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Abstract

Network embedding plays a crucial role in network analy-
sis to provide effective representations for a variety of learn-
ing tasks. Existing attributed network embedding methods
mainly focus on preserving the observed node attributes and
network topology in the latent embedding space, with the as-
sumption that nodes connected through edges will share sim-
ilar attributes. However, our empirical analysis of real-world
datasets shows that there exist both commonality and indi-
viduality between node attributes and network topology. On
the one hand, similar nodes are expected to share similar at-
tributes and have edges connecting them (commonality). On
the other hand, each information source may maintain in-
dividual differences as well (individuality). Simultaneously
capturing commonality and individuality is very challenging
due to their exclusive nature and existing work fail to do
so. In this paper, we propose a deep generative embedding
(DGE) framework which simultaneously captures common-
ality and individuality between network topology and node
attributes in a generative process. Stochastic gradient varia-
tional Bayesian (SGVB) optimization is employed to infer
model parameters as well as the node embeddings. Extensive
experiments on four real-world datasets show the superiority
of our proposed DGE framework in various tasks including
node classification and link prediction.

Introduction

Networks are natural representations for a wide variety of
real-life data, from social rating networks, author/paper ci-
tation networks to gene interaction networks. As more and
more information becomes available, nodes in real-world
networks are often associated with attributes, which is re-
ferred as attributed network (Wang et al. 2017b). Attributed
network embedding is a powerful and increasingly popular
approach to conduct comprehensive analysis on attributed
networks. Tasks such as link prediction (Wang, Cui, and Zhu
2016) and node classification (Tang, Qu, and Mei 2015) all
greatly benefit from effective latent node representations ob-
tained by good network embedding approaches.
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Most of existing attributed network embedding meth-
ods (Huang, Li, and Hu 2017b; 2017a; Liao et al. 2018;
Li et al. 2017b) project the observed data into the la-
tent embedding space while preserving properties includ-
ing first/second order proximity (Tang et al. 2015), attribute
based similarity (Liao et al. 2018) and global structural role
(Zhang et al. 2018) etc. Although network topology and
node attributes are explicitly considered in existing methods,
they simply assume that adjacent nodes in a given network
tend to share similar attributes which is referred as common-
ality, ignoring more complex relationships between network
topology and node attributes. However, real-world network
topology and node attributes may exhibit an opposite pattern
where adjacent nodes have distinct attributes as well, which
is referred as individuality. Consider a social network whose
edges reflect the social connections between users and node
attributes reflect the preferences of users, due to the diffi-
culty of collecting comprehensive data or the fact that enti-
ties are not exposed to each other (Wang et al. 2016), users
with similar preferences may be unknown to each other (i.e.
unconnected). In bibliographic networks, similar phenom-
ena can be observed. Although one paper will (intuitively)
cite another paper with similar content, papers without ci-
tation relationships can also be similar due to limitations in
the scale of the corpus and the number of citations.

The above observations demonstrate that there indeed ex-
ists individuality in addition to commonality in networks
when depicting relationships among different nodes by net-
work topology and node attributes. It is a challenging task
to capture commonality and individuality simultaneously in
latent embedding space since they are mutually exclusive
and merging them by force may limit the capability of the
learned representations. Some existing attributed network
embedding methods take care of the commonality by con-
catenating the embeddings from both information sources
(Li et al. 2017a) or directly preserving the properties of both
information sources in the objective function (Huang, Li,
and Hu 2017a), ignoring the individuality in each informa-
tion source. Other methods (Kipf and Welling 2016) learn
node embeddings by transforming the input attributes to pre-
serve the network topology, which ignores the commonality
between node attributes and network topology.
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Recently, deep generative models (Tolstikhin et al. 2017;
Kingma and Welling 2013; Goodfellow et al. 2014) have be-
come an efficient way to analyze and understand networks
through capturing the inner probabilistic distribution which
can generate unobserved samples. Many variants of deep
generative model have been extensively studied and applied
in various representation learning tasks on image (Radford,
Metz, and Chintala 2015) and text data (Zhong and Ghosh
2005). Though deep generative models have also been ex-
plored on network data, their applications in attributed net-
work have received relatively less scrutiny.

Given the challenges in smoothly and losslessly merging
the commonality and individuality into embedding space,
we address this issue from an opposite perspective: instead
of preserving node attributes and network topology in one
single representation, we assume that node attributes and
network topology can be generated from a latent represen-
tation. Thus the commonality and individuality can then be
captured by a generative process. Our basic assumptions are
as follows: (1) There exists a low-dimensional hidden space
where each node has a density distribution. Both node at-
tributes and network topology can be generated from the
latent representations. Node with similar latent representa-
tions are expected to share similar attributes and have edges
connecting them (commonality). (2) Node attributes and
network topology are generated in an independent process
with different probability distributions. The randomness in
the probabilistic distributions and independent generation
processes result in the existence of individual differences
(individuality) within each of the two information sources.

We develop a stochastic gradient variational Bayesian op-
timization framework to obtain the model parameters effi-
ciently. In general, the contribution of this paper can be sum-
marized as follows:
1. We present commonality and individuality, two relation-

ships between node attributes and network topology in
attributed network embedding, and prove their existence
through an empirical analysis.

2. We propose a deep generative embedding framework ca-
pable of simultaneously capturing commonality and indi-
viduality relations through modeling the generative pro-
cesses of node attributes and network topology.

3. We conduct extensive experiments on four real-world
datasets to demonstrate the effectiveness of our proposed
DGE framework in several learning tasks.

Related work

In this section, we will review the related studies in two ar-
eas, namely network embedding and deep generative mod-
els.

Network Embedding Network embedding aims at learn-
ing low-dimensional vector representation to facilitate a bet-
ter understanding of semantic relationships among nodes.
Among them, DeepWalk (Perozzi, Al-Rfou, and Skiena
2014) and Node2Vec (Grover and Leskovec 2016) em-
ploys truncated random walk to generate node sequences,
which is treated as sentences in language models and fed
into the skip-gram model to learn node embeddings. LINE

(Tang et al. 2015) is proposed for large scale network,
which preserves both first-order and second-order proxim-
ities. GraRep (Cao, Lu, and Xu 2015) can be regarded as
an extension of LINE which considers high-order proxim-
ity. SDNE (Wang, Cui, and Zhu 2016) incorporates graph
structure into deep auto-encoder to preserve the highly non-
linear first order and second order proximities.

All the above mentioned approaches, however, are lim-
ited to dealing with non-attributed networks. Attributed net-
work analysis is then put forward due to the fact that net-
works are often associated with abundant content. For ex-
ample, TADW (Yang et al. 2015) extends DeepWalk by as-
suming that each node is associated with rich texts and in-
corporate text features into the matrix factorization frame-
work. AANE(Huang, Li, and Hu 2017a) is a distributed em-
bedding approach that jointly learns node representations by
decomposing attribute affinity matrix and penalizing the em-
bedding difference between connected nodes with network
lasso regularization. SNE (Yuan, Wu, and Xiang 2017) gen-
erates embeddings by leveraging an end-to-end neural net-
work model to capture the complex interrelations between
network structure and node attribute information. Graph-
SAGE (Hamilton, Ying, and Leskovec 2017) leverages node
feature information and network topology to efficiently gen-
erate node embeddings for previously unseen data. PRRE
(Zhou et al. 2018) considers the partial correlation between
node attributes and network topology and preserved the re-
ordered similarity to learn embedding. However, none of the
above methods capture commonality and individuality be-
tween node attributes and network topology.

Deep Generative Models Recently, the deep generative
models have attracted much attention and extended to the
network embedding. Recent advances in Generative Ad-
versarial Networks (GANs) (Goodfellow et al. 2014) have
proven GANs as a powerful framework for learning complex
data distributions. Some extensions have been proposed to
apply GANs on network representation learning. In Graph-
GAN (Wang et al. 2017a), generative methods and discrimi-
native methods are unified via adversarial training in a mini-
max game. GANE (Hong, Li, and Wang 2018), ANE (Dai et
al. 2017) and ARVGA (Pan et al. 2018) also explore GANs
on network representation by preserving network structure
with adversarial learning.

Another type of generative methods are the Variational
Auto-encoder(VAE). In VGAE (Kipf and Welling 2016), a
graph convolutional network encoder and inner product de-
coder is used to learn interpretable latent representations for
undirected graphs, however, it only models the generation
of network topology. In DVNE (Zhu et al. 2018), gaussian
distributions are learned for each node to represent the un-
certainty and similarity between distributions are measured
in Wasserstein space so that transitivity of proximity in net-
works can be well preserved. In RINAE (Li et al. 2017a),
the node attributes and network structure are concatenated
as the feature representation of nodes. A variational auto-
encoder is employed to model the generative process of the
concatenated features. In CAN(Meng et al. 2019), two inde-
pendent embedding are learned to model the generation of
node attributes and network topology. However, none of ex-
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isting generative method can capture the commonality and
individuality in a unified framework.
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Figure 1: Commonality and individuality between node at-
tributes and network topology.

Case Study of Commonality and Individuality

In this section, we report the results of an empirical anal-
ysis of commonality and individuality between node at-
tributes and network topology, using a Cora, a CiteSeer and
a PubMed dataset.

Figure 1 shows the results of our empirical analysis. The
statistics of the three datasets are presented in table 1. The
X axis denots the graph distance of the node pairs, the Y
axis denotes the average attribute based similarity of the
node pairs. In figure 2 (a), we can observe that with increas-
ing graph distance (shortest-path length), the attribute based
similarity decreases. In other words, nodes that are close
in the network have higher average feature similarity than
nodes far from each other in the network. This shows the
commonality between two information source in describing
the relationship between nodes. In figure 2 (b), each box rep-
resents the distribution of the attribute similarity of a group
of node pairs with the given graph distance (shortest-path
length). The central mark is the median, the edges of the box
are the 25th and 75th percentiles, two lines (the whiskers)
extend to the most extreme data points not considered out-
liers. We observe that there is a considerable number of pairs
that are close to each other in the network but have relatively
low attribute similarity. Comparing the adjacent bars in the
figure, it can be seen that there are many node pairs that
have smaller graph distance but smaller attribute similarity
than other node pairs. This demonstrates the individuality
between the two information sources in describing the rela-
tionships between nodes. To conclude, both node attributes
and network topology are describing the relationships be-
tween nodes, there exists commonality and individuality be-
tween them.

Deep Generative Network Embedding

In this section, we describe the proposed deep generative
network embedding (DGE ) framework.

Notations and problem definition

An attributed network is defined as G = {V,E,X}, where
V = {v1, v2, ..., vN} denotes a set of nodes and N is the
number of the nodes. E is the set of edges between the

nodes, Eij = 1 if there exists an edge between node vi, vj ,
M = |E| is the number of edges. X ∈ RN×D is the node
attributes matrix where xi denotes the attributes of node vi,
and D is the dimension of node attributes.
Definition 1 Generative Attributed Network Embedding
Given an attributed network G = {V,E,X}, generative
attributed network embedding aims at modeling the gener-
ation of node attributes and edges in the attributed network
and represent each node vi ∈ V as a lower-dimensional
vector hi ∈ RL so that the relationship between nodes can
be represented in the vector space. L is the embedding di-
mension which satisfies L � N and L � D.

The generation process

The generative framework is expected to uniformly model
two aspects of the attributed network: (1) The observation
including node attributes and network topology, (2) The
commonality and individuality between node attributes and
network topology.

In DGE framework, we consider both binary and contin-
uous attributes. The attributes are assumed to be generated
from Bernoulli distribution for binary attributes and Gaus-
sian distribution for continuous attributes, the parameters of
the probabilistic distribution are generated from node em-
bedding with deep neural networks. We assume that edge is
generated from a Bernoulli distribution parameterized by the
similarity between embedding of the connected nodes. It is
worth noting that the DGE framework can be expanded to
weighted network and directed network by using different
probabilistic distributions. We leave it in the future work.
Above all, an observed attributed network G = {V,E,X}
is assumed to be generated from the following process:
1. For each node vi ∈ V , draw vector zi ∼ N (μ0, σ

2
0I)

2. For node with binary attributes
(a) Calculate expectation vector μi

μi = f(zi; θ) (1)
(b) Draw attributes xi ∼ Ber(μi)

3. For node with continuous attributes
(a) Calculate mean and variance

[μi, σ
2
i ] = f(zi; θ) (2)

(b) Draw attributes xi ∼ N (μi, σ
2
i I)

4. For node pair vi, vj , draw the edge Eij ∼ Ber(σ(zTi zj))

where zi is the embedding of node vi, N (μ, σ2I) is mul-
tivariate Gaussian distribution parameterized by μ, σ2, I is
an identity matrix. f(z; θ) is a mapping function with non-
linear activation parameterized by θ. Ber(·) is multivari-
ate Bernoulli distribution, σ is the sigmoid function, respec-
tively.

According to the generation process and the independent
assumption, the joint probability p(X,E,Z) can be factor-
ized as:

p(X,E,Z) = p(X|Z)p(E|Z)p(Z) (3)
p(Z) = N (μ0, σ

2
0I) (4)

p(X|Z) = Ber(X|μi) or N (X|μi, σ
2
μI) (5)

p(E|Z) = Ber(E|σ(ZTZ)) (6)
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Model inference

Following the variational principle (Wainwright, Jordan, and
others 2008), we derive a lower bound on the marginal like-
lihood of the model which forms our objective function. Our
purpose is to maximize the log-likelihood of the given net-
work topology and node attributes, which can be written as:

log p(X,E) ≥ Eqφ [log p(X,E,Z)− log qφ(Z|X,E)]

=Eqφ [log pθ(X,E|Z)−KL(qφ(Z|X,E)||pθ(Z))]

=LELBO(X,E)
(7)

where LELBO(X,E) is the evidence lower bound (ELBO).
In DGE model, we use deep neural network with non-linear
function to model the variational posterior qφ(Z|X,E) and
infer the parameter θ, φ to approximate LELBO(X,E). The
true posterior is assumed to take on am approximate Gaus-
sian form with an approximately diagonal covariance. The
variational posterior qφ(Z|X,E) is assumed to be multivari-
ate Gaussian distribution with a diagonal covariance struc-
ture.

log qφ(Z|X,E) =
∑

i

logN (zi; μ̃i, σ̃
2I) (8)

where μ̃i and σ̃2 are the mean and variance of the variational
posterior. The second term of ELBO can be rewrote with
simply Gaussian transformation as:

KL(qφ(Z|X,E)||pθ(Z))

=
1

2

∑

i

L∑

j=1

(1 + log(σ̃j
i )

2 − (μ̃j
i )

2 − (σ̃j
i )

2)
(9)

Computation of the exact posterior distribution is in-
tractable due to the nonlinear, non-conjugate dependencies
between the random variables. We apply reparameterization
trick with Monte-Carlo sampling to infer the parameters. As
we have discussed, DGE can be applied on both binary and
continuous attributes. In the binary attribute situation, the
first term can be written as:

Eq(Z|X,E)[log p(X,E|Z)]

� 1

S

S∑

s=1

(
∑

i

log p(xi|zsi ) +
∑

ij

log p(Eij |zsi , zsj ))

=
1

S

S∑

s=1

(

N∑

i

D∑

d=1

xid logμid + (1− xid) log(1− μid).

+
∑

ij

Eij . log σ(z
sT
i zsj ) + (1− Eij) log(1− σ(zsTi zsj )))

where zsi = μ̃i + σ̃i � εs and εs ∼ N (0, I)
(10)

where S is the number of Monte-Carlo sampling, D is the
dimension of node attributes. When the attribute is contin-
uous, the first term of ELBO in Eq. (7) can be written as

:
Eq(Z|X,E)[log p(X,E|Z)]

≈ 1

S

S∑

s=1

(
∑

i

D∑

d=1

− log(
√
2πσi,d) +

(xi,d − μi,d)
2

2σ2
i,d

.

+
∑

ij

Eij . log σ(z
sT
i zsj ) + (1− Eij) log(1− σ(zsTi zsj )))

(11)

For binary attributes, the loss function can be written as:

Jr =− 1

S

S∑

s=1

(
∑

i

D∑

d=1

xid logμid + (1− xid) log(1−

μid)+
∑

ij

Eij log σ(z
sT
i zsj ) + (1− Eij) log(1− σ(zsTi

zsj )))−
1

2

∑

i

L∑

j=1

(1 + log(σ̃j
i )

2 − (μ̃j
i )

2 − (σ̃j
i )

2)

where zsi = μ̃i + σ̃i � εs and εs ∼ N (0, I)
(12)

Loss function for continuous attributes can be derived by
replacing the corresponding term in Equation 12 with Equa-
tion 11. The encoder and decoder are designed with simple
multi-layered perceptrons (MLPs) and the detailed setting
can be found in our open-sourced code.

Explanation of commonality and individuality
captured by DGE model

According to the generation process, both node attributes
and network topology are generated from latent vector z, the
commonality is easy to understand as nodes with similar em-
bedding has higher probability to form edges and share sim-
ilar attributes. The individuality can be explained from the
following aspects: First, node attributes and edges are gen-
erated from probability distribution, which means for nodes
with similar or even same latent embedding, they may also
have different attributes or do not have edges between them.
Second, the generation of node attributes and network topol-
ogy are independent, which brings more inconsistency be-
tween the generated results. We use the sum of the variance
in the generation process to denote the individuality between
node attributes and network topology.

Fig 2 illustrates two cases that denotes the individuality
between node attributes and network topology. Each curve
denotes the Gaussian probability of observing continuous at-
tributes and dots on the curve represents the attribute of an
observed node, the mean of distribution is generated from
the embedding. For nodes with similar mean and embed-
ding, the probabilistic of generating edge is higher which
denotes the commonality. In the first case(subfigure (a)), the
mean of two distribution are different which means there
may be no edge between the nodes, however, the attributes
may be similar such as the blue and red dot. In the second
case(subfigure (b)), the mean of two distribution are close
which means there may exist edge with high possibility,
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however, the attributed may be dissimilar such as the blue
and red dot.

Node 1 Node 2

μ
1

μ
2

(a) Situation of similar at-
tributes without edges

Node 1 Node 2

μ
1

μ
2

(b) Situation of neighbors
with different attributes

Figure 2: Example of individuality between node attributes
and network topology.

Algorithm 1 Framework of deep generative network em-
bedding.

Input: Attributed network G = {V,E,X}, embedding di-
mension L;

Output: Node embedding H ∈ RN×L

1: Initialize the deep neural network parameters
2: while DGE not converged do
3: Sample batch nodes for minibatch and extract their

attributes and edges
4: Encode: z ∈ qφ(Z|X,E) and reparameterize
5: Decode: Generate node attributes and edges
6: Update θ, φ, pθ(X,E|Z), qφ(Z|X,E) via gradient

descent on the ELBO in Eq. (7)
7: end while
8: return H

Complexity Analysis

The overall algorithmic complexity of a single joint update
of the parameters {θ, φ} is C = MSCMLP where M is
the minibatch size, S is the number of samples of the ran-
dom variate ε, and CMLP is the cost of an evaluation of
the MLPs in the conditional distributions pθ(X,E|Z) and
qφ(Z|X,E). The cost CMLP is of the form O(KD2) where
K is the total number of layers and D is the average dimen-
sion of the layers of the MLPs in the model. These com-
plexities make this approach extremely appealing, since they
are no more expensive than alternative approaches based on
auto-encoder or neural models.

Experimental Evaluation

In this section, we conduct extensive experiments on real-
world datasets to demonstrate the effectiveness of proposed
DGE model on tasks including node classification and link
prediction. We also prove DGE model can capture the indi-
viduality between node attributes and network topology.

Datasets

We conduct experiments on three paper citation networks
and one social network with different scale of nodes. Table
1 illustrates the details of datasets used in our experiment.

Citation datasets We select three datasets of biblio-
graphic network namely Citeseer, Cora and Pubmed. Each
dataset contains bibliographic network which included sci-
entific publications classified into corresponding research
area. Links represent citations among publications. Each
publication in Cora and Citeseer dataset is described by
a 0/1-valued word vector indicating the absence/presence
of the corresponding word from a dictionary with unique
words. The attributes in Pubmed dataset are bag-of-words
representation of a document which is continuous valued.

Social network BlogCatalog is a social network for users
to publish blogs where users are classified based on blog cat-
egory, edges represent the friendship connection. Each blog
is associated with keywords for brief description which is
treated as node attributes.

Table 1: Summary of the datasets used in our experiments.

Dataset #Nodes #Features #Classes
Citeseer 3327 3703 6

Cora 2708 1433 7
BlogCatalog 5196 8189 6

Pubmed 19717 500 3

Baselines

We compare the DGE framework with several state-of-the-
art (attributed) network embedding methods, which can be
divided into the following groups.

Attribute Only. This group of algorithms only consider
node attributes and transform the attribute vectors to low
dimensional representations. We select SVM (Hearst et al.
1998) and AutoEncoder in this group.

Network Only. This group of algorithms leverage net-
work topology information while ignores node attributes.
Representative works include DeepWalk (Perozzi, Al-Rfou,
and Skiena 2014) and LINE (Tang et al. 2015), which use
truncated random walks to generate node sequences and em-
ploy skip-gram model for node representation learning.

Attribute and Network. This group of algorithms con-
sider both node attributes and network topology together
in learning node embedding. We select AANE (Yang et
al. 2015), SNE (Yuan, Wu, and Xiang 2017), GraphSAGE
(Hamilton, Ying, and Leskovec 2017), TADW (Yang et al.
2015), PRRE(Zhou et al. 2018), CAN(Meng et al. 2019),
VGAE(Kipf and Welling 2016) and RIANE(Li et al. 2017a).

The source code and detailed settings of DGE model can
be found in https://github.com/zhoushengisnoob/DGE

Node classification

Node classification has been widely used in literature to
evaluate network embedding. In this subsection, we report
the experimental results of node classification on labeled
datasets. Following the experimental procedure of existing
works (Perozzi, Al-Rfou, and Skiena 2014), we first train
models on the training sets to obtain node representations.
Then we randomly sample 30% labeled nodes to train a
SVM classifier and the rest of the nodes are used to test the
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Table 2: Experimental results of node classification on four datasets.

Group Algorithm Citeseer Cora Blogcatalog Pubmed
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Attribute
Only

SVM 0.670 0.635 0.700 0.673 0.865 0.863 0.807 0.798
AutoEncoder 0.651 0.616 0.659 0.630 0.859 0.856 0.787 0.776

Network
Only

DeepWalk 0.556 0.511 0.775 0.761 0.613 0.606 0.743 0.716
LINE 0.560 0.531 0.777 0.770 0.667 0.663 0.727 0.703

Attribute
+

Network

AANE 0.579 0.541 0.751 0.715 0.856 0.855 0.820 0.813
SNE 0.631 0.596 0.802 0.783 0.814 0.812 0.822 0.802

GraphSAGE 0.622 0.587 0.792 0.778 0.829 0.820 0.814 0.804
TADW 0.720 0.656 0.830 0.816 0.887 0.884 0.833 0.819
PRRE 0.725 0.665 0.852 0.828 0.918 0.917 0.840 0.823
CAN 0.691 0.640 0.839 0.830 0.742 0.718 0.821 0.818

RINAE 0.562 0.516 0.581 0.532 0.771 0.765 0.753 0.752
VGAE 0.705 0.661 0.854 0.851 0.792 0.788 0.818 0.810

DGE
variants

DGE -A 0.712 0.606 0.739 0.702 0.809 0.802 0.806 0.796
DGE -N 0.555 0.498 0.693 0.682 0.649 0.644 0.767 0.759

DGE 0.727 0.668 0.858 0.853 0.931 0.929 0.846 0.846

(a) Citeseer (b) Cora (c) BlogCatalog (d) Pubmed

Figure 3: Link prediction results on four real world datasets.

model. We repeat this process 10 times and report the aver-
age performance in terms of both Micro-F1 and Macro-F1
score. The detailed results are shown in Table 2. To summa-
rize, we have the following observations:

(1) The basic observation is that our proposed DGE
framework achieves better results on four datasets compared
with baseline methods and variants. This shows the effec-
tiveness of our proposed DGE framework in modeling node
attributes and network topology. By comparing DGE with
the variants, we can further infer the advantage of capturing
the commonality and individuality between node attributes
and network topology.

(2) Compared with the attributed only group methods,
we can find that DGE-A achieves similar performance.
However, compared with the network only group meth-
ods, we find that the variant DGE-N achieves worse per-
formance. This is explainable since only modeling the first-
order neighborhood will limit the information captured by
the model and ignore the relationship with node attributes.

(3) Compared with VGAE, CAN and RINAE, we can
find that DGE achieves better performance. Although they
all use variational auto-encoder structure, VGAE only pre-
serves the network topology while ignores the reconstruc-
tion of node attributes, it can not capture either commonal-

ity or individuality. CAN learns two independent embedding
for each node and can not capture the commonality. RINAE
directly concatenates the attributes and adjacent vectors as
feature representation of nodes. Such concatenation ignore
the fact that node attributes and network topology are het-
erogeneous information. The improvement over these vari-
ational auto-encoder based methods indicates the advantage
of modeling both network topology and node attributes in
a unified framework while capturing the commonality and
individuality.

Network Reconstruction

The most primal objective for network embedding is to re-
construct the given network, as a good network embedding
method should ensure that the learned embedding can pre-
serve the original network structure (Zhu et al. 2018). Fol-
lowing the same experimental procedure in many exiting
works (Grover and Leskovec 2016; Yang et al. 2015), we
randomly hold out 50% of the existing links as positive in-
stances in test set and randomly sample the same amount
of non-existing links as negative instances. The residual net-
work is used to train the network embedding models. After
obtaining the latent representations of each node, we evalu-
ate link prediction in the labeled edge dataset. Specifically,
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we rank both positive and negative instances according to
the cosine similarity function. To judge the ranking quality,
we employ the Area Under Curve (AUC) score to evaluate
the ranking list and a higher value indicates a better perfor-
mance. Figure 3 illustrates the results of link prediction on
four real-world datasets. Based on the experimental results,
we have the following observations:

(1) The basic observation is that DGE model achieve bet-
ter performance compared with baseline methods in four
real world datasets. This further indicates the superior of
DGE framework in capturing the similarity between nodes
by embedding nodes into low dimensional space.

(2) In citeseer and cora dataset, algorithms in network
only group achieve poor performance compared with meth-
ods considering both node attributes and network topology.
In Blogcatalog and pubmed dataset, the two group of al-
gorithms achieve similar performance. This is explainable
since the network of citeseer and cora is more sparse than
BlogCatalog and Pubmed. This further indicates the nec-
essary of combining node attributes and network topology
when network is sparse.

(3) Among the four datasets, the RINAE method gets poor
performance. We analysis the results and find that in large
scale network, the adjacent vector is usually sparse, directly
concatenating node attributes and adjacent may miss the in-
dividuality of each information source.
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Figure 4: Relationship between the feature similarity ratio
and variance.

Commonality and individuality captured by DGE

In this section, we conduct experiments to prove that DGE
model can actually capture the commonality and individu-
ality. We calculate two average feature similarity: between
nodes and its neighborhoods as well as between nodes and
all the other nodes in the network. Higher ratio between two
average feature similarity denotes nodes close in network
are more similar in attributes than other nodes, which refers
to higher commonality and lower individuality. As we have
discussed, DGE model captures the individuality by the vari-
ance of probabilistic distribution in the generative process.
We use the logarithmic form of variance to denote how much
individuality DGE model captured.

Figure 4 illustrates the results of feature similarity ratio
w.r.t. variance in DGE model. Each blue dot denotes a node
and the red line is the straight line fitting of the blue dots. We
can observe obvious inverse relationship between variance
and feature similarity ratio, nodes with lower ratio(higher
individuality) will have larger variance. This shows the vari-

(a) Embedding dimension (b) Network/attribute dimen-
sion

Figure 5: Parameter tuning of DGE in Cora dataset.

ance in DGE model can actually capture the individuality
between node attributes and network topology.

Hyper Parameter Tuning For network embedding meth-
ods, an important parameter to tune is the dimension of
learned embedding. Also, in DGE model, another important
parameter is the dimension of embedding based on single
input feature and adjacent vectors. We vary the dimension
from 2 to 256 and examine how the performance changes
with respect to the dimensions. We present the tuning of di-
mension of network embedding in Figure 5-(a) and dimen-
sion of signle input based embedding in Figure 5-(b).

Figure 5(b) illustrates the performance w.r.t. the dimen-
sionality LA of attribute based embedding and LN of net-
work based embedding. The basic observation is that the
performance is not sensitive to the dimensionality as the F1-
score changes a little with the change of dimensionality of
both network topology based embedding and node attribute
based embedding.

Conclusion

In this paper, we have proposed the DGE framework to uti-
lize the deep generative framework to model the common-
ality and individuality between node attributes and network
structure. Based on the statistic analysis on real world at-
tributed network, we use a deep generative model to capture
such relationships and learn node embedding. Meanwhile,
extensive experiments are conducted on real-world datasets
which shows the superior of the proposed DGE framework.
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