-points correctly
within a small delay. On the other hand, the bad events con-
tain all sample paths where either GLR change detector fails
to detect the change in distribution or detects the change with
a large delay. The cost incurred given the good events can
be upper bounded by Lemma 4.4 and Lemma 4.7. By upper
bounding the probabilities of bad events via Lemma 4.5 and
Lemma 4.6, the cost incurred given the bad events is analyz-
able. Detailed proofs are presented in Appendix A.

5 Regret Lower Bound

The lower bound for MAB problems has been studied exten-
sively. Previously, the best available minimax lower bound
for piecewise-stationary MAB was Ω(

√
T ) by Garivier and

Moulines (2011). Note that piecewise-stationary MAB is a
special instance for piecewise-stationary CMAB in which
each super arm is a base arm, thus this lower bound still
holds for piecewise-stationary CMAB. We derive a tighter
lower bound by characterizing the dependency on N and K.

Theorem 5.1. If K ≥ 3 and T ≥ M1N
(K−1)2

K , then the
worst-case regret for any policy is lower bounded by

R(T ) ≥ M2

√
NKT,

where M1 = 1/log 4
3 , M2 = 1/24

√
log 4

3 .

Proof. (Sketch) The high level idea is to construct a ran-
domized ‘hard’ instance which is appropriate to our set-
ting (Bubeck and Cesa-Bianchi 2012; Besbes, Gur, and
Zeevi 2014; Lattimore and Szepesvári 2018), then analyze
its regret lower bound which holds for any exploration pol-
icy. The construction of this ‘hard’ instance is as follows.

We partition the time horizon into N segments with equal
length except for the last segment. In each segment, assume
the rewards of all arms are Bernoulli distributions and stay
unchanged. At each time step there is an optimal arm with
expected reward of 1

2 + ε and the remaining arms have the
same expected reward of 1

2 . The optimal arm will change in
two consecutive segments by sampling uniformly at random
from the remaining K − 1 arms.

We then use Lemma A.1 in Auer et al. (2002) to upper
bound the expected number of pulls to any arm being opti-
mal under change of distributions, from the sub-optimal re-
ward distribution to the optimal reward distribution (Bern( 12 )
to Bern( 12 + ε)). Given the upper bound of expected number
of pulls to the optimal arm, we can lower bound the regret for

any exploration policy. By properly tuning ε and after some
additional steps, we can derive the minimax regret lower
bound. The condition K ≥ 3 comes from the fact that the
lower bound needs to be non-trivial, and T ≥ M1N

(K−1)2

K
comes from the tuning of ε.

For the detailed proof, please refer to Appendix B.

The conditions for this minimax lower bound are mild,
since in practice the number of base arms K is usually
much larger and we care about the long-term regret, in other
words, large T regime.

Our minimax lower bound shows that GLR-CUCB is
nearly order-optimal with respect to all parameters. On
the other hand, as a byproduct, this bound also indi-
cates that EXP3S (Auer et al. 2002) and MUCB (Cao et
al. 2019) are nearly order-optimal for piecewise-stationary
MAB, up to poly-logarithm factors. To be more specific,
EXP3S and MUCB achieve regret O(

√
NKT logKT ) and

O(
√
NKT log T ) respectively.

6 Experiments

We compare GLR-CUCB with five baselines from the lit-
erature, one variant of GLR-CUCB, and one oracle algo-
rithm. Specifically, DUCB (Kocsis and Szepesvári 2006)
and MUCB (Cao et al. 2019) are selected from piecewice-
stationary MAB literature; CUCB (Chen, Wang, and Yuan
2013), CTS (Wang and Chen 2018), and Hybrid (Zim-
mert, Luo, and Wei 2019) are selected from stochastic com-
binatorial semi-bandit literature. The variant of GLR-CUCB,
termed LR-GLR-CUCB, uses different restart strategy. In-
stead of restarting the estimation of all bases arms once a
change-point is detected, LR-GLR-CUCB uses local restart
strategy (only restarts the estimation of the base arms that
are detected to have changes in reward distributions). For
the oracle algorithm, termed Oracle-CUCB, we assume
the algorithm knows when the optimal super arm changes
and restarts CUCB at these change-points. Note that this is
stronger than knowing the change-points, since change in
distribution does not imply change in optimal super arm.
Experiments are conducted on both synthetic and real-world
dataset for the m-set bandit problems, which aims to iden-
tify the m arms with highest expected reward at each time
step. Equivalently, the reward function rμt(St) is the sum-
mation of the expected rewards of m base arms. Since DUCB
and MUCB are originally designed for piecewise-stationary
MAB, to adapt them to the piecewise-stationary CMAB set-
ting, we treat every super arm as a single arm when we
run these two algorithms. Reward distributions of base arms
along time are postponed to Appendix C.1. The details about
parameter tuning for all of these algorithms for different ex-
periments are included in Appendix C.2.

6.1 Synthetic Dataset

In this case we design a synthetic piecewise-stationary com-
binatorial semi-bandit instance as follows:

• Each base arm follows Bernoulli distribution.

• Only one base arm changes its distribution between two
consecutive piecewise-stationary segments.
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• Every piecewise-stationary segment is of equal length.

We let T = 5000, K = 6, m = 2, and N = 5. The av-
erage regret of all algorithms are summarized in Figure 1.
Note that the optimal super arm does not change for the last

Figure 1: Expected cumulative regret for different algo-
rithms on synthetic dataset.

three piecewise-stationary segments. Observe that the well-
tuned GLR change-point detector is insensitive to change
with small magnitude, which implicitly avoids unnecessary
and costly global restart, since small change is less likely to
affect the optimal super arm. Surprisingly, GLR-CUCB and
LR-GLR-CUCB perform nearly as well as Oracle-CUCB
and significantly better than other algorithms in regrets. In
general, algorithms designed for stochastic CMAB outper-
form algorithms designed for piecewise-stationary MAB.
The reason is when the horizon is small, the dimension of the
action space dominates the regret, and this effect becomes
more obvious when m is larger. Although order-wise, the
cost incurred by the change-point detection is much higher
than the cost incurred by exploration.

Note that our experiment on this synthetic dataset does not
satisfy Assumption 4.1. For example, the gap between the
first segment and second segment is 0.6, and we choose δ =
20
T and p = 0.05

√
(N − 1) log T/T for GLR-CUCB, which

means the length of the second segment should be at least
9874. However, the actual length of the second segment is
only 1000. Thus our algorithm performs very well compared
to other algorithms even if Assumption 4.1 is violated. If
Assumption 4.1 is satisfied, GLR-CUCB can only perform
better since it is easier to detect the change in distribution.

6.2 Yahoo! Dataset

We adopt the benchmark dataset for the real-world evalua-
tion of bandit algorithms from Yahoo!2. This dataset con-
tains user click log for news articles displayed in the Fea-
tured Tab of the Today Module (Li et al. 2011). Every base
arm corresponds to the click rate of one article. Upon ar-
rival of a user, our goal is to maximize the expected number
of clicked articles by presenting m out of K articles to the
users.

2Yahoo! Front Page Today Module User Click Log Dataset on
https://webscope.sandbox.yahoo.com

Yahoo! Experiment 1 (K = 6, m = 2, N = 9). We pre-
process the dataset following Cao et al. (2019). To make the
experiment nontrivial, we modify the dataset by: 1) the click
rate of each base arm is enlarged by 10 times; 2) Reducing
the time horizon to T = 22500. Results are in Figure 2.

Figure 2: Expected cumulative regret for different algo-
rithms on Yahoo! experiment 1.

Yahoo! experiment 1 is much harder than the synthetic
problem, since it is much more non-stationary. Our ex-
periments show GLR-CUCB still significantly outperforms
other algorithms and only has a small gap with respect
to Oracle-CUCB. Again, Assumption 4.1 does not hold
for these two instances, thus we believe it is fair to
compare GLR-CUCB with other algorithms. Unexpectedly,
LR-GLR-CUCB performs even better than oracle-CUCB,
which suggests there is still much to exploit in the piecewise-
stationary bandits, since global restart has inferior perfor-
mance in some cases, especially when the change in distri-
bution is not significant. Additional experiments on Yahoo!
dataset can be found in Appendix C.1.

7 Conclusion and Future Work

We have developed the first efficient and general algorithm
for piecewise-stationary CMAB, termed GLR-UCB, which
extends CUCB (Chen, Wang, and Yuan 2013), by incorpo-
rating a GLR change-point detector. We derive the regret up-
per bound of GLR-CUCB on the order of O(

√
NKT log T ),

and prove the minimax lower bound for piecewise-stationary
MAB and CMAB on the order of Ω(

√
NKT ), which shows

our algorithm is nearly order-optimal within poly-logarithm
factors. Experimental results show our proposed algorithm
outperforms other state-of-the art algorithms.

Future work includes designing algorithms for piecewise-
stationary CMAB with better restart strategy. Another very
challenging unsolved problem is whether one can close the
gap between the regret upper bound and the minimax regret
lower bound. Specifically, develop algorithm which is order-
optimal for piecewise-stationary CMAB.
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