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Abstract

Model-based reinforcement learning algorithms tend to
achieve higher sample efficiency than model-free methods.
However, due to the inevitable errors of learned models,
model-based methods struggle to achieve the same asymp-
totic performance as model-free methods. In this paper, We
propose a Policy Optimization method with Model-Based
Uncertainty (POMBU)—a novel model-based approach—
that can effectively improve the asymptotic performance us-
ing the uncertainty in Q-values. We derive an upper bound of
the uncertainty, based on which we can approximate the un-
certainty accurately and efficiently for model-based methods.
We further propose an uncertainty-aware policy optimization
algorithm that optimizes the policy conservatively to encour-
age performance improvement with high probability. This can
significantly alleviate the overfitting of policy to inaccurate
models. Experiments show POMBU can outperform exist-
ing state-of-the-art policy optimization algorithms in terms of
sample efficiency and asymptotic performance. Moreover, the
experiments demonstrate the excellent robustness of POMBU
compared to previous model-based approaches.

1 Introduction

Model-free reinforcement learning has achieved remarkable
success in sequential decision tasks, such as playing Atari
games (Mnih et al. 2015; Hessel et al. 2018) and control-
ling robots in simulation environments (Lillicrap et al. 2016;
Haarnoja et al. 2018). However, model-free approaches re-
quire large amounts of samples, especially when using pow-
erful function approximators, like neural networks. There-
fore, the high sample complexity hinders the application
of model-free methods in real-world tasks, not to men-
tion data gathering is often costly. In contrast, model-
based reinforcement learning is more sample efficient, as
it can learn from the interactions with models and then
find a near-optimal policy via models (Kocijan et al. ;
Deisenroth and Rasmussen 2011; Levine and Abbeel 2014;
Nagabandi et al. 2018). However, these methods suffer from
errors of learned models, which hurt the asymptotic perfor-
mance (Schneider 1997; Abbeel, Quigley, and Ng 2006).
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Thus, compared to model-free methods, model-based algo-
rithms can learn more quickly but tend to learn suboptimal
policies after plenty of trials.

Early model-based methods achieve impressing results
using simple models, like linear models (Bagnell and
Schneider 2001; Levine et al. 2016) and Gaussian processes
(Kuss and Rasmussen 2004; Deisenroth and Rasmussen
2011). However, these methods have difficulties in high-
dimensional and non-linear environments due to the limited
expressiveness of models. Recent methods use neural net-
work models for better performance, especially for compli-
cate tasks (Punjani and Abbeel 2015; Nagabandi et al. 2018).
Some methods further characterize the uncertainty in mod-
els via neural network ensembles (Rajeswaran et al. 2017;
Kurutach et al. 2018), or Bayesian neural networks (De-
peweg et al. 2017). Although the uncertainty in models im-
proves the performance of model-based methods, recent re-
search shows that these methods still struggle to achieve
the comparable asymptotic performance to state-of-the-art
model-free methods robustly (Wang et al. 2019).

Inspired by previous work that improves model-free algo-
rithms via uncertainty-aware exploration (O’Donoghue et al.
2018), we propose a theoretically-motivated algorithm to es-
timate the uncertainty in Q-values and apply it to the explo-
ration of model-based reinforcement learning. Moreover, we
propose to optimize the policy conservatively by encourag-
ing a large probability of performance improvement, which
is also informed by the estimated uncertainty. Thus, we use
the uncertainty in Q-values to enhance both exploration and
policy optimization in our model-based algorithm.

Our contributions consist of three parts.
First, we derive an upper bound of the uncertainty in Q-

values and present an algorithm to estimate it. Our bound is
tighter than previous work (O’Donoghue et al. 2018), and
our algorithm is feasible for deep model-based reinforce-
ment learning, while many previous methods only focus on
model-free cases (Osband et al. 2016; 2017), or assume sim-
ple models (Dearden, Friedman, and Andre 1999).

Second, we propose to optimize the policy conservatively
based on an estimated probability of performance improve-
ment, which is estimated via the uncertainty in Q-values and
is useful to prevent the overfitting to the biased models.
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Third, we propose a Policy Optimization method with
Model-Based Uncertainty (POMBU), which combines our
uncertainty estimation algorithm with the conservative pol-
icy optimization algorithm. Experiments show that POMBU
achieves excellent robustness and can outperform state-of-
the-art policy optimization algorithms.

2 Background

A finite-horizon Markov decision process (MDP) M is de-
fined by the tuple (S,A, P,R, ρ,H). Here, S is a finite set
of states, A is a finite set of actions, P is a third-order ten-
sor that denotes the transition probabilities, R is a matrix
that denotes the rewards, ρ denotes the distribution of ini-
tial states and H is the horizon length. More specifically,
at the state s and selecting the action a, Psas′ ∈ [0, 1] is
the probability of transitioning to the state s′, and Rsa ∈
[−Rmax, Rmax] is the obtained reward. We represent a pos-
terior of MDPs as (Ω,F , P r), where Ω is the sample space
containing all possible MDPs, F is a σ-field consisting of
subsets of Ω, and Pr : F → [0, 1] measures the posterior
probability of MDPs. We assume that each MDP in Ω is dif-
ferent from others only in terms of P and R. In this case, P is
a random tensor and R is a random matrix. For any random
variable, matrix or tensor X , EM [X] and DM [X] denotes
its expectation and variance respectively. When without am-
biguity, we write EM [X] as X̄ for short, e.g., P̄ denotes
EM [P ] and P̄sas′ denotes EM [Psas′ ].

Let π denotes a policy. πsa denotes the probability of tak-
ing the action a at the state s. Considering the posterior of
MDPs, the expected return Jπ is a random variable, which
is defined by

Jπ = Eτ∼(M,π)

[
H∑

h=1

Rshah

]
.

Here τ = (s1, a1, . . . , sH , aH) is a trajectory. τ ∼ (M, π)
means that the trajectory is sampled from the MDP M under
policy π. That is, s1 is sampled from the initial state distri-
bution ρ of M, ah is sampled with the probability πshah and
sh+1 is sampled with the probability Pshahsh+1 in M. Our
goal is to find a policy maximizing Jπ in real environment.

Given an MDP M, we define the corresponding state-
action value function Q, the state value function V and the
advantage function A as follow:

V h
π (s) = Eτ∼(M,π)

[
H∑
l=h

Rslal

∣∣sh = s

]
,

Qh
π(s, a) = Eτ∼(M,π)

[
H∑
l=h

Rslal

∣∣sh = s, ah = a

]
,

Ah
π(s, a) = Qh

π(s, a)− V h
π (s).

When the policy π is fixed, we write V h
π (s), Qh

π(s, a) and
Ah

π(s, a) as V h
s , Qh

sa and Ah
sa respectively for short. In this

case, for any time-step h, V h
s , Qh

sa and Ah
sa are random vari-

ables mapping Ω to R. Hence, V h is a random vector. Qh

and Ah are random matrices.

3 Uncertainty Estimation

In this section, we consider a fixed policy π. Similarly to
the uncertainty Bellman equation (UBE) (O’Donoghue et
al. 2018), we regard the standard deviations of Q-values as
the uncertainty. In this section, we derive an upper bound of
DM

[
Qh

sa

]
for each s, a, h, and prove that our upper bound

is tighter than that of UBE. Moreover, we propose an uncer-
tainty estimation algorithm for deep model-based reinforce-
ment learning and discuss its advantages. We provide related
proofs in Appendix A.1-A.4.

Upper Bound of Uncertainty in Q-values

To analyze the uncertainty, we first make two assumptions.

Assumption 1 Each MDP in Ω is a directed acyclic graph.

This assumption is common (Osband, Van Roy, and Wen ;
O’Donoghue et al. 2018). It means that the agent cannot visit
a state more than twice within the same episode. This as-
sumption is weak because each finite horizon MDP violat-
ing the assumption can be converted into a similar MDP that
satisfying the assumption (O’Donoghue et al. 2018).

Assumption 2 The random vector Rs1 and the random ma-
trix Ps1 are independent on Rs2 and Ps2 if s1 �= s2.

This assumption is used in the derivation of UBE
(O’Donoghue et al. 2018). It is consistent with the trajectory
sampling strategies used in recent model-based algorithms
(Chua et al. 2018; Kurutach et al. 2018), which sample a
model from the ensemble of models independently per time
step to predict the next state and reward.

First, we derive an inequation from these assumptions.

Lemma 1 Under Assumption 1 and 2, for any s ∈ S and
a ∈ A, we have

DM
[
Qh

sa

] ≤ uh
sa +

∑
s′,a′

πs′a′ P̄sas′DM
[
Qh+1

s′a′
]
,

where uh
sa = DM

[
Rsa +

∑
s′

Psas′ V̄
h+1
s′

]
.

We consider uh
sa as a local uncertainty, because we can com-

pute it locally with V̄ .
Then, we can derive our main theorem from this lemma.

Theorem 1 Under Assumption 1 and 2, for any policy π,
there exists a unique solution U satisfying the following
equation:

Uh
sa = uh

sa +
∑
s′,a′

πs′a′ P̄sas′U
h+1
s′a′ (1)

for any (s, a) and h = 1, 2, . . . , H , where UH+1 = 0, and
furthermore U ≥ DM [Q] pointwise.

Theorem 1 means that we can compute an upper bound of
DM

[
Qh

sa

]
by solving the Bellman-style equation (1).

Moreover, we provide the following theorem to show the
convergence when computing U iteratively.
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Theorem 2 For arbitrary (U)1, if(
Uh
sa

)
i+1

=
(
uh
sa

)
i
+

∑
s′,a′

πs′a′ P̄sas′
(
Uh+1
s′a′

)
i
,

for any (s, a), h = 1, 2, . . . , H and i ≥ 1, where(
UH+1

)
i
= 0 and (u)i converges to u pointwise, we have

(U)i converges to U pointwise.
Theorem 2 shows that we can solve the equation (1) itera-
tively if the estimated local uncertainty is not accurate per
update but converges to the correct value, whis is significant
when we use an estimated V̄ to compute the uncertainty.

As Uh
sa is an upper bound of DM

[
Qh

sa

]
,
√

Uh
sa is an up-

per bound of the uncertainty in Qh
sa. We use the upper bound

to approximate the uncertainty in our algorithm similarly to
UBE. We need to analyze the accuracy of our estimates.

Here, we compare our upper bound U with that of UBE
under the same assumptions, and hence we need to make an
extra assumption used in UBE.
Assumption 3 Rs is independent on Ps for any s ∈ S .
This assumption is not used to derive our upper bound of the
uncertainty but is used in UBE. Under the assumption 2 and
3, we have R is independent on P .

The upper bound B derived in UBE satisfies

Bh
sa = νhsa +

∑
s′,a′

πs′a′ P̄sas′B
h+1
s′a′ ,

where νhsa = (Qmax)
2
∑
s′

DM [Psas′ ] /P̄sas′ + DM [μsa] .

Here, Qmax is an upper bound of all |Qh
sa| for any s, a, h

and MDP. For example, we can regard HRmax as Qmax.

Theorem 3 Under the assumption 1, 2 and 3, Uh
sa is a

tighter upper bound of DM
[
Qh

sa

]
than Bh

sa.

This theorem means that approximating the uncertainty us-
ing our upper bound U is more accurate than using the upper
bound B derived in UBE.

Uncertainty Estimation Algorithm

First, we characterizes the posterior of MDPs approxima-
tively using a deterministic model ensemble (please refer to
the Section 5 for the details of training models). A determin-
istic ensemble is denoted by (fw1

, fw2
, . . . , fwK

). Here, for
any i = 1, 2, . . . ,K, fwi

: S × A → S × R is a single
model that predicts the next state and reward given a state
and an action, and wi is its parameters. We define the poste-
rior probability of MDPs by

Pr{Psas′ = 1, Rsa = x} =
1

K

K∑
i=1

eq ((s′, x), fwi(s, a)) ,

where equal is defined by

eq ((s1, x1), (s2, x2)) =

{
1, if s1 = s2 and x1 = x2,

0, otherwise.

Then, we can construct an MDP M̂ defined according to
the posterior of MDPs, such that its transition tensor P̂ is

Algorithm 1: Uncertainty Estimation for Q-values

Input : A approximate value function Ṽφ; An
ensemble model {fw1

, fw2
, . . . , fwK

}; A
trajectory τ = (s1, a1, . . . , sH , aH);

Output: Estimates of (
√
U1
s1a1

, . . . ,
√

UH
sHaH

);

1 DH+1 = 0;
2 for i = H,H − 1, . . . , 1 do
3 for j = 1, 2, . . . ,K do

4 (sj , rj) = fwj
(si, ai);

5 qj = rj + Ṽφ(sj);
6 end

7 q = 1
K

∑K
j=1 qj ;

8 di = 1
K

∑K
j=1(qj − q)2;

9 Di = di +Di+1;
10 end

11 return (
√
D1,

√
D2, . . . ,

√
DH);

equal to P̄ and its reward matrix R̂ is equal to R̄. Hence, the
state value matrix V̂ of the MDP M̂ is equal to V̄ .

Moreover, we use a neural network Ṽφ : S → R to predict
V̂ h
s for any state s and time step h, which is equivalent to

predicting V̄ . We train Ṽφ by minimizing �2 loss function

Lv(φ) = Eτ∼(M̂,π)

⎡
⎣ 1

H

H∑
h=1

∥∥∥∥∥Ṽφ(s
h)−

H∑
l=h

R̂slal

∥∥∥∥∥
2

2

⎤
⎦ .

(2)

Finally, given an imagined trajectory τ sampled from M̂
under π, we can estimate the uncertainty in Q-values via
the algorithm 1. Note that for long-horizon tasks, we can
introduce a discount factor γ similarly to previous work
(O’Donoghue et al. 2018). The modified uncertainty estima-
tion method can be found in Appendix B.

Discussion

In this part, we discuss some advantages of our algorithm to
estimate the uncertainty in Q-values.

Accuracy Based on the Theorem 3, our upper bound of
the uncertainty is tighter than UBE, which means a more ac-
curate estimation. Intuitively, our local uncertainty depends
on V̄ h while that of UBE depends on Qmax. Therefore,
our local uncertainty has a weaker dependence on H and
can provide a relatively accurate estimation for long-horizon
tasks (see an example in Appendix C). Moreover, consider-
ing an infinite set of states, our method ensures the bounded-
ness of the local uncertainty because V̄ h and R are bounded.
Therefore, our method has the potential to apply to tasks
with continuous action spaces.

Applicability for Model-Based Methods Our method to
estimate the uncertainty in Q-values is effective for model-
based reinforcement learning. In model-based cases, esti-
mated Q-values are highly dependent on the models. Our
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method considers the model when computing the local un-
certainty, while most of the existing methods estimate the
uncertainty directly via the real-world samples regardless of
the models. Ignoring models may lead to bad estimates of
uncertainty in model-based cases. For example, the uncer-
tainty estimated by a count-based method (Bellemare et al.
2016; Ostrovski et al. 2017) tends to decrease with the in-
crease of the number of samples, while the true uncertainty
keeps high even with a large amount of samples when mod-
eling a complicate MDP using a simple model.

Computational Cost Our method is much more compu-
tationally cheap compared with estimating the uncertainty
via the empirical standard deviation of Qh

sa. Estimating Qh
sa

given an MDP requires plenty of virtual samples, let alone
estimating its empirical standard deviation. Previous work
reduces the computational cost by learning an ensemble of
Q functions (Buckman et al. 2018). However, training an en-
semble of Q functions requires higher computational over-
head than training a single neural network Ṽφ in our method.

Compatibility with Neural Networks Previous methods
that estimate uncertainty for model-based methods always
assume simple models, like Gaussian processes (Deisenroth
and Rasmussen 2011; Dearden, Friedman, and Andre 1999).
Estimating uncertainty using Theorem 1 only requires that
the models can represent a posterior. This makes our method
compatible with neural network ensembles and Bayesian
neural networks. For instance, we propose Algorithm 1 with
an ensemble of neural networks.

Propagation of Uncertainty As discussed in previous
work (Osband, Aslanides, and Cassirer 2018), Bellman
equation implies the high dependency between Q-values. Ig-
noring this dependence will limit the accuracy of the esti-
mates of uncertainty. Our method considers the dependency
and propagates the uncertainty via a Bellman-style equation.

4 Conservative Policy Optimization

In this section, we first introduce surrogate objective and
then modify it via uncertainty. The modified objective leads
to conservative policy optimization because it penalizes the
update in the high-uncertainty regions. Let πθ : S × A →
[0, 1] denotes a parameterized policy, and θ is its parameters.
πθ(a|s) denotes the probability of taking action a at state s.

Surrogate Objective

Recent reinforcement learning algorithms, like Trust Region
Policy Optimization (TRPO) (Schulman et al. 2015), Proxi-
mal Policy Optimization (PPO) (Schulman et al. 2017), op-
timize the policy based on surrogate objective. We rewrite
the surrogate objective in TRPO and PPO as follow:

Lsr(θ) = Eτ∼(M,πθold )

[
H∑

h=1

rθ(s
h, ah)Ah

old(s
h, ah)

]
,

where θold are the old policy parameters before the update,
Aold is the advantage function of πθold and

rθ(s, a) =
πθ(a|s)
πθold(a|s)

.

Previous work has proven the surrogate objective is the first
order approximation to J(πθ) − J(πθold) when θ is around
θold (Schulman et al. 2015; Kakade and Langford 2002).
That is, for any θold, we have the following theorem:

Theorem 4

Lsr(θ)|θ=θold
= J(πθ)− J(πθold)|θ=θold

,

∇θLsr(θ)|θ=θold
= ∇θ (J(πθ)− J(πθold))|θ=θold

(see proof in Appendix A.5). Therefore, maximizing Lsr(θ)
can maximize J(πθ) approximately when θ is around θold.

Uncertainty-Aware Surrogate Objective

To prevent the overfitting of the policy to inaccurate models,
we introduce the estimated uncertainty in Q-values into the
surrogate objective.

First, we need to estimate Pr{J(πθ) > J(πθold)}, which
means the probability that the new policy outperforms the
old one. Because of Theorem 4, Pr{Lsr(θ) > 0} can ap-
proximate Pr{J(πθ) > J(πθold)}. Then, we assume that a
Gaussian can approximate the distribution of Lsr(θ) > 0.
Thus, F

(
EM [Lsr(θ)] /

√
DM [Lsr(θ)]

)
is approximately

equal to Pr{Lsr(θ) > 0}, where F is the probability distri-
bution function of standard normal distribution.

Then, we need to construct an objective function for op-
timization. Here, we aims to find a new θ with a large
F
(
EM [Lsr(θ)] /

√
DM [Lsr(θ)]

)
. As F is monotonically

increasing, we can maximize EM [Lsr(θ)] while minimize√
DM [Lsr(θ)]. Therefore, we can maximize

EM [Lsr(θ)]− α
√
DM [Lsr(θ)], (3)

where α ≥ 0 is a hyperparameter.
Moreover, we need to estimate the expectation and the

variance of the surrogate objective. Because Lsr(θ) is equal
to

Eτ∼(M,πθold )

[
H∑

h=1

(
rθ(s

h, ah)− 1
)
Qh

old(s
h, ah)

]
,

we can approximate EM [Lsr(θ)] and
√
DM [Lsr(θ)] as

Lexp(θ) and Lstd(θ) respectively, where

Lexp(θ) = Eτ∼(M̂,πθold )

[
H∑

h=1

rθ(s
h, ah)Āh

old(s
h, ah)

]
,

(4)

Lstd(θ) = Eτ∼(M̂,πθold )

[
H∑

h=1

∣∣rθ(sh, ah)− 1
∣∣√Dh

]
.

(5)

Here M̂ is defined in Section 3 using a learned ensemble,
Āh

old(s
h, ah) can be approximated by

∑H
l=h R̂slal − Ṽφ(s

h),
and Dh is computed by Algorithm 1.

However, policy optimization without trust region may
lead to unacceptable bad performance (Schulman et al.
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Algorithm 2: POMBU

1 Initialize an ensemble {f̃w1 . . . f̃wK
} and a policy πθ;

2 Initialize a value function Ṽφ;
3 Initialize the dataset S as a empty set;
4 Sample N trajectories using πθ;
5 Add the sampled transitions to S;
6 repeat

7 Train the ensemble {f̃w1 . . . f̃wK
} using S;

8 for i = 1, 2, . . . ,M do

9 Sample virtual trajectories from M̂ using πθ;
10 Train Ṽφ by minimizeing Lv(φ);
11 Train πθ by maximizing Lπ(θ);
12 end
13 for i = 1, 2, . . . , N do

14 Sample virtual trajectories from M̂ using πθ;
15 Train an exploration policy πexp based on πθ;
16 Collect real-world trajectories using πexp;
17 Add the sampled transitions to S;
18 end

19 until πθ performs well in the real environment;

2015). Thus, we clip Lexp(θ) similarly to PPO. That is,

Lclip(θ) = Eτ∼(M̂,πθold )

[
H∑

h=1

r̂θ(s
h, ah)Āh

old(s
h, ah)

]
.

(6)

Here, we define r̂θ(s
h, ah) as{

max(1− ε, rθ(s
h, ah)), if Āh

old(s
h, ah) < 0,

min(1 + ε, rθ(s
h, ah)), if Āh

old(s
h, ah) > 0,

in which ε > 0 is a hyperparameter.
Finally, we obtain the modified surrogate objective

Lπ(θ) = Lclip(θ)− αLstd(θ).

Note that, the main difference of our objective from PPO
is the uncertainty penalty Lstd(θ). This penalty limits the
ratio changes |rθ(sh, ah) − 1| in high-uncertainty regions.
Therefore, this objective is uncertainty-aware and leads to a
conservative update.

5 Algorithm

In this section, we propose a Policy Optimization method
with Model-Based Uncertainty (POMBU) in Algorithm 2.
We details each stage of our algorithm as following.

Exploration Policy We train a set of exploration policies
by maximizing the Lclip(θ). Different policies are trained
with different virtual trajectories. To explore the unknown,
we replace Āh

old(s
h, ah) with Āh

old(s
h, ah) + β

√
Dh in the

equation (6). Here, β ≥ 0 controlling the exploration to
high-uncertainty regions.

Model Ensemble To predict the next state, a single neural
network in the ensemble outputs the change in state and then
adds the change to the current state (Kurutach et al. 2018;
Nagabandi et al. 2018). To predict the reward, we assume
the reward in real environment is computed by a function μ
such that Rshah = μ(sh, ah, sh+1), which is commonly true
in many simulation control tasks. Then, we can predict the
reward via the predicted next state. We train the model by
minimizing �2 loss similarly to previous work (Kurutach et
al. 2018; Nagabandi et al. 2018) and optimize the parameter
using Adam (Kingma and Ba 2014). Different models are
trained with different train-validation split.

Policy Optimization We use a Gaussian policy whose
mean is computed by a forward neural network and stan-
dard deviation is represented by a vector of parameters. We
optimizing all parameters by maximizing Lπ(θ) via Adam.

6 Experiments

In this section, we fist evaluate our uncertainty estimation
method. Second, we compare POMBU to state-of-the-arts.
Then, we show how does the estimated uncertainty work
by ablation study. Finally, we analyze the robustness of our
method empirically. In the following experiments, we report
the performance averaged over at least three random seeds.
Please refer to Appendix D for the details of experiments.
The source code and appendix of this work is available at
https://github.com/MIRALab-USTC/RL-POMBU.

Effectiveness of Uncertainty Estimation

We evaluate the effectiveness of our uncertainty estimation
method in two simple environments: 2D-point and 3D-point.
These environments have continuous state spaces and con-
tinuous action spaces. First, we train an ensemble model
of the environment and sample state-action pairs from the
model using a deterministic policy. Then, we estimate the
Q-values of these pairs via the means of virtual returns (com-
puted using the models), and estimate the uncertainty using
the algorithm 1. Finally, we compute the real Q-values using
the return in real world, compute the ratios of errors to the
estimated uncertainties, and count the frequencies of these
ratios to draw Figure 1. This figure shows the distribution of
ratios is similar to a standard normal distribution after suffi-
cient training of Ṽφ, which demonstrates the accuracy of the
estimated uncertainty.

Comparison to State-of-the-Arts

We compare POMBU with state-of-the-art policy optimiza-
tion algorithms on four continuous control tasks in Mujoco
(Todorov, Erez, and Tassa 2012): Swimmer, HalfCheetah,
Ant, and Walker2d. Our method and our baselines optimize
a stochastic policy to complete the tasks. Our baselines in-
clude: soft actor critic (SAC) (Haarnoja et al. 2018); prox-
imal policy optimization (PPO); stochastic lower bounds
optimization (SLBO) (Luo et al. 2018); model-ensemble
trust region policy optimization (METRPO) (Kurutach et al.
2018). To show the benefits of using uncertainty in model-
based reinforcement learning, we also compare POMBU
to model-ensemble proximal policy optimization (MEPPO),
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Figure 1: Frequency histograms of the ratios of errors to uncertainties after different numbers of epochs (training Ṽφ). The red
dotted line means the probability density function of the standard normal distribution.

which is equivalent to POMBU when α = 0 and β = 0. We
evaluate POMBU with α = 0.5 and β = 10 for all tasks.

The result is shown in Figure 2. The solid curves cor-
respond to the mean and the shaded region corresponds
to the empirical standard deviation. It shows that POMBU
achieves higher sample efficiency and better final perfor-
mance than baselines, which highlights the great benefits of
using uncertainty. Moreover, POMBU achieves comparable
asymptotic performances with PPO and SAC in all tasks.

We also provide Table 1 that summarizes the perfor-
mance, estimated wall-clock time and the number of used
imagined samples and real-world samples in the HalfChee-
tah task (H=200). Compared to MEPPO, the extra time used
in POMBU is small (time: 10.17 → 12.05), while the im-
provement is significant (mean: 449 → 852; standard de-
viation: 226 → 21). Compared to SAC, POMBU achieve
higher performance with about 5 times less real-world sam-
ples. Moreover, in our experiments, the total time to compute
the uncertainty (not include the time to train Ṽφ) is about 1.4
minutes, which is ignorable compared with the overall time.

We further compare POMBU with state-of-the-art model-
based algorithms in long-horizon tasks. The compared al-
gorithms include model-based meta policy optimization
(MBMPO) (Clavera et al. 2018), probabilistic ensemble
with trajectory sampling (PETS) (Chua et al. 2018) and
stochastic ensemble value expansion (STEVE) (Buckman et
al. 2018) in addition. We directly use some of the results
given by Wang et al. (2019), and summarize all results in
Table 2. The table shows that POMBU achieves compara-
ble performance with STEVE and PETS, and outperforms
other model-based algorithms. It demonstrates that POMBU
is also effective in long-horizon tasks.

Figure 2: The training curve of our method and baselines.
The horizons of all tasks are 200. The number of total steps
is selected to ensure most model-based algorithms converge.
We train the policy via PPO and SAC with at least 1 million
samples and report the best averaged performance as ”max”.

Ablation Study

We provide an ablation study to show how the uncertainty
benefits the performance. In our algorithm, we employ the
uncertainty in policy optimization (controlled by α) and ex-
ploration (controlled by β). Therefore, we compare the per-
formance with different α and β.

The results are shown in Figure 3 and 4. Setting α as 0.5
or 0.75 achieves the best final performance and the best ro-
bustness with 200K samples. Note that a large α may re-
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POMBU MEPPO METRPO SLBO SAC PPO SAC max PPO max

Time (h) 12.05 10.17 6.35 3.91 0.87 0.04 4.18 0.19
Imagined 1.2e8 8e7 5e7 1e7 0 0 0 0

Real-world 2e5 2e5 2e5 2e5 2e5 2e5 9.89e5 9.78e5
Return 852± 21 449± 226 483± 136 704± 70 615± 64 −38± 16 741± 88 218± 63

Table 1: The performance, estimated wall-clock time and the number of used imagined samples and real-world samples in the
HalfCheetah task (H=200). We conduct all experiments with one GPU Nvidia GTX 2080Ti.

Environment POMBU STEVE MBMPO SLBO METRPO PETS

Ant 2010± 91 552± 190 706± 147 728± 123 282± 18 1852± 141
HalfCheetah 3672± 8 7965± 1719 3639± 1186 1098± 166 2284± 900 2795± 880

Swimmer 144.4± 22.6 149± 81 85.0± 98.9 41.6± 18.4 30.1± 9.7 22.1± 25.2
Walker2d −565± 129 −26± 328 −1546± 217 −1278± 428 −1609± 658 260± 537

Table 2: The performance of 200k time-step training. The horizons of all environments are 1000.

Figure 3: The development of the average return during
training with different α in the Cheetah task (H=200).

sult in poorer performance in the early stage, because the
uncertainty is high in the early stage and a large α tends
to choose a small step size when uncertainty is high. Us-
ing β = 10 can improve the performance (larger mean and
smaller standard deviation), which demonstrate the effec-
tiveness of uncertainty-aware exploration.

Robustness Analyses

We demonstrate the excellent robustness of POMBU in two
ways. First, we evaluate algorithms in noisy environments.
In these environments, we add Gaussian noise to the obser-
vation with the standard deviation σ. This noise will affect
the accuracy of the learned models. Second, we evaluate al-
gorithms in long-horizon tasks. In these tasks, models need
to generate long trajectories, and the error is further exacer-
bated due to the difficulty of longterm predictions.

We report the results in Figure 5. Experiments show that
our algorithm achieves similar performance with different
random seeds, while the performance of METRPO varies
greatly with the random seeds. Moreover, in Figure 5, the
worst performance of POMBU beats the best of METRPO.

Figure 4: (a): The development of average return with β =
10 and β = 0. (b): The performance after 1e5 time-step
training with different random seeds.

Figure 5: The training curves of POMBU and METRPO
with different random seeds. (a) Comparison in a noisy
Cheetah task (σ = 0.1). (b) Comparison in a long-horizon
Cheetah task (H = 1000).

This implies that our method has promising robustness, even
in noisy environments and long-horizon environments.

7 Conclusion

In this work, we propose a Policy Optimization method
with Model-Based Uncertainty (POMBU), which is a novel
uncertainty-aware model-based algorithm. This method es-
timates uncertainty using a model ensemble and then op-
timizes policy Conservatively considering the uncertainty.
Experiments demonstrate that POMBU can achieve com-
parable asymptotic performance with SAC and PPO while
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using much fewer samples. Compared with other model-
based methods, POMBU is robust and can achieve better
performance. We believe that our approach will bring new
insights into model-based reinforcement learning. An entic-
ing direction for further work is the combination of our un-
certainty estimation method with other kinds of models like
Bayesian neural networks. Another exciting direction is to
modify other advanced model-based algorithms like STEVE
and PETS using our uncertainty estimation method.
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