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Abstract

Object-based approaches for learning action-conditioned dy-
namics has demonstrated promise for generalization and in-
terpretability. However, existing approaches suffer from struc-
tural limitations and optimization difficulties for common en-
vironments with multiple dynamic objects. In this paper, we
present a novel self-supervised learning framework, called
Multi-level Abstraction Object-oriented Predictor (MAOP),
which employs a three-level learning architecture that enables
efficient object-based dynamics learning from raw visual ob-
servations. We also design a spatial-temporal relational reason-
ing mechanism for MAOP to support instance-level dynamics
learning and handle partial observability. Our results show that
MAOP significantly outperforms previous methods in terms of
sample efficiency and generalization over novel environments
for learning environment models. We also demonstrate that
learned dynamics models enable efficient planning in unseen
environments, comparable to true environment models. In ad-
dition, MAOP learns semantically and visually interpretable
disentangled representations.

Introduction

Model-based deep reinforcement learning (DRL) has recently
attracted much attention for improving sample efficiency
of DRL (Gu et al. 2016; Racanière et al. 2017; Finn and
Levine 2017). One of the core problems for model-based
DRL is to learn action-conditioned dynamics models through
interacting with environments. Pixel-based approaches have
been proposed for such dynamics learning from raw visual
perception, achieving remarkable performance in training
environments (Oh et al. 2015; Chiappa et al. 2017).

To unlock sample efficiency of model-based DRL, learn-
ing action-conditioned dynamics models that generalize over
unseen environments is critical yet challenging. Finn, Good-
fellow, and Levine (2016) proposed a dynamics learning
method that takes a step towards generalization over object
appearances. Zhu, Huang, and Zhang (2018) developed an
object-oriented dynamics predictor to support generalization.
However, due to structural limitations and optimization dif-
ficulties, these methods do not efficiently generalize over
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environments with multiple controllable and uncontrollable
dynamic objects and different static object layouts.

To address these limitations, we propose a novel three-
level learning framework for self-supervised learning of
object-oriented dynamics model, called Multi-level Abstrac-
tion Object-oriented Predictor (MAOP). This framework
simultaneously learns disentangled object representations
and predicts object motions conditioned on their historical
states, their interactions to other objects, and an agent’s ac-
tions. To reduce the complexity of such concurrent learning
and improve sample efficiency, MAOP employs a three-level
learning architecture from the most abstract level of motion
detection, to dynamic instance segmentation, and to dynam-
ics learning and prediction. A more abstract learning level
solves an easier problem and has lower learning complexity,
and its output provides a coarse-grained guidance for a less
abstract learning level, improving its speed and quality of
learning.

Specifically, we perform motion detection to detect pro-
posal regions that potentially contain dynamic instances for
the follow-up dynamic instance segmentation. Then we ex-
ploit spatial-temporal information of locomotion property
and appearance patterns to capture coarse region propos-
als of dynamic instances. Finally we use them to guide the
learning of the object representations and instance localiza-
tion at the level of dynamics learning. This three-level ar-
chitecture is inspired by humans’ multi-level motion per-
ception from cognitive science studies (Johansson 1975;
Lu and Sperling 1995) and multi-level abstraction search in
constraint optimization (Zhang and Shah 2016). In addition,
we design a novel CNN-based spatial-temporal relational
reasoning mechanism for MAOP, which includes a Relation
Net to reason about spatial relations between objects and an
Inertia Net to learn temporal effects. This mechanism offers
a disentangled way to handle physical reasoning in settings
with partial observability.

Our results show that MAOP significantly outperforms
previous methods for learning dynamics models in terms of
sample efficiency and generalization over novel settings with
multiple controllable and uncontrollable dynamic objects
and different object layouts. MAOP enables model learn-
ing from few interactions with environments and accurately
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predicting the dynamics of objects as well as raw visual ob-
servations in previously unseen environments. The learned
dynamics model enables an agent to directly plan in unseen
environments without retraining. In addition, MAOP learns
disentangled representations and gains visually and semanti-
cally interpretable knowledge, including meaningful object
masks, accurate object motions, disentangled relational rea-
soning process, and controllable factors. Last but not least,
MAOP provides a general multi-level framework for learning
object-based dynamics model from raw visual observations,
offering opportunities to easily leverage well-studied object
detection methods (e.g., Mask R-CNN (He et al. 2017)) in
the area of computer vision.

Related Work

Object-oriented reinforcement learning has received
much research attention, which exploits efficient representa-
tions based on objects and their interactions. This learning
paradigm is close to that of human cognition in the phys-
ical world and the learned object-level knowledge can be
efficiently generalized across environments. Early work on
object-oriented RL requires explicit encodings of object rep-
resentations, such as relational MDPs (Guestrin et al. 2003),
OO-MDPs (Diuk et al. 2008), object focused q-learning
(Cobo, Isbell, and Thomaz 2013), and Schema Networks
(Kansky et al. 2017). In this paper, we present an end-to-end,
self-supervised neural network framework that automatically
learns object representations and dynamics conditioned on
actions and object relations from raw visual observations.

Action-conditioned dynamics learning aims to address
one of the core problems for model-based DRL, i.e., con-
structing an environment dynamics model. Several pixel-
based approaches have been proposed for learning how an
environment changes in response to actions through unsu-
pervised video prediction and achieve remarkable perfor-
mance in training environments (Oh et al. 2015; Chiappa et
al. 2017). Fragkiadaki et al. (2016) propose an object-centric
prediction method to learn the dynamics model when given
the object localization and tracking. Finn, Goodfellow, and
Levine (2016) propose an action-conditioned video predic-
tion method that explicitly models pixel motion and learns
invariance to object appearances. Recently, Zhu, Huang, and
Zhang (2018) propose an object-oriented dynamics learning
paradigm. However, it focuses on environments with a single
dynamic object. In this paper, we take a further step towards
object-oriented dynamics modeling in more general environ-
ments with multiple dynamic objects and also demonstrate
its usage for model-based planning. In addition, we design
an instance-aware dynamics mechanism to support instance-
level dynamics learning and handle partial observations.

Relation-based deep learning approaches make signif-
icant progress in a wide range of domains such as physi-
cal reasoning (Chang et al. 2016; Battaglia et al. 2016; van
Steenkiste et al. 2018), computer vision (Watters et al. 2017;
Wu et al. 2017), natural language processing (Santoro et al.
2017), and reinforcement learning (Zambaldi et al. 2018;
Zhu, Huang, and Zhang 2018). Relation-based nets intro-
duce relational inductive biases into neural networks, which

facilitate generalization over entities and relations and en-
ables relational reasoning (Battaglia et al. 2018). This paper
proposes a novel spatial-temporal relational reasoning mech-
anism, which includes a CNN-based Inertia Net for learning
temporal effects in addition to a CNN-based Relation Net for
reasoning about spatial relations.

Instance Segmentation has been one of the fundamen-
tal problems in computer vision and many approaches
have been proposed (Pinheiro, Collobert, and Dollár 2015;
Li et al. 2017; He et al. 2017). Instance segmentation can be
regarded as the combination of semantic segmentation and
object localization. Most models are supervised learning and
require a large labeled training dataset. Liu, He, and Gould
(2015) proposes a weakly-supervised approach to infer object
instances in foreground by exploiting dynamic consistency
in video. In this paper, we design a self-supervised, three-
level approach for learning dynamic rigid object instances.
First, foreground detection computes region proposals for
potential dynamic objects. Based on these region proposals,
we then learn coarse dynamic instance segmentation. This
coarse instance segmentation provides a guidance for learn-
ing accurate instances at the dynamics learning level, whose
instance segmentation considers not only object appearances
but also motion prediction conditioned on object-to-object
relations and actions.

Multi-level Abstraction Object-Oriented

Predictor (MAOP)

In this section, we will present a novel self-supervised deep
learning framework, aiming to learn object-oriented dynam-
ics models that are able to efficiently generalize over un-
seen environments with different object layouts and mul-
tiple dynamic objects. Such a generalized object-oriented
dynamics learning approach requires simultaneously learn-
ing object representations and motions conditioned on their
historical states, their interactions to other objects, and an
agent’s actions. This concurrent learning is challenging
for an end-to-end approach in complex environments. Ev-
idences from cognitive science studies (Johansson 1975;
Lu and Sperling 1995) show that human beings are born
with prior motion perception ability (in Cortical area MT)
of perceiving moving and motionlessness, which enables
learning more complex knowledge, such as object-level dy-
namics prediction. Inspired by these studies, we design a
multi-level learning framework, called Multi-level Abstrac-
tion Object-oriented Predictor (MAOP), which incorporates
motion perception levels to assist in dynamics learning.
Since we focus on the seminal study towards the multi-
level framework for interpretable and efficient dynamics
learning, we make a basic assumption that the environment
only contains rigid objects, which has also been widely
adopted by many papers (Watters et al. 2017; Wu et al. 2017;
Zhu, Huang, and Zhang 2018).

Figure 1 illustrates three levels of MAOP framework: dy-
namics learning, dynamic instance segmentation, and motion
detection. Here we present them from a top-down decompo-
sition view. The dynamics learning level is an end-to-end,
self-supervised neural network, aiming to learn object rep-
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Figure 1: Multi-level dynamics learning framework. From a bottom-up view, we first perform motion detection to produce
foreground masks. Then, we utilize the foreground masks as dynamic region proposals to guide the learning of dynamic instance
segmentation. Finally, we use the learned dynamic instance segmentation networks (Instance Splitter and Merging Net) as a
guiding network to generate region proposals of dynamic instances and guide the learning of Object Detector at the level of
dynamics learning. We provide a pseudocode that sketches out this multi-level framework in Algorithm 1.

resentations and instance-level dynamics, and predict the
next visual observation conditioned on object-to-object re-
lations and an agent’s action. To guide the learning of the
object representations and instance localization at the level
of dynamics learning, the more abstracted level of dynamic
instance segmentation learns a guiding network in a self-
supervised manner, which can provide coarse mask proposals
of dynamic instances. This level exploits spatial-temporal
information of locomotion property and appearance patterns
to capture region proposals of dynamic instances. To facili-
tate the learning of instance segmentation, MAOP employs
the more coarse-grained level of motion detection, which de-
tects changes in image sequences and provides guidance on
proposing regions potentially containing dynamic instance.

Algorithm 1 shows a pseudocode that summarizes the
training process of our framework. As the learning proceeds,
the knowledge distilled from the more coarse-grained level
are gradually refined at the more fine-grained level by consid-
ering additional information. When the training is finished,
the coarse-grained levels of dynamic instance segmentation
and motion detection will be removed at the testing stage. In
the rest of this section, we will describe in detail the design
of each level and their connections.

Motion Detection Level

At this level, we employ foreground detection to detect po-
tential regions of dynamic objects from a sequence of image
frames and provide coarse dynamic region proposals for
assisting in dynamic instance segmentation. In our exper-
iments, we use a basic unsupervised foreground detection
approach (Lo and Velastin 2001). Our framework is also
compatible with many advanced unsupervised foreground de-
tection methods (Lee 2005; Maddalena and Petrosino 2008;
Zhou, Yang, and Yu 2013; Guo et al. 2014) that are more
efficient or more robust to moving camera. These complex
foreground detection methods have the potential to improve
the performance but are not the focus of this work.

Dynamic Instance Segmentation Level

This level aims to generate region proposals of dynamic in-
stances to guide the learning of object masks and facilitate
instance localization at the level of dynamics learning. The
architecture is shown in the middle level of Figure 1. Instance
Splitter aims to identify regions, each of which potentially
contains one dynamic instance. As we focus on the motion
of rigid objects, the affine transformation is approximatively
consistent for all pixels of each dynamic instance mask. In-
spired by this, we define a discrepancy loss Linstance for a

6991



Algorithm 1 Training process for our multi-level framework.
1: Initialization. Initialize the parameters of all neural networks with random weights respectively.
2: Motion Detection Level. Perform foreground detection to produce dynamic region proposals, which potentially have moving

objects.
3: Instance Segmentation Level. Train the dynamic instance segmentation network (including Instance Splitter and Merging

Net) by minimizing LDIS, which includes a proposal loss to focus the dynamic instance segmentation on the dynamic region
proposals from Step 2.

4: Dynamic learning Level. Train the dynamics learning network by minimizing LDL, which includes a proposal loss to utilize
the dynamic instance proposals generated by the trained dynamic instance segmentation network in Step 3 to facilitate the
learning of Object Detector.

sampled region that measures motion consistence of its pix-
els and use it to train Instance Splitter. To compute this loss,
we first compute an average rigid transformation of a sam-
pled region on object masks between two time steps, then
apply this transformation to this region at the previous time
step by Spatial Transformer Network (STN) (Jaderberg et
al. 2015), and finally compared this predicted region with
the region at the current time (the difference is measured by
l2 distance). Obviously, when a sampled region contains ex-
actly one dynamic instance, this loss will be extremely small,
and even zero when object masks are perfectly learned. As
Linstance decreases on every sampled regions of object masks,
Instance Splitter gradually learns to isolate dynamic instances
from background and divide different dynamic objects onto
different masks.

Considering that one object instance may be split into
smaller patches on different masks, we append a Merging
Net (i.e., a two-layer CNN with 1 kernel size and 1 stride) to
Instance Splitter to learn to merge masks. This module uses
a merging loss Lmerge that aims to merge mask candidates
that are adjacent and share the same motion. In addition,
we add a foreground proposal loss Lforground to encourage
attentions on dynamic regions provided by the level of motion
detection, which is defined similar to Lproposal at the level of
dynamics learning. The total loss of this level is given by,
LDIS = Linstance + λ3Lmerge + λ4Lforground.

Although the network structure of this level is similar to
Object Detector in the level of dynamics learning, we do not
integrated them together as a whole network because con-
current learning of both object representations and dynamics
model is not stable. Instead, we first learn the coarse object
representations only based on the spatial-temporal consis-
tency of locomotion and appearance pattern, and then use
them as proposal regions to guide object-oriented dynam-
ics learning at the more fine-grained level, which in turn
fine-tunes the object representations. In addition, MAOP is
also readily to incorporate Mask R-CNN (He et al. 2017) or
other off-the-shelf supervised or unsupervised object detec-
tion methods (Liu et al. 2018; Xu et al. 2019) as a plug-and-
play module into our framework to generate region proposals
of dynamic instances.

Object-Oriented Dynamics Learning Level

The semantics of this level is formulated as learning an
object-based dynamics model with region proposals gen-
erated from the more abstracted level of dynamic instance

segmentation. Its architecture is shown at the top level of
Figure 1, which is an end-to-end neural network and can
be trained in a self-supervised manner. It takes a sequence
of video frames and an agent’s actions as input, learns dis-
entangled representations (including objects, relations and
effects) and dynamics of controllable and uncontrollable dy-
namic object instances conditioned on actions and object
relations, and produces predictions of future frames. The
whole architecture includes four major components: A) an
Object Detector that learns to decompose the input image
into objects; B) an Instance Localization module responsi-
ble for localizing dynamic instances; C) a Dynamics Net for
learning the motion of each dynamic instance conditioned
on the effects from actions and object-level spatial-temporal
relations; and D) a Background Constructor that computes a
background image from learned static object masks. In addi-
tion to Figure 1, we further provide Supplementary Algorithm
S1 (https://arxiv.org/abs/1904.07482) to describe interactions
of these components and the learning paradigm of object-
based dynamics, which is a general framework and agnostic
to the concrete form of each component. In the following
paragraphs, we describe detailed design of each component.

Object Detector and Instance Localization Module.
Object Detector is a CNN module aiming to learn object
masks from a sequence of input images. An object mask de-
scribes a spatial distribution of a class of objects, which forms
the fundamental building block of our object-oriented frame-
work. Considering that instances of the same class are likely
to have different motions, we append an Instance Localization
Module to Object Detector to localize each dynamic instance
to support instance-level dynamics learning. Class-specific
object masks in conjunction with instance localization bridge
visual perception (Object Detector) with dynamics learning
(Dynamics Net), which allows learning objects based on both
appearances and dynamics.

Specifically, Object Detector receives image It ∈
R

H×W×3 at timestep t and outputs object masks Ot ∈
[0, 1]H×W×nO , including dynamic object masks Dt ∈
[0, 1]H×W×nD and static object masks St ∈ [0, 1]H×W×nS ,
where H , W denote the height and width of the input
image, nD and nS denotes the maximum possible num-
ber of dynamic and static object classes respectively, and
nO = nD + nS . Note that our framework does not require
the actual number of object classes, but needs to set a max-
imum number (usually 10 is enough). When they do not
match, some learned object masks may be redundant, which
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Figure 2: Architecture of Dynamics Net (left) and its component Effect Net (right). Different classes of objects are distinguished
by different letters (e.g., A, B, ... , F). Dynamics Net has one Effect Net for each class of objects. An Effect Net consists of one
Inertia Net and several Relation Nets.

does not affect the accuracy of predictions. We have con-
ducted experiments to confirm this and will add the results.
Entry Ou,v,i indicates the probability that pixel Iu,v,: belongs
to the i-th object class. The Instance Localization module
uses learned dynamic object masks to identify each object
instance mask Xt

:,:,i ∈ [0, 1]HM×WM (1 ≤ i ≤ nM ), where
HM , WM denote the height and width of the bounding box
of this instance and nM denotes the maximum possible num-
ber of localized instances. As shown in Figure 1, Instance
Localization first samples a number of bounding boxes on
dynamic object masks and then select the regions, each of
which contains only one dynamic instance. We use the dis-
crepancy loss Linstance described in Section of Dynamic In-
stance Segmentation Level as a selection score for selecting
instance masks. More details of region proposal sampling
and instance mask selection can be found in Supplementary
Section 2 (https://arxiv.org/abs/1904.07482).

Dynamics Net. Dynamics Net is designed to learn
instance-level motion effects of actions, object-to-object spa-
tial relations (Relation Net) and temporal relations of spatial
states (Inertia Net), and to reason about the motion of each
dynamic instance based on these effects. Its architecture is
illustrated as Figure 2, where the motion of each dynamic
instance is individually computed. We take as an example
the computation of the motion of the i-th instance Xt

:,:,i to
illustrate the detailed structure of the Effect Net.

As shown in the right subfigure of Figure 2, Effect Net first
uses a sub-differentiable tailor module introduced by Zhu,
Huang, and Zhang (2018) to enable the inference of dynamics
focusing on the relations with neighbour objects. This mod-
ule crops a w-size “horizon” window from the concatenated
masks of all objects Ot centered on the expected location of
Xt

:,:,i, where w denotes the maximum effective range of rela-

tions. Then, the cropped object masks are concatenated with
constant x-coordinate and y-coordinate meshgrid map (to
make networks more sensitive to the spatial information) and
fed into corresponding Relation Nets (RN) according to their
classes. We use Ct

:,:,i,j to denote the cropped mask that crops
the j-th object class Ot

:,:,j centered on the expected location
of the i-th dynamic instance (the class it belongs to is denoted
as ci, 1 ≤ ci ≤ nD). The effect of object class j on class ci,
Et(ci, j) = RNci,j

(
concat

(
Ct

:,:,i,j ,Xmap,Ymap
))

. Note
that there are total nD × nO RNs for nD × nO pairs of
object classes that share the same architecture but not their
weights. To handle the partial observation problem, we add
an Inertia Nets (IN) to learn spatio-temporal self-effects
of an object class through historical states, Et

self(ci) =

INci

(
concat

(
Xt

:,:,i, X
t+1
:,:,i , . . . , X

t+h
:,:,i

))
, where h is the his-

tory length. There are total nD INs for nD dynamic ob-
ject classes, which share the same architecture but not their
weights. To predict the motion vector mt

i for the i-th dy-
namic instance, all these effects are summed up and then
multiplied by the coded action vector at, that is, mt

i =((∑
j E

t(ci, j)
)
+ Et

self(ci)
)
· at.

Background Constructor. This module constructs the
static background of an input image based on the static object
masks learned by Object Detector. Since Object Detector
can decompose its observation into objects in an unseen
environment with different layouts, Background Construc-
tor is able to generate a corresponding static background
and support the visual observation prediction in novel envi-
ronments. Specifically, Background Constructor maintains a
background memory B ∈ R

H×W×3 which is continuously
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updated with the static object mask learned by Object De-
tector. Denoting α as the decay rate, the updating formula is
given by, Bt = αBt−1 + (1− α)It

∑
i S

t
:,:,i, and B0 = 0.

Prediction and Training Loss. Based on the learned
masks and motions of the object instances, we pro-
pose an object-oriented prediction loss, Lpred-object =∑

i

��STN
(
(ūi, v̄i)

t,mt
i

)
− (ūi, v̄i)

t+1
��2

2
, where (ūi, v̄i)

t

is the excepted location of i-th instance mask Xt
:,:,i. To utilize

the information of ground-true future frames, we also use
a conventional image prediction loss. Our prediction of the
next frame is produced by merging the learned object motions
and the background Bt. The pixels of a dynamic instance
can be calculated by masking the raw image with the corre-
sponding instance mask and we can use STN to apply the
learned instance motion vector mt

i on these pixels. First, we
transform all the dynamic instances according to the learned
instance-level motions. Then, we merge all the transformed
dynamic instances with the background image calculated
from Background Constructor to generate the prediction of
the next frame. We use the pixel-wise l2 loss to restrain im-
age prediction error, denoted as Lpred-image. In addition, we
add a proposal loss to utilize the dynamic instance proposals
for guiding the learning, Lproposal =

��∑
i(D

t
:,:,i − P t

:,:,i)
��2

2
,

where P denotes the dynamic instance region proposals pro-
vided by the level of dynamic instance segmentation. There-
fore, the total loss of the dynamics learning level is given by,
LDL = Lpred-object + λ1Lpred-image + λ2Lproposal.

Experiments

We compare MAOP with state-of-the-art action-conditioned
dynamics learning baselines, AC Model (Oh et al. 2015),
CDNA (Finn, Goodfellow, and Levine 2016), and OODP
(Zhu, Huang, and Zhang 2018). AC Model adopts an encoder-
LSTM-decoder structure, which performs transformations in
hidden space and constructs pixel predictions. CDNA explic-
itly models pixel motions to achieve invariance to appearance.
OODP trys to simultaneously learn object-based represen-
tations, relations and motion effects. MAOP adopts a multi-
level abstraction framework to decompose raw images into
objects and predict instance-level dynamics based on actions
and object relations. OODP and MAOP both aim at learning
object-level dynamics through an object-oriented learning
paradigm, which decomposes raw images into objects and
perform prediction based on object-level relations. OODP
is only designed for class-level dynamics, while MAOP is
able to learn instance-level dynamics. See Supplementary
Material (https://arxiv.org/abs/1904.07482) for more imple-
mentation details.

Generalization Ability and Sample Efficiency

We first evaluate zero-shot generalization and sample effi-
ciency on Monster Kong from Pygame Learning Environment
(Tasfi 2016), which allows us to test generalization ability
over various scenes with different layouts. It is the advanced
version of that used by Zhu, Huang, and Zhang (2018), which
has a more general and complex setting. The monster wan-
ders around and breathes out fires randomly, and the fires also

move with some randomness. The agent randomly explores
with actions up, down, left, right, jump and noop. All these
dynamic objects interact with the environment and other ob-
jects according to the underlying physics engine. Moreover,
gravity and jump model has a long-term dynamics effects,
leading to a partial observation problem. To test whether our
model can truly learn the underlying physical mechanism be-
hind the visual observations and perform relational reasoning,
we set the k-to-m zero-shot generalization experiment (Fig-
ure 3), where we use k different environments for training
and m different unseen environments for testing.

Unseen environments for testingTraining

Figure 3: An Example of 1-to-3 zero-shot generalization.

To make a sufficient comparison with previous methods on
object dynamics learning and video prediction, we conduct
1-5, 2-5 and 3-5 generalization experiments with a variety of
evaluation indices. We use n-error accuracy to measure the
performance of object dynamics prediction, which is defined
as the proportion that the difference between the predicted
and ground-true agent locations is less than n pixel. We also
add an extra pixel-based measurement (denoted by object
RMSE), which compares the pixel difference near dynamic
objects between the predicted and ground-truth images.

Figure 4: The performance of object dynamics prediction in
unseen environments as training progresses on 3-to-5 general-
ization problem of Monster Kong. Since we use the first 20k
samples to train the level of dynamic instance segmentation,
the curve of MAOP starts at iteration 20001.

As shown in Table 1, MAOP significantly outperforms
other methods in all experiment settings in terms of gener-
alization ability and sample efficiency of object dynamics
learning. It can achieve 90% 0-error accuracy in unseen en-
vironments even trained with 3k samples from a single envi-
ronment, while other methods have a much lower accuracy
(less than 45%). In addition, MAOP with only 3k training
samples outperforms CDNA using 300k samples. Although
AC Model achieves high accuracy in training environments,
its performance in unseen scenes is much worse, which is
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Table 1: Prediction performance on Monster Kong. k-m means the k-to-m generalization problem. § indicates training with only
3000 samples. ALL represents all dynamic objects. The first column shows the number of samples used for training the models.

Models
Training environments Unseen environments

1-5§ 1-5 2-5 3-5 1-5§ 1-5 2-5 3-5

Agent All Agent All Agent All Agent All Agent All Agent All Agent All Agent All

MAOP 3k 100k 100k 100k - - - -
Training OODP 3k 200k 200k 200k - - - -
Samples AC Model 3k 500k 500k 500k - - - -

CDNA 3k 300k 300k 300k - - - -

MAOP 0.95 0.92 0.98 0.95 0.99 0.96 0.99 0.95 0.94 0.90 0.97 0.92 0.98 0.93 0.99 0.94
0-error OODP 0.15 0.15 0.18 0.16 0.22 0.17 0.26 0.20 0.14 0.15 0.20 0.15 0.18 0.15 0.26 0.18

accuracy AC Model 0.01 0.36 0.87 0.94 0.80 0.93 0.77 0.92 0.01 0.20 0.08 0.16 0.30 0.48 0.45 0.66
CDNA 0.28 0.62 0.77 0.84 0.78 0.82 0.78 0.84 0.26 0.44 0.79 0.80 0.78 0.78 0.81 0.83

MAOP 24.58 21.96 21.97 23.04 29.67 27.22 25.55 24.30
Object OODP 65.63 66.44 66.66 64.73 65.46 67.41 67.78 64.95
RMSE AC Model 71.02 18.88 22.39 21.30 77.24 57.41 55.45 43.48

CDNA 40.92 24.52 24.37 24.18 51.08 37.15 27.67 25.33

probably because its pure pixel-level inference easily leads
to overfitting. CDNA performs better than AC Model, but
still cannot efficiently generalize with limited training sam-
ples. Since OODP has structural limitation and optimization
difficulty, it has innate difficulty on frames with multiple
dynamic objects. In Figure 4 and Supplementary Figure S3
(https://arxiv.org/abs/1904.07482), we also plot the learning
curve of these models. Compared to other models, MAOP
achieves higher prediction accuracy for unseen environments
at a faster rate during the training process. We further add
a video (see https://arxiv.org/abs/1904.07482) for better per-
ceptual understanding of prediction performance in unseen
environments.

Table 2: Accuracy of dynamics prediction on Flappy Bird
and Freeway. Since only the agent’s ground-true location is
accessible in ALE, we just show the dynamics prediction
of the agent. Actually, we observe that predictions of other
dynamic objects are also accurate by comparing predicted
with ground-true images (see Supplementary Figure S5 at
https://arxiv.org/abs/1904.07482).

Models
Flappy Bird (0-acc) Freeway (Agent)

100 samples 300 samples 100 samples

Agent All Agent All 0-acc 1-acc 2-acc

MAOP 0.83 0.89 0.83 0.92 0.78 0.84 0.89
OODP 0.01 0.18 0.02 0.15 0.26 0.33 0.42

AC Model 0.03 0.18 0.04 0.23 0.31 0.38 0.42
CDNA 0.13 0.77 0.30 0.81 0.42 0.43 0.47

We also evaluate MAOP on Flappy Bird and Freeway.
Flappy Bird is a side-scroller game with a moving camera.
Freeway is an Atari game, which has a large number of dy-
namic objects. Since the testing environments will be similar
with the training ones without limitation of samples, we limit
the training samples to form a sufficiently challenging gen-
eralization task. MAOP still outperforms existing baseline
methods (Table 2), which demonstrates that MAOP is effec-

tive for the concurrent dynamics prediction of a large number
of objects. In addition, we conduct a modular test to better
understand the contribution of each learning level (see Sup-
plementary Section 3 at https://arxiv.org/abs/1904.07482).
The results show that each level of MAOP can independently
perform well and has a good robustness to the proposals gen-
erated by the more abstracted level. Taken together, the above
results demonstrates that MAOP has superiority of sample
efficiency and generalization ability, which suggests MAOP
is good at relational reasoning and learns the object-level
dynamics, rather than learn some patterns from mass data to
recover the dynamics as the conventional neural networks do.

To further test the priority and limitation of MAOP, we
have applied MAOP on a diverse set of games on Atari. Test-
ing results with 3k training samples on Skiing, MsPacman,
Krull, Pong, MontezumaRevenge, and Breakout are shown in
Table 3. We observe a superior performance of MAOP over
baseline models on Skiing, MsPacman, Krull and Pong, and a
slightly worse performance on Breakout. Because our model
is designed for scenes with multiple dynamic objects, its per-
formance may be lower than some simpler baseline methods
on environments with only one or two dynamic objects, such
as MontezumaRevenge and Breakout.

Model-Based Planning in Unseen Environments

Although RL has achieved considerable successes, most RL
researches tend to “train on the test set” (Nichol et al. 2018;
Pineau 2018). It is critical yet challenging to develop model-
based RL approaches that support generalization over unseen
environments. Monte Carlo tree search (MCTS) (Browne et
al. 2012) is developed to leverage the environment models to
conduct efficient lookahead search, which has shown remark-
able effectiveness on long-term planning, such as AlphaGo
(Silver et al. 2016). Considering that our learned dynamics
model can efficiently generalize to unseen environments, we
can directly use our learned model to perform MCTS in un-
seen environments. To perform long-range planning, we first
test our performance of long-range prediction, as shown in
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Table 3: Accuracy of dynamics prediction on six Atari games.

Model Skiing MsPacman Krull Pong MontezumaRevenge Breakout

0acc 1acc 2acc 0acc 1acc 2acc 0acc 1acc 2acc 0acc 1acc 2acc 0acc 1acc 2acc 0acc 1acc 2acc

MAOP 0.97 0.99 1.00 0.65 0.88 0.94 0.14 0.48 0.73 0.63 0.73 0.83 0.95 1.00 1.00 0.52 0.66 0.77
OODP 0.62 0.80 0.90 0.30 0.35 0.46 0.02 0.08 0.16 0.46 0.64 0.66 0.66 0.92 0.99 0.73 0.66 0.80

AC Model 0.27 0.47 0.56 0.44 0.52 0.54 0.01 0.05 0.13 0.37 0.40 0.42 0.63 0.79 0.95 0.45 0.57 0.66
CDNA 0.76 0.95 0.99 0.52 0.68 0.74 0.27 0.41 0.51 0.65 0.66 0.79 0.96 1.00 1.00 0.63 0.71 0.77

Supplementary Table S1 (https://arxiv.org/abs/1904.07482).
MAOP only trained for 1-step prediction can achieve 90%
2-error accuracy in unseen environments when predicting
3 steps of the future, while the accuracy is 73% when pre-
dicting 6 steps of the future, which is also a satisfactory
performance for lookahead search. Supplementary Figure S7
(https://arxiv.org/abs/1904.07482) illustrates a case visualiz-
ing the 6-step prediction of MAOP in unseen environments.

We evaluate our performance of model-based planning
on Monster Kong. In this game, the goal of the agent is to
approach the princess and a reward will be given when the
straight-line distance from agent to princess gets smaller than
that in the agent’s history. The value of such a reward is pro-
portional to the shrinking distance. The agent will win with an
extra reward +5 when touching the princess, and lose with an
extra reward -5 when hitting the fires. To gain a better under-
standing of the contribution of MAOP to the MCTS agent, we
compare MCTS in conjunction with MAOP to DQN (Mnih
et al. 2015) and to an ablation (i.e., using the real simulator
of the unseen environments in MCTS). We provide the same
ground-true reward functions for all dynamics model during
MCTS. We conduct random experiments in 5 unseen environ-
ments, where the agent and the princess randomly generate.
We train all models in training environments with 5k samples,
and test zero-shot generalization of the model-free behavior
policy (i.e., DQN) and model-based planning policy (i.e.,
MAOP-based, CDNA-based, OODP-based and AC-based) in
unseen environments.

As shown in Table 4, MAOP achieves almost the same
performance with the true environment model for model-
based planning in unseen environments and significantly
outperforms other baseline models and DQN. The model-
free approach DQN tends to overfit the training environ-
ments and cannot learn to plan in unseen environments,
leading to a much higher death rate and a much lower
score. The learning curves in Supplementary Figure S8
(https://arxiv.org/abs/1904.07482) also verify this. In addi-
tion, we observe that MCTS in conjunction with MAOP
acquires intriguing forward-looking skills, such as jumping
over the fires and jumping across the big gap that are critical
for survival and reaching the goal (we provide videos for the
learned policies at https://arxiv.org/abs/1904.07482).

Interpretable Representations and Knowledge

MAOP takes a step towards interpretable dynamics model
learning. Through interacting with environments, it learns
visually and semantically interpretable knowledge in a self-
supervised manner, which contributes to unlocking the “black
box” of the dynamics prediction and potentially opens the

Table 4: The performance of using MCTS with different
dynamics models, and DQN in unseen environments. REAL
indicates the real simulator. Time Out indicates exceeding
100 steps. Reward is averaged over 21 runs.

Methods Reward Win Lose Time Out

MCTS + MAOP 38.19 47.62% 9.52% 42.86%
MCTS + REAL 38.41 52.38% 9.52% 38.10%
MCTS + CDNA 6.83 0% 33.33% 66.67%
MCTS + OODP 13.95 0% 52.38% 47.62%

MCTS + AC 7.50 0% 47.62% 52.38%
DQN 13.67 26.7% 23.8% 49.5%

avenue for further researches on object-oriented RL, model-
based RL, and hierarchical RL.

Visual Interpretability. To demonstrate the model inter-
pretability of MAOP in unseen environments, we visualize
the learned masks of dynamic and static objects. We highlight
the attentions of object masks by multiplying the raw images
by the binarized masks. Note that MAOP does not require
the actual number of objects but a maximum number and
some learned object masks may be redundant. Thus, we only
show the informative object masks. As shown in Figure 5,
our model captures all the key objects in the environments
including the controllable agents (cowboy, bird, and chicken),
the uncontrollable dynamic objects (monster, fires, pipes and
cars), and the static objects that have effects on the motions
of dynamic objects (ladders, walls and the free space), which
demonstrates that model can learn disentangled object rep-
resentations and distinguish the objects by both appearance
and dynamic property.

Dynamical Interpretability. To show the dynamical in-
terpretability behind image prediction, we test our predicted
motions by comparing RMSEs between the predicted and
ground-truth motions in unseen environments (Supplemen-
tary Table S2 at https://arxiv.org/abs/1904.07482). Intrigu-
ingly, most predicted motions are quite accurate, with the
RMSEs less than 1 pixel. Such a visually indistinguishable
error also verifies the accuracy of our dynamics learning.

Discovery of the Controllable Agent. With the learned
knowledge in MAOP, we can easily uncover the action-
controlled agent from all the dynamic objects, which is useful
semantic information that can be used in heuristic algorithms.
For example, it allows allows agents to efficiently explore
(e.g., contingency awareness (Choi et al. 2019), empower-
ment (Karl et al. 2017), megalomania-drivenness (Song et
al. 2019), and distance-based rewards (Srinivas et al. 2018)).
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Monster Kong

Flappy Bird

Freeway

Figure 5: Visualization of the masked images in unseen envi-
ronments. Top left corner is the raw image.

Specifically, the object that has the maximal variance of to-
tal effects over actions is the action-controlled agent. De-
note the total effects as Et

i = (
∑

j E
t(ci, j)) + Et

self(ci),
the label of the action-controlled agent is calculated as,
argmaxi

∑
t V arat(Et

i ). We observe that our discovery
of the controllable agent achieves right or near 100% ac-
curacy in unseen environments (see Supplementary Table S3
at https://arxiv.org/abs/1904.07482).

Conclusion and Discussion

This paper presents a self-supervised multi-level learning
framework for learning action-conditioned object-based dy-
namics. It enables sample-efficient and interpretable model
learning, and achieves zero-shot generalization over novel
environments with multiple dynamic objects and different
static object layouts. The learned dynamics model enables
an agent to directly plan in unseen environments. MAOP can
easily generalize the learned knowledge over environments
with similar objects but may not work well with those with
totally new objects, which is an important direction for future
work.

As abrupt changes (e.g., colors) are often predictable from
a long-term view or memory, our model can be extended
to more domains by incorporating memory networks (e.g.,
LSTM). In addition, our future work includes extending our
model for deformation prediction (e.g., object appearing, dis-
appearing and non-rigid deformation) and incorporating a
camera motion prediction network module introduced by
(Vijayanarasimhan et al. 2017) for applications such as FPS
games and autonomous driving. Learning 3D dynamics from
2D video is extremely challenging. Conventional neural net-
works try to learn such 3D dynamics by remembering some
patterns from 2D data as they do for the non-rigid deforma-
tion, such as AC Model (Oh et al. 2015) and CDNA (Finn,
Goodfellow, and Levine 2016). This approach achieves good

performance in training environments, but it requires a large
number of data and does not really recover the true 3D dy-
namics model. To learn generalized 3D dynamics model,
object-oriented learning paradigm in conjunction with 3D
CNN (3D data input) is necessary, which is an important
direction for future work.
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