
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Posterior-Guided Neural Architecture Search

Yizhou Zhou,1∗ Xiaoyan Sun,2 Chong Luo,2 Zheng-Jun Zha,1† Wenjun Zeng2

1University of Science Technology of China, 2Microsoft Research Asia
zyz0205@mail.ustc.edu.cn, zhazj@ustc.edu.cn, {xysun, cluo, wezeng}@microsoft.com

Abstract

The emergence of neural architecture search (NAS) has
greatly advanced the research on network design. Recent
proposals such as gradient-based methods or one-shot ap-
proaches significantly boost the efficiency of NAS. In this
paper, we formulate the NAS problem from a Bayesian per-
spective. We propose explicitly estimating the joint posterior
distribution over pairs of network architecture and weights.
Accordingly, a hybrid network representation is presented
which enables us to leverage the Variational Dropout so that
the approximation of the posterior distribution becomes fully
gradient-based and highly efficient. A posterior-guided sam-
pling method is then presented to sample architecture candi-
dates and directly make evaluations. As a Bayesian approach,
our posterior-guided NAS (PGNAS) avoids tuning a number
of hyper-parameters and enables a very effective architecture
sampling in posterior probability space. Interestingly, it also
leads to a deeper insight into the weight sharing used in the
one-shot NAS and naturally alleviates the mismatch between
the sampled architecture and weights caused by the weight
sharing. We validate our PGNAS method on the fundamen-
tal image classification task. Results on Cifar-10, Cifar-100
and ImageNet show that PGNAS achieves a good trade-off
between precision and speed of search among NAS methods.
For example, it takes 11 GPU days to search a very com-
petitive architecture with 1.98% and 14.28% test errors on
Cifar10 and Cifar100, respectively.

1 Introduction

Neural architecture search (NAS), which automates the de-
sign of artificial neural networks (ANN), has received in-
creasing attention due to its ability of finding ANNs with
similar or even better performance than manually designed
ones. Essentially, NAS is a bi-level optimization problem.
Given an neural architecture α which belongs to a pre-
defined search space G, the lower-level objective optimizes
the weight wα of the architecture α as

w∗
α = argminwα

L(M(α,wα);Dt), (1)
∗This work was performed while Yizhou Zhou was an intern

with Microsoft Research Asia.
†Corresponding author.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where L is a loss criterion that measures the performance
of network M(α,wα) with architecture α and weight wα

on the training datasetDt; whereas the upper-level objective
optimizes the network architecture α with the weight w∗

α
that has been optimized by the lower-level task as

α∗ = argminα∈G L(M(α,w∗
α);Dv), (2)

on the validation dataset Dv . To solve this bi-level problem,
different approaches have been proposed, e.g. evolutionary-
based methods (Liu et al. 2017; Real et al. 2018), re-
inforcement learning based schemes (Baker et al. 2016;
Zoph and Le 2016; Zoph et al. 2018; Tan et al. 2018;
Zhong et al. 2018; Zela et al. 2018; Real et al. 2018; Baker
et al. 2017; Swersky, Snoek, and Adams 2014; Domhan,
Springenberg, and Hutter 2015; Klein et al. 2016; Liu et
al. 2018) or gradient-based algorithms (Liu, Simonyan, and
Yang 2018; Cai, Zhu, and Han 2018; Brock et al. 2017;
Xie et al. 2018). However, most of these methods suffer
from high computational complexity (often in the orders of
thousands of GPU days) (Liu et al. 2017) (Real et al. 2018)
(Baker et al. 2016) (Zoph and Le 2016) (Zoph et al. 2018),
or lack of convergence guarantee (Cai, Zhu, and Han 2018;
Liu, Simonyan, and Yang 2018; Xie et al. 2018).

Instead of directly tackling the bi-level optimization prob-
lem, some attempts (Wu et al. 2018; Saxena and Verbeek
2016; Shin, Packer, and Song 2018; Xie et al. 2018) relax the
discrete search space G to be continuous. Given one continu-
ous relaxation Gr of topology r, the weight and architecture
can be jointly optimized by the single objective function

r∗, w∗ = argminr,w L(M(Gr, w);Dt). (3)

Then the optimal architecture α∗ is derived by discretizing
the continuous one Gr∗ . These methods greatly simplify the
optimization problem and enable end-to-end training. How-
ever, since the validation set Dv is excluded in Eq. 3, the
search results are usually biased on training datasets.

More recent NAS methods tend to reduce the compu-
tational complexity by decoupling the bi-level optimiza-
tion problem into a sequential one (Bender et al. 2018;
Brock et al. 2017; Guo et al. 2019). Specifically, the search
space G here is defined by an over-parameterized super-
network (one-shot model) with architecture αo. Then the

6973

one-shot NAS starts with optimizing the weights wαo of the
super-network αo by Eq. 1, resulting w∗

αo
as

w∗
αo

= argminwαo
L(M(αo, wαo);Dt). (4)

After that, a number of sub-architectures α are sampled from
αo. Then the best-performing one is selected by

α∗ = argminα⊆αo
L(M(α,w∗

α);Dv), (5)

where w∗
α is inherited from w∗

αo
. We notice that one core

assumption in the one-shot NAS method is that the best-
performing sub-network shares weights with the optimal
super-network. Thus the sampled sub-networks do not need
to be re-trained in the searching process. This assumption,
on the one hand, greatly boosts the efficiency of NAS; on
the other, it could lead to mismatches between weights and
architectures of sampled sub-networks, which jeopardizes
the following ranking results (Xie et al. 2018). More clues
can be found that most one-shot methods rely on fine-tuning
to further improve the performance of the found model. In
addition, the sampling process in current one-shot NAS is
much less explored which has a big impact on the perfor-
mance as demonstrated later in our study (Table 3).

In this paper, we propose modeling the NAS problem
from a Bayesian perspective and accordingly present a new
NAS strategy, i.e. posterior-guided NAS (PGNAS). In PG-
NAS, given a search space G, we estimate the posterior dis-
tribution p(α,w | Dt) (α ∈ G) over pairs of architecture
and weight (α,w). Then optimal architecture is searched by

α∗ = argminα,w∼p(α,w|Dt) L(M(α,w);Dv). (6)

However, since the posterior distribution p(α,w | Dt) is
intractable, we approximate it by a variational distribution
qθ(α,w) as

θ∗ = argminθ L(qθ(α,w), p(α,w | Dt)), (7)

where θ denotes the variational parameters and L measures
the distance between two distributions. Still, finding θ∗ is not
trivial. Therefore, we further propose a hybrid network rep-
resentation to facilitate an end-to-end trainable solution. In
short, our PGNAS manages to leverage the training dataset
to estimate the joint posterior distribution over network ar-
chitecture and weight, based on which an efficient and effec-
tive sampling in posterior probability space is enabled.

We recently noticed that there is a parallel work (Zhou et
al. 2019) that employs the sparse Bayesian learning (SBL)
(Tipping 2001) in NAS. This work focuses on tackling two
problems in the one-shot NAS, i.e., neglect of dependencies
between nodes and problematic magnitude-based operation
pruning. It encodes the node dependency logic into the prior
distribution of the architecture and exploit the SBL to ob-
tain the most sparse solution for the prior distribution. The
entropy of the derived prior distribution with a pre-defined
threshold is then used as the criterion to prune operations.
Differently, we directly formulate NAS in a posterior proba-
bility space, and sample pairs of architecture and weights in
this space to search for good architectures.

In summary, the main contributions of this work are:

• We convert NAS to a distribution construction problem.
We formulate the NAS problem by Bayesian theory and
propose to estimate the joint posterior distribution of
pairs of network architecture and weights. It thus enables
a very efficient search process in the probability space
through a posterior-guided sampling. The presented PG-
NAS achieves a good trade-off between performance and
speed of search, e.g. it speeds up the search process by
20X compared with the second best while achieving the
best performance with 1.98% test error on Cifar10.
• An end-to-end trainable solution is proposed to approx-

imate the joint posterior distribution on architecture and
weights. In particular, a hybrid network representation is
presented to facilitate the Variational Dropout (Gal and
Ghahramani 2016)-based solution, which makes the ap-
proximation fully gradient-based and highly efficient.
• Our PGNAS models and samples architecture and

weights jointly. It thus reduces the mismatch between the
architecture and weights caused by weight sharing in the
one-shot NAS and improves the reliability of evaluation
for the sampled network. In our PGNAS, the sampled
weights can be adopted directly by the searched architec-
ture to achieve high performance without fine-tuning.
• We find that the weight sharing in our PGNAS can be

viewed as a re-parametrization that enables us to esti-
mate the posterior distribution via end-to-end optimiza-
tion. This finding may help in better understanding of
weight sharing that is well-accepted in the one-shot NAS.

2 PGNAS

In this section, we first formulate the target problem in our
PGNAS via the joint posterior distribution. Then an end-to-
end trainable solution is presented to approximate the pos-
terior distribution. At last, an efficient sampling and ranking
scheme is described to facilitate the search process.

In the following, we use ws
l ∈ RKl×Hl×s×s to denote the

convolution weight matrix in layer l with spatial kernel size
s, where Kl and Hl denote the number of input and output
channels in layer l, respectively. ws

l,k ∈ R1×Hl×s×s denotes
the sliced kernel operated on the kth (1 ≤ k ≤ Kl) in-
put channel dimension. w = {ws

l,k} presents weights of the
whole super-network. As deriving an architecture α is equiv-
alent to selecting a set of convolution kernels, we introduce
a set of random variables α = {αs

l,k} (αs
l,k ∈ {0, 1}) to

indicates deactivating or activating convolution kernel ws
l,k

by setting the corresponding αs
l,k to 1 or 0, respectively. We

use boldface for random variables later on.

2.1 Problem Formulation

As defined in Eq. 6 and 7, in order to search a good archi-
tecture from the posterior probability space, we need to con-
struct a joint posterior distribution over α and w which is
usually very hard to obtain. However, we notice it is not nec-
essary to compute it explicitly as deactivating or activating a
convolution kernel is also equivalent to multiplying a binary
mask to the kernel. Hence, we combine the two random vari-
ables into a new one ϕ = {ϕs

l,k}, where ϕs
l,k = ws

l,k ·αs
l,k.

6974

Now, the key problem in our PGNAS becomes the approxi-
mation of the posterior distribution over the hybrid network
representation ϕ. Mathematically,

p(ϕ | X,Y) =
p(Y | X,ϕ)p(ϕ)∫

ϕ
p(Y | X,ϕ)

, (8)

where X = {ximidi = 1, ..., N} and Y = {yi | i =
1, ..., N} denote N training samples and labels, respec-
tively. p(Y | X,ϕ) is the likelihood that can be inferred by∏N

i=1 p(yi | fϕ(xi)), where fϕ denotes a sub-network de-
fined by hybrid representation ϕ. p(ϕ) is the a priori distri-
bution of hybrid representation ϕ. Because the marginalized
likelihood

∫
ϕ
p(Y | X,ϕ) in Eq. 8 is intractable, we use a

variational distribution qθ(ϕ) to approximate Eq. 8 and re-
formulate our target problem as

θ∗ = argminθ Ld(qθ(ϕ), p(ϕ | Dt)),

α∗ = argminϕ∼qθ∗ (ϕ) L(ϕ;Dv).
(9)

Here we choose KL divergence and accuracy to instantiate
Ld and L, respectively.

2.2 Posterior Distribution Approximation

To solve Eq. 9, we employ Variational Inference(VI) which
minimizes the negative Evidence Lower Bound (ELBO)

LV I(θ) : = KL(qθ(ϕ) || p(ϕ))

−
N∑
i=1

∫
qθ(ϕ) log p(yi | fϕ(xi))dϕ,

(10)

Here we propose solving Eq. 10 by the network friendly
Variational Dropout.

Approximation by Network Training Due to the hybrid
network representation, we can use the re-parametrization
trick (Kingma and Welling 2013) as in (Gal 2016; Gal and
Ghahramani 2016) to solve Eq. 10. We choose a determinis-
tic and differentiable transformation function g(·, ·) that re-
parameterizes the qθ(ϕ) as ϕ = g(θ, ε), where ε ∼ p(ε)
is a parameter-free distribution. Take a uni-variate Gaus-
sian distribution x ∼ qθ(x) = N (μ, σ) as an example,
its re-parametrization can be x = g(θ, ε) = μ + σε with
ε ∼ N (0, 1), where μ and σ are the variational parameters
θ. Gal et.al. in (Gal 2016; Gal and Ghahramani 2016) show
that when the network weight is re-parameterized with

ws
l,k = ms

l,k · zs
l,k, where z

s
l,k ∼ Bernoulli(p̃sl), (11)

the function draw w.r.t. variational distribution over net-
work weights w can be efficiently implemented via net-
work inference. Concretely, the function draw is equivalent
to randomly drawing masked deterministic weight matrix
m = {ms

l,k} in neural networks, which is known as the
Dropout operations (Srivastava et al. 2014). Similarly, we
replace ws

l,k in our hybrid representation ϕs
l,k = ws

l,k ·αs
l,k

with ms
l,k · zs

l,k, and reformulate ϕs
l,k as

ϕs
l,k = ms

l,k · εsl,k, where εsl,k = zs
l,k ·αs

l,k, (12)

Algorithm 1: PGNAS
Data: Training dataset Dt, validation dataset

Dv = {X,Y }, learning rate η, number of
candidates C

Result: Searched architecture α∗
1 while Not Converged do
2 Sample M pairs of training sample (x, y) from Dt ;
3 Sample M random variables εi = {εsl,k}, where

εsl,k ∼ Bernoulli(psl) ;
4 psl ← psl +

∂
∂ps

l
[− 1

M

∑M
i=1 p(yi | fθ,εi(xi))] +

∂
∂ps

l
[(
∑

l,k,s

(lsl,k)
2(1−ps

l)

2N ‖ms
l,k‖2) + 1

NH(psl)] ;

5 ms
l,k ← ms

l,k + ∂
∂ms

l,k
[− 1

M

∑M
i=1 p(yi |

fθ,εi(xi))] +
∂

∂ms
l,k

[(
∑

l,k,s

(lsl,k)
2(1−ps

l)

2N ‖ms
l,k‖2)]

;
6 end
7 Sample C random variables εi = {εsl,k}, where

εsl,k ∼ Bernoulli(psl) ;
8 Initialize γbest ;
9 for each εi do

10 Compute performance γi on Dv based on
p(Y | fθ,εi(X)) ;

11 if γi is better than γbest then
12 εbest ← εi ;
13 γbest ← γi
14 end

15 end
16 Derive α∗ from εbest

In Eq. 12, we have an additional random variable αs
l,k that

controls the activation of kernels whose distribution is un-
known. Here we propose using the marginal probability
p(αs

l,k | X,Y) to characterize its behavior, because the
marginal can reflect the expected probability of selecting
kernel αs

l,k given the training dataset. It exactly matches the
real behavior if the selections of kernels in a super-network
are independent. Since the joint distribution of network ar-
chitecture α = {αs

l,k} is a multivariate Bernoulli distribu-
tion, its marginal distribution obeys Bernoulli(psl,k) (Dai et
al. 2013), where psl,k is to be optimized. Therefore, we have

ϕs
l,k = ms

l,k · εsl,k, where εsl,k ∼ Bernoulli(p̃sl · psl).
(13)

Here we omit the subscript k in the original Bernoulli(psl,k)
because the importance of branches which come from the
same kernel size group and layer should be identical. By
replacing p̃sl · psl with a new variable psl , Eq. 13 has the same
form as Eq. 11. Then, we can obtain

LMC(θ) :=KL(qθ(ϕ) || p(ϕ))−
N∑
i=1

log p(yi | fθ,εi(xi)),

s.t. Eε{LMC(θ)} = LV I(θ).
(14)

6975

where variational parameters θ = {ms
l,k} are composed of

the deterministic kernel weights. εi = {εsl,k}i are the ith

sampled random variables which encodes the distribution
of network architecture. Eq. 14 indicates that the (negative)
ELBO can be computed very efficiently. It is equivalent to
the KL term minus the log likelihood that is inferenced by
the super-network fϕ (now reparameterized as fθ,ε). During
each network inference, convolution kernels are randomly
deactivated w.r.t. probability p = {psl }, which is exactly
equivalent to a dropout neural network.

Now, approximating posterior distribution over the hybrid
network representation is converted to optimizing the net-
work fϕ with dropout and a KL regularization term. If the
derivatives of both terms are tractable, we can efficiently op-
timize it in an end-to-end fashion.

Network Optimization In addition to the variational pa-
rameters θ, the variable p̃ and p in Eq. 13 should also be
optimized (either via grid-search (Gal 2016) or gradient-
based method (Gal, Hron, and Kendall 2017)). So we need
to compute ∂

∂p∂mLMC(θ). If each convolution kernel is de-
activated with a prior probability us

l,k along with a Gaus-
sian weight prior N (ws

l,k; 0, I/(d
s
l,k)

2), then the priori dis-
tribution for the hybrid representation ϕ is exactly a spike
and slab prior p(ϕs

l,k) = us
l,k · δ(ws

l,k − 0) + (1 − us
l,k) ·

N (ws
l,k; 0, I/(d

s
l,k)

2), where dsk,l is prior length scale. Fol-
lowing (Gal and Ghahramani 2016; Gal, Hron, and Kendall
2017), the derivatives of Eq. 14 can be approximated as

∂

∂psl ∂m
s
l,k

[− 1

N
(

N∑
i=1

p(yi | fθ,εi(xi)) +H(psl))

+
∑
l,k,s

(dsl,k)
2(1− psl)

2N
‖ms

l,k‖2],
(15)

whereH(psl) =
∑

l,s k
s
l ·psl · log psl and ksl denotes the num-

ber of input channels for convolution kernel of spatial size s
at layer l. Please note that the above derivation is obtained
by setting the prior u to be zero, which indicates the network
architecture prior is set to be the whole super-network. The
motivation of employing u = 0 is that a proper architec-
ture prior is usually difficult to acquire or even estimate, but
u = 0 can be a reasonable one when we choose the over-
parameterized network that proves effective on many tasks
as our super-network. Besides, u = 0 provides us a more
stable way to optimize the LMC(θ) (Gal 2016). So, we will
use the super-network that are built upon manually designed
networks in our experiments.

Intuitively, the derived Eq. 15 tries to find a distribution
that can interpret the data well (the first likelihood term) and
keep the architecture as sparse as possible (the second and
third regularization terms). Please note here that the L2-like
term in Eq. 15 is not a conventional L2 regularization term.
Its coefficient (dsl,k)

2(1 − psl) correlates with architecture
selection parameter p and thus encourages the selection of
kernels whose learned weights w are not only representative
but also sparse (as the gradients w.r.t. p here rely on the spar-
sity of learned w). It is consistent with our design where we

correlate the network weights and architecture by proposing
the hybrid network representation ϕ.

Since the first term in Eq. 15 involves the derivatives
of the non-differentiable Bernoulli distribution (remember
εsl,k ∼ Bernoulli(psl) in Eq. 13), we thus employ the
Gumbel-softmax (Jang, Gu, and Poole 2016) to relax the
discrete distribution Bernoulli(psl) to continuous space and
the ε in Eq. 15 and Eq. 13 can be deterministically drawn by

εsl,k = σ(
1

τ
[log psl − log(1− psl) + log(log r2)

− log(log r1)])

s.t. r1, r2 ∼ Uniform(0, 1),

(16)

where σ denotes the sigmoid function and τ is the temper-
ature that decides how steep the sigmoid function is. If τ
goes to infinite, the above parametrisation is equivalent to
drawing the sample from Bernoulli distribution. (Similar re-
laxation is used in (Gal, Hron, and Kendall 2017) with an-
other re-parametrisation method) By adopting Eq. 16, the
derivatives in Eq. 15 can be computed. Combining the Eq.
8, 10 and 14 , one can see that the posterior distribution over
the hybrid representation ϕ can be approximated by simply
training the super-network in an end-to-end fashion with two
additional regularization terms and dropout ratio p.

2.3 Sampling and Ranking

Once the variational distribution qθ(ϕ) is obtained, we sam-
ple a group of network candidates S = {s1, s2, ..., sC}w.r.t.
qθ(ϕ), where the C is the number of samples. According
to Eq. 13, our sampling process is performed by activating
kernels stochastically with the learned psl , which is equiv-
alent to regular dropout operation. Specifically, each can-
didate is sampled by randomly dropping convolution ker-
nel ws

l,k w.r.t. the probability psl for every l, k and s in
the super-network model. Then the sampled candidates are
evaluated and ranked on a held-out validation dataset. Due
to the hybrid network representation, we actually sample
architecture-weight pairs, which relieves the mismatch prob-
lem. At last, the best-performing one is selected by Eq. 6.

We summarize the complete working flow in Algorithm.
1 and provide proof details in supplementary materials for
better understanding. Please note that the proposed PGNAS,
though not intentionally, leads to an adaptive dropout that re-
flects the importance of different parts in the super-network.
It thus relieves the dependency on the hyper-parameter sen-
sitive, carefully designed drop-out probability in the previ-
ous one-shot methods (Bender et al. 2018).

3 Experiments

To fully investigate the behavior of the PGNAS, we test our
PGNAS on six super-networks. Because we use u = 0 to
facilitate Eq. 15, we construct the super-networks based on
architecture priors perceived from manually designed net-
works. We evaluate the performance of our PGNAS on three
databases Cifar-10, Cifar-100 and ImageNet, respectively.
For every super-network, we insert a dropout layer after each
convolution layer according to Eq. 16 to facilitate the com-
putation of Eq. 15. This modification introduces parameters

6976

Method Error(%) GPUs Days Params(M) Search Method
shake-shake + cutout (DeVries and Taylor 2017) 2.56 - 26.2 -

NAS + more filters (Zoph and Le 2016) 3.65 22400 37.4 RL
NASNET-A + cutout (Zoph et al. 2018) 2.65 1800 3.3 RL

PathLevel EAS + PyramidNet + cutout (Cai et al. 2018b) 2.30 8.3 13.0 RL
ENAS + cutout (Pham et al. 2018) 2.89 0.5 4.6 RL
EAS (DenseNet) (Cai et al. 2018a) 3.44 10 10.7 RL

AmoebaNet-A + cutout (Real et al. 2018) 3.34 3150 3.2 evolution
Hierachical Evo (Liu et al. 2017) 3.63 300 61.3 evolution

PNAS (Liu et al. 2018) 3.63 225 3.2 SMBO
BayesNAS + PyramidNet(Zhou et al. 2019) + cutout 2.40 0.1 3.4 gradient-based
DARTS + cutout (Liu, Simonyan, and Yang 2018) 2.83 4 3.4 gradient-based

SNAS + cutout (Xie et al. 2018) 2.85 1.5 2.8 gradient-based
NAONet + cutout (Luo et al. 2018) 2.07 200 128 gradient-based
One-Shot Top (Bender et al. 2018) 3.70 - 45.3 sampling-based

SMASH (Brock et al. 2017) 4.03 1.5 16.0 sampling-based
PGNAS-MI(ours) 2.06 6.5 33.4 guided sampling
PGNAS-MI∗(ours) 1.98 11.1 32.8 guided sampling

Table 1: Performance comparison with other state-of-the-art results. Please note that we do not fine-tune the network searched
by our method. ∗ indicates the architecture searched by sampling 10000 candidates. Full table is in supplementary material.

and FLOPS of negligible overheads. Our PGNAS is trained
in an end-to-end way with the Stochastic Gradient Descent
(SGD) using a single P40 GPU card for Cifar-10/Cifar-100
and 4 M40 GPU cards for ImageNet. Once a model con-
verges, we sample different convolution kernels w.r.t. the
learned dropout ratio to get 1500/5000/1500 candidate archi-
tectures for Cifar-10, Cifar-100 and ImageNet, respectively.
These 1500 candidates are ranked on a held-out validation
dataset and the one with the best performance will be se-
lected as the final search result.

3.1 Cifar-10 and Cifar-100

Super-network and Hyper-parameters. We test our PG-
NAS on Cifar-10 and Cifar-100 with the super-network,
i.e. SupNet-MI, which are based on the manually de-
signed multi-branch ResNet (Gastaldi 2017). Please refer to
the supplementary material for more details of the super-
networks and all hyper-parameter settings used in this paper.

Comparison with State-of-the-arts. Table. 1 shows the
comparison results on Cifar-10. Here PGNAS-X denotes the
performance of our PGNAS on the super-network SupNet-
X. From top to bottom, the first group consists of state-of-
the-art manually designed architectures on Cifar-10; the fol-
lowing three groups list the related NAS methods utilizing
different algorithms, e.g. RL, evolution, and gradient decent;
the last group exhibits the performance of PGNAS.

Please note that the search spaces utilized in each work
are quite different. For example, (Zoph et al. 2018; Real
et al. 2018; Liu, Simonyan, and Yang 2018; Pham et al.
2018) employ cell-based search space where each cell con-
tains 4 nodes and there are 5-11 operation candidates be-
tween two nodes, (Cai et al. 2018a; 2018b; Zhou et al. 2019)
utilize DenseNet and PyramidNet (Han, Kim, and Kim
2017) as base network, respectively, and (Luo et al. 2018;
Bender et al. 2018; Brock et al. 2017) apply search algo-
rithm on their self-designed search space. PGNAS-MI incor-
porates the multi-branch ResNet which only provides up to 4

operation candidates between two nodes (layers) as the ini-
tial model. It suggests that our search space is much smaller
than the one used in state-of-the-art works such as NAONet,
EAS and PathLevel EAS. Still, the proposed PGNAS is ca-
pable of finding very advanced architectures in a efficient
and effective way, e.g. it finds the architecture at the lowest
errors 1.98% on 11.1 GPU days only.

We also enlist the multi-branch ResNet (Gastaldi 2017)
that inspires the design of our super-network in Table 1. Our
PGNAS-MI outperform ”shake-shake+cutout” by 0.58%.
Regarding the sampling based one-shot method ”One-Shot
Top” which achieves a 3.7% classification error by randomly
sampling 20000 architectures, our PGNAS attains a much
higher performance by sampling only 1500 network archi-
tectures due to the posterior distribution guided sampling.

Table. 2 further demonstrate the performance of our PG-
NAS on a much challenging dataset Cifar-100. Our PG-
NAS achieves a good trade-off on efficiency and accuracy.
It achieves 14.28% error rate with only 11 GPU days, which
outperforms the most advanced results NAONet in terms of
both model performance and search time.

Please note that results of our PGNAS are achieved during
search process without any additional fine-tuning on weights
of the searched architectures, while those of other methods
are obtained by fine-tuning the searched models. In the fol-
lowing ablation study, we will discuss more on this point.

Ablation Study and Parameter Analysis. We first eval-
uate the effect of our posterior distribution guided sampling
method in Table. 3. In order to demonstrate the generaliza-
tion of PGNAS, in addition to the SupNet-MI/SupNet-M
which are based on the multi-branch ResNet, we also ap-
ply PGNAS to the architectures obtained by ENAS (Pham et
al. 2018). We denote them as SupNet-EI/SupNet-E. Please
refer to the supplementary materials for more details.

Compared with the baseline ”Random” sampling that
is implemented by employing predefined dropout strategy
as discussed in (Bender et al. 2018), PGNAS successfully

6977

Method Error(%) GPUs Days Params(M) Search Method
NASNET-A (Zoph et al. 2018) 19.70 1800 3.3 RL

ENAS (Pham et al. 2018) 19.43 0.5 4.6 RL
AmoebaNet-B (Real et al. 2018) 17.66 3150 2.8 evolution

PNAS (Liu et al. 2018) 19.53 150 3.2 SMBO
NAONet + cutout (Luo et al. 2018) 14.36 200 128 gradient-based

PGNAS-MI + constant L2 term(ours) 17.41 - 39.6 -
PGNAS-MI(ours) 14.28 11 46.4 guided sampling

Table 2: State-of-art results on Cifar-100. Please note that we do not fine-tune the network searched by our method. ”PGNAS-MI
+ constant L2 term” indicates we replace the second L2 term in Eq. 15 with conventional a L2 term with a constant weight.

SupNet-EI SupNet-E SupNet-MI SupNet-M
Err. Param. Err. Param. Err. Param. Err. Param.

Full model 2.78% 15.3M 2.98% 4.6M -% 72.7M 2.58% 26.2M
Random w/o FT 13.45% 10.7M 15.87% 3.0M 9.75% 35.4M 2.63% 22.4M
Random w/ FT 3.16% 10.7M 3.47% 3.0M 2.69% 35.4M 2.56% 22.4M

PGNAS 2.56% 10.8M 2.73% 3.1M 2.06% 33.4M 2.20% 21.6M

Table 3: Impact of the guided sampling. w/o FT and w/ FT indicate whether the searched one is fine-tuned on the dataset.

l2 50 150 250 500
Error(%) 2.13 2.06 2.27 2.39

Params(M) 49.9 33.4 23.8 18.2

Table 4: Impact of the weight prior l2 on SupNet-EI.

EI M EI†

τ = 2
3 2.74% 2.49% 2.68%

τ = 1
5 2.56% 2.20% -

Table 5: Impact of the temperature τ . † denotes fine-tuning.

finds better sub-networks which bring relatively 14% - 23%
gain. Evidently, the posterior distribution guided sampling
is much more effective, which validates that our approach
can learn a meaningful distribution for efficient architec-
ture search. Besides, as can be viewed in the table, there
is usually a huge performance gap between the architecture
searched with predefined distribution with and without fine-
tuning, which reveals the mismatching problems.

Table. 4 discusses the weight prior l in Eq. 16. We find

that a good l usually makes the term
∑

l,i,s

(lsl,k)
2(1−ps

l)

2N in
Eq. 15 fall into a commonly used weight decay range. So we
choose l by grid search. As shown in this table, the weight
prior l affects both error rate and model size. The higher the
l is, the smaller the size of parameters. We choose the one
with the minimal error rate.

Table. 5 shows the impact of temperature value τ in Eq.

0.05K 0.5k 1.5k 5.0k 10k 20k
Error(%) 2.17 2.06 2.06 2.04 1.98 -
ΔGDays 0.02 0.23 0.69 2.31 4.63 9.26

Table 6: Impact of the number of candidates on SupNet-MI.

MI∗ M E EI
Channel-level 0.44 0.18 0.33 0.29

Operation-level 0.26 0.10 0.19 0.21

Table 7: Proportions of dropped channels and operations.

16. It shows that a smaller τ leads to a lower error, which
is consistent with the analysis regarding to Eq. 16. The cor-
responding fine-tuned result of our PGNAS also provides
marginal improvement, which demonstrates the reliability of
our PGNAS on sampling of both architecture and weights.

We further evaluate the impact of number of samples in
Table. 6. The performance improves along with the increase
of number of samples as well as the GPU days. Here we
choose sampling 1500 architectures as a trade-off between
the complexity and accuracy. Please also note that com-
pared with other sampling-based NAS methods, our scheme
achieves 2.17 % error rate by sampling only 50 architectures
with the assistance of the estimated a poseteriori distribu-
tion. It further reveals the fact that the estimated distribution
provides essential information of the distribution of architec-
tures and thus significantly facilitates the sampling process
in terms of both efficiency and accuracy.

As discussed before, the correlated L2-like term in the de-
rived objective function Eq. 15 is not a conventional L2 reg-
ularization term. As demonstrated in Table. 2, we observe
severe performance drop with a constant weighted L2 term.

Visualization. We provide the visualization for the
searched architecture of the best-performed PGNAS-MI∗ in
supplementary materials. Given the initial super-network a
multi-branched ResNet whose block structures are identical,
PGNAS can still find diverse structure for each basic block.

3.2 ImageNet

We further evaluate our PGNAS on ImageNet with two
super-networks based on ResNet50 (He et al. 2016) and

6978

Method Error(%)(Top1/Top5) GPUs Days Params(M) Search Method
NASNET-A (Zoph et al. 2018) 26.0/8.4 1800 5.3 RL

AmoebaNet-C (Real et al. 2018) 24.3/7.6 3150 6.4 evolution
PNAS (Liu et al. 2018) 25.8/8.1 225 5.1 SMBO

BayesNAS (λo
w = 0.005) (Zhou et al. 2019) 26.5/8.9 0.2 3.9 gradient-based

FBNet-C (Wu et al. 2018) 25.1/- 9 5.5 gradient-based
DARTS (Liu, Simonyan, and Yang 2018) 26.9/9.0 4 4.9 gradient-based

SNAS (Xie et al. 2018) 27.3/9.2 1.5 4.3 gradient-based
One-Shot Top (Bender et al. 2018) 26.2/- - 6.8 sampling-based

SinglePath (Guo et al. 2019) 25.3/- 12 - sampling-based
PGNAS-D-121(ours) 24.8/7.5 26 6.6 guided sampling

Table 8: Comparison with other state-of-the-art results on ImageNet. Please note our model is directly searched on ImageNet.

Model Res50 Inflated Res50 PGNAS-R-50
Error 23.96% 22.93% 22.73%

Params 25.6M 44.0M 26.0M

Table 9: Test results on ImageNet with inflated ResNet-50.

DenseNet121 (Huang et al. 2017), respectively. Please find
detailed settings in the supplementary material. Rather than
transferring architectures searched on smaller dataset, the
efficiency and flexibility of PGNAS enable us to directly
search architectures on ImageNet within few days.

We first provide test results of our PGNAS on ImageNet
in Table 9 using a relatively small search space by inflating
ResNet50 without limiting the size of the model parameters.
Hype-parameters and training process for the three models
are identical for fair comparison. It can be observed that
PGNAS-R-50 outperforms the ResNet50 by 1.23% with a
similar size of parameters. Table. 8 shows the comparison
with the state-of-the-art results on ImageNet. Our method
can search a very competitive architecture within 26 gpu
days. Please note that we do not explicitly control the param-
eter size of the architectures searched by PGNAS because
the goal of PGNAS is to find the architecture with the best
accuracy. As can be viewed in Table. 4, larger model does
not necessarily generate better performance in our scheme.

Please refer to supplementary materials for more perfor-
mance evaluation and analysis.

4 Discussions

Weight Sharing. Weight sharing is a popular method
adopted by one-shot models to greatly boost the efficiency
of NAS. But it is not well understood why sharing weight
is effective (Elsken, Metzen, and Hutter 2018; Bender et al.
2018). In PGNAS, as discussed in subsection 2.2, we find
that weight sharing can be viewed as a re-parametrization
that enables us to estimate the posterior distribution through
end-to-end optimization in our scheme.

Network pruning. Our method is a NAS method that
conducts channel-level model selection, which is reminis-
cent of network pruning. We claim that the fundamen-
tal goal of NAS and network pruning is quite different.
In fact, most of differentiable/one-shot NAS methods such
as(Liu, Simonyan, and Yang 2018; Cai, Zhu, and Han 2018;
Xie et al. 2018; Wu et al. 2018; Bender et al. 2018;

Guo et al. 2019) start from a pre-defined cell/super-net and
search for sub-architectures. Channel-level search only en-
ables fine-grained architecture search (e.g., ’channel search
space’ in (Guo et al. 2019)). Besides, it is often that all the
channels of an operation are dropped, and PGNAS conducts
operation-level selection in such cases. Please refer to Ta-
ble. 7 for the proportion of channels and operations that are
not selected. Actually, in the re-parameterization process of
Variational Inference that is used for approximating the pos-
terior distribution, many schemes can be adopted. Dropout,
which makes the sampling process resemble pruning, is just
one of them. We could also use additive Gaussian noise for
re-parameterization and the sampling will not involve prun-
ing any more (section 3.2.2 (Gal 2016)).

Limitations and Future Works. One limitation of our
PGNAS is that it can not explicitly choose the non-
parametric operations such as pooling. Another one is
that our PGNAS requires prior knowledge on architectures
which is hard to achieve. Here we approaches the prior only
by manually designed networks. So our future work may be
1) enabling selections on the non-parametric operations (e.g.
assigning a 1x1 convolution after each pooling operation as
a surrogate to decide whether we need this pooling branch
or not.) 2) investigating the robustness of our PGNAS to dif-
ferent prior architectures.

5 Conclusion

In this paper, we view the NAS problem from a Bayesian
perspective and propose a new NAS approach, i.e. PGNAS,
which converts NAS to a distribution construction problem.
It explicitly approximates posterior distribution of network
architecture and weights via network training to facilitate an
more efficient search process in probability space. It also al-
leviates the mismatching problem between architecture and
shared weights by sampling architecture-weights pair, which
provides more reliable ranking results. The proposed PG-
NAS is efficiently optimized in an end-to-end way, and thus
can be easily extended to other large-scale tasks.

Acknowledgement

This work was supported by the National Key R&D Pro-
gram of China under Grant 2017YFB1300201, the National
Natural Science Foundation of China (NSFC) under Grants
61622211 and 61620106009 as well as the Fundamental

6979

Research Funds for the Central Universities under Grant
WK2100100030.

References

Baker, B.; Gupta, O.; Naik, N.; and Raskar, R. 2016. Designing
neural network architectures using reinforcement learning. arXiv
preprint arXiv:1611.02167.
Baker, B.; Gupta, O.; Raskar, R.; and Naik, N. 2017. Accelerat-
ing neural architecture search using performance prediction. arXiv
preprint arXiv:1705.10823.
Bender, G.; Kindermans, P.-J.; Zoph, B.; Vasudevan, V.; and Le, Q.
2018. Understanding and simplifying one-shot architecture search.
In International Conference on Machine Learning, 549–558.
Brock, A.; Lim, T.; Ritchie, J. M.; and Weston, N. 2017. Smash:
one-shot model architecture search through hypernetworks. arXiv
preprint arXiv:1708.05344.
Cai, H.; Chen, T.; Zhang, W.; Yu, Y.; and Wang, J. 2018a. Efficient
architecture search by network transformation. AAAI.
Cai, H.; Yang, J.; Zhang, W.; Han, S.; and Yu, Y. 2018b. Path-
level network transformation for efficient architecture search. arXiv
preprint arXiv:1806.02639.
Cai, H.; Zhu, L.; and Han, S. 2018. Proxylessnas: Direct neural
architecture search on target task and hardware. arXiv preprint
arXiv:1812.00332.
Dai, B.; Ding, S.; Wahba, G.; et al. 2013. Multivariate bernoulli
distribution. Bernoulli 19(4):1465–1483.
DeVries, T., and Taylor, G. W. 2017. Improved regulariza-
tion of convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552.
Domhan, T.; Springenberg, J. T.; and Hutter, F. 2015. Speeding up
automatic hyperparameter optimization of deep neural networks by
extrapolation of learning curves. In IJCAI, volume 15, 3460–8.
Elsken, T.; Metzen, J. H.; and Hutter, F. 2018. Neural architecture
search: A survey. arXiv preprint arXiv:1808.05377.
Gal, Y., and Ghahramani, Z. 2016. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learning. In
international conference on machine learning, 1050–1059.
Gal, Y.; Hron, J.; and Kendall, A. 2017. Concrete dropout. In
Advances in Neural Information Processing Systems, 3581–3590.
Gal, Y. 2016. Uncertainty in deep learning. Ph.D. Dissertation,
PhD thesis, University of Cambridge.
Gastaldi, X. 2017. Shake-shake regularization. arXiv preprint
arXiv:1705.07485.
Guo, Z.; Zhang, X.; Mu, H.; Heng, W.; Liu, Z.; Wei, Y.; and Sun, J.
2019. Single path one-shot neural architecture search with uniform
sampling. arXiv preprint arXiv:1904.00420.
Han, D.; Kim, J.; and Kim, J. 2017. Deep pyramidal residual
networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 5927–5935.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770–778.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger, K. Q.
2017. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
4700–4708.
Jang, E.; Gu, S.; and Poole, B. 2016. Categorical reparameteriza-
tion with gumbel-softmax. arXiv preprint arXiv:1611.01144.

Kingma, D. P., and Welling, M. 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.
Klein, A.; Falkner, S.; Springenberg, J. T.; and Hutter, F. 2016.
Learning curve prediction with bayesian neural networks.
Liu, H.; Simonyan, K.; Vinyals, O.; Fernando, C.; and
Kavukcuoglu, K. 2017. Hierarchical representations for efficient
architecture search. arXiv preprint arXiv:1711.00436.
Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.-J.; Fei-
Fei, L.; Yuille, A.; Huang, J.; and Murphy, K. 2018. Progressive
neural architecture search. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 19–34.
Liu, H.; Simonyan, K.; and Yang, Y. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055.
Luo, R.; Tian, F.; Qin, T.; Chen, E.; and Liu, T.-Y. 2018. Neu-
ral architecture optimization. In Advances in Neural Information
Processing Systems, 7826–7837.
Pham, H.; Guan, M. Y.; Zoph, B.; Le, Q. V.; and Dean, J. 2018.
Efficient neural architecture search via parameter sharing. arXiv
preprint arXiv:1802.03268.
Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2018. Regularized
evolution for image classifier architecture search. arXiv preprint
arXiv:1802.01548.
Saxena, S., and Verbeek, J. 2016. Convolutional neural fabrics. In
Advances in Neural Information Processing Systems, 4053–4061.
Shin, R.; Packer, C.; and Song, D. 2018. Differentiable neural
network architecture search.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent neu-
ral networks from overfitting. The Journal of Machine Learning
Research 15(1):1929–1958.
Swersky, K.; Snoek, J.; and Adams, R. P. 2014. Freeze-thaw
bayesian optimization. arXiv preprint arXiv:1406.3896.
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; and Le, Q. V. 2018.
Mnasnet: Platform-aware neural architecture search for mobile.
arXiv preprint arXiv:1807.11626.
Tipping, M. E. 2001. Sparse bayesian learning and the relevance
vector machine. Journal of machine learning research 1(Jun):211–
244.
Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.;
Vajda, P.; Jia, Y.; and Keutzer, K. 2018. Fbnet: Hardware-aware ef-
ficient convnet design via differentiable neural architecture search.
CoRR abs/1812.03443.
Xie, S.; Zheng, H.; Liu, C.; and Lin, L. 2018. Snas: stochastic
neural architecture search. arXiv preprint arXiv:1812.09926.
Zela, A.; Klein, A.; Falkner, S.; and Hutter, F. 2018. Towards auto-
mated deep learning: Efficient joint neural architecture and hyper-
parameter search. arXiv preprint arXiv:1807.06906.
Zhong, Z.; Yan, J.; Wu, W.; Shao, J.; and Liu, C.-L. 2018. Practical
block-wise neural network architecture generation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2423–2432.
Zhou, H.; Yang, M.; Wang, J.; and Pan, W. 2019. Bayesnas: A
bayesian approach for neural architecture search. arXiv preprint
arXiv:1905.04919.
Zoph, B., and Le, Q. V. 2016. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578.
Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V. 2018. Learning
transferable architectures for scalable image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, 8697–8710.

6980

