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Abstract

We consider the stochastic multi-armed bandit (MAB) prob-
lem in a setting where a player can pay to pre-observe arm
rewards before playing an arm in each round. Apart from
the usual trade-off between exploring new arms to find the
best one and exploiting the arm believed to offer the highest
reward, we encounter an additional dilemma: pre-observing
more arms gives a higher chance to play the best one, but in-
curs a larger cost. For the single-player setting, we design an
Observe-Before-Play Upper Confidence Bound (OBP-UCB)
algorithm for K arms with Bernoulli rewards, and prove a T -
round regret upper bound O(K2 log T ). In the multi-player
setting, collisions will occur when players select the same
arm to play in the same round. We design a centralized al-
gorithm, C-MP-OBP, and prove its T -round regret relative to
an offline greedy strategy is upper bounded in O(K4

M2 log T )
for K arms and M players. We also propose distributed ver-
sions of the C-MP-OBP policy, called D-MP-OBP and D-
MP-Adapt-OBP, achieving logarithmic regret with respect to
collision-free target policies. Experiments on synthetic data
and wireless channel traces show that C-MP-OBP and D-MP-
OBP outperform random heuristics and offline optimal poli-
cies that do not allow pre-observations.

1 Introduction

Multi-armed bandit (MAB) problems have attracted much
attention as a means of capturing the trade-off between ex-
ploration and exploitation (Bubeck and Cesa-Bianchi 2012)
in sequential decision making. In the classical MAB prob-
lem, a player chooses one of a fixed set of arms and receives
a reward based on this choice. The player aims to maxi-
mize her cumulative reward over multiple rounds, navigat-
ing a tradeoff between exploring unknown arms (to poten-
tially discover an arm with higher rewards) and exploiting
the best known arm (to avoid arms with low rewards). Most
MAB algorithms use the history of rewards received from
each arm to design optimized strategies for choosing which
arm to play. They generally seek to prove that the regret, or
the expected difference in the reward compared to the opti-
mal strategy when all arms’ reward distributions are known
in advance, grows sub-linearly with the number of rounds.
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1.1 Introducing Pre-observations

The classical MAB exploration-exploitation tradeoff arises
because knowledge about an arm’s reward can only be ob-
tained by playing that arm. In practice, however, this tradeoff
may be relaxed. (Yun et al. 2018), for example, suppose that
at the end of each round, the player can pay a cost to observe
the rewards of additional un-played arms, helping to find the
best arm faster. In cascading bandits (Kveton et al. 2015a),
players may choose multiple arms in a single round, e.g., if
the “arms” are search results in a web search application.

In both examples above, the observations made in each
round do not influence the choice of arms in that round.
In this paper, we introduce the MAB problem with pre-
observations, where in each round, the player can pay
to pre-observe the realized rewards of some arms be-
fore choosing an arm to play. For instance, one might
play an arm with high realized reward as soon as it is
pre-observed. Pre-observations can help to reconcile the
exploration-exploitation tradeoff, but they also introduce an
additional challenge: namely, optimizing the order of the
pre-observations. This formulation is inspired by Cognitive
Radio Networks (CRNs), where users can use wireless chan-
nels when they are unoccupied by primary users. In each
round, a user can sense (pre-observe) some channels (arms)
to check their availability (reward) before choosing a chan-
nel to transmit data (play). Sensing more arms leaves less
time for data transmission, inducing a cost of making pre-
observations.

In this pre-observation example, there are negative net-
work effects when multiple players attempt to play the
same arm: if they try to use the same wireless channel,
for instance, the users “collide” and all transmissions fail.
In multi-player bandit problems without pre-observations,
players generally minimize these collisions by allocating
themselves so that each plays a distinct arm with high ex-
pected reward. In our problem, the players must instead
learn ordered sequences of arms that they should pre-
observe, minimizing overlaps in the sequences that might in-
duce players to play the same arm. Thus, one user’s playing
a sub-optimal arm may affect other users’ pre-observations,
leading to cascading errors. We then encounter a new chal-
lenge of designing users’ pre-observation sequences to
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minimize collisions but still explore unknown arms. This
problem is particularly difficult when players cannot com-
municate or coordinate with each other to jointly design
their observation sequences. To the best of our knowledge,
such multi-player bandit problems with pre-observations
have not been studied in the literature.

1.2 Applications

Although many MAB works take cognitive radios as their
primary motivation (Rosenski, Shamir, and Szlak 2016;
Besson and Kaufmann 2018; Kumar et al. 2018), multi-
player bandits with pre-observations could be applied to any
scenario where users search for sufficiently scarce resources
at multiple providers that are either acceptable (to all users)
or not. We briefly list three more applications. First, users
may sequentially bid in auctions (arms) offering equally use-
ful items, e.g., Amazon EC2 spot instance auctions for dif-
ferent regions, stopping when they win an auction. Since
these resources are scarce, each region may only be able
to serve one user (modeling collisions between users). Sec-
ond, in distributed caching, each user (player) may sequen-
tially query whether one of several caches (arms) has the re-
quired file (is available), but each cache can only send data to
one user at a time (modeling collisions). Third, taxis (play-
ers) can sequentially check locations (arms) for passengers
(availability); collisions occur since each passenger can only
take one taxi, and most locations (e.g., city blocks that are
not next to transit hubs) would not have multiple passengers
looking for a taxi at the same time.

1.3 Our Contributions

Our first contribution is to develop an Observe-Before-
Play (OBP) policy to maximize the total reward of a sin-
gle user via minimizing the cost spent on pre-observations.
Our OBP policy achieves a regret bound that is logarithmic
with time and quadratic in the number of available arms. It is
consistent with prior results (Li et al. 2014), and more easily
generalizes to multi-player settings. In the rest of the paper,
“user” and “player” are interchangeable.

We next consider the multi-player setting. Unlike in the
single-player setting, it is not always optimal to observe
the arms with higher rewards first. We show that finding
the offline optimal policy to maximize the overall reward
of all players is NP-hard. However, we give conditions un-
der which a greedy allocation that avoids user collisions is
offline-optimal; in practice, this strategy performs well. Our
second research contribution is then to develop a central-
ized C-MP-OBP policy that generalizes the OBP policy for
a single user. Despite the magnified loss in reward when one
user observes the wrong arm, we show that the C-MP-OBP
policy can learn the arm rankings, and that its regret relative
to the offline greedy strategy is logarithmic with time and
polynomial in the number of available arms and users. Our
third research contribution is to develop distributed ver-
sions of our C-MP-OBP policy, called D-MP-OBP and
D-MP-Adapt-OBP. Both algorithms assume no communi-
cation between players and instead use randomness to avoid
collisions. Despite this lack of communication, both achieve

logarithmic regret over time with respect to the collision-free
offline greedy strategies defined in the centralized setting.

Our final contribution is to numerically validate our
OBP, C-MP-OBP, and D-MP-OBP policies on synthetic
reward data and channel availability traces. We show
that all of these policies outperform both random heuris-
tics and traditional MAB algorithms that do not allow pre-
observations, and we verify that they have sublinear regret
over time. We further characterize the effect on the achieved
regret of varying the pre-observation cost and the distribu-
tion of the arm rewards.

We discuss related work in Section 2 and consider the
single-player setting in Section 3. We generalize these re-
sults to multiple players in centralized (Section 4) and dis-
tributed (Section 5) settings. We numerically validate our re-
sults in Section 6 and conclude in Section 7. Due to the space
constraint, detailed proofs are moved to the full technical re-
port (Zuo, Zhang, and Joe-Wong 2019).

2 Related Work

Multi-armed Bandit (MAB) problems have been studied
since the 1950s (Lai and Robbins 1985; Bubeck and Cesa-
Bianchi 2012). (Auer, Cesa-Bianchi, and Fischer 2002), for
instance, propose a simple UCB1 policy that achieves log-
arithmic regret over time. Recently, MAB applications to
Cognitive Radio Networks (CRNs) have attracted atten-
tion (Ahmad et al. 2009; Lai et al. 2011), especially in
multi-player settings (Liu and Zhao 2010; Anandkumar et
al. 2011; Avner and Mannor 2016; Bonnefoi et al. 2017;
Kumar et al. 2018) where users choose from the same
arms (wireless channels). None of these works include
pre-observations, though some (Avner and Mannor 2014;
Rosenski, Shamir, and Szlak 2016; Besson and Kaufmann
2018) consider distributed settings. (Li et al. 2014; Combes
et al. 2015) study the single-player MAB problem with pre-
observations, but do not consider multi-player settings.

The proposed MAB with pre-observations in a single-
player setting is a variant on cascading bandits (Kveton
et al. 2015a; 2015b; Zong et al. 2016). The idea of pre-
observations with costs is similar to the cost-aware cas-
cading bandits proposed in (Zhou et al. 2018) and contex-
tual combinatorial cascading bandits introduced in (Li et al.
2016). However, in (Zhou et al. 2018), the reward collected
by the player can be negative if all selected arms have zero
reward in one round; in our model, the player will get zero
reward if all selected arms are unavailable. Moreover, most
cascading bandit algorithms are applied to recommendation
systems, where there is only a single player. To the best of
our knowledge, we are the first to study MAB problems with
pre-observations in multi-player settings.

3 Single-player Setting

We consider a player who can pre-observe a subset of K
arms and play one of them, with a goal of maximizing the
total reward over T rounds. Motivated by the CRN scenario,
we assume as in (Anandkumar et al. 2011) an i.i.d. Bernoulli
reward of each arm to capture the occupancy/vacancy of
each channel (arm). Let Yk,t

iid∼ Bern(μk) ∈ {0, 1} de-
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Figure 1: Illustration of Pre-observations

note the reward of arm k at round t, with expected value
μk ∈ [0, 1]. As shown in Figure 1, in each round, the player
chooses a pre-observation list ot := (o

(1)
t , o

(2)
t , . . . , o

(K)
t ),

where o
(i)
t represents the ith arm to be observed at t and ot

is a permutation of (1, 2, . . . ,K). The player observes from
the first arm o

(1)
t to the last arm o

(K)
t , stopping at and play-

ing the first good arm (reward = 1) until the list exhausts.
We denote the index of the last observed arm in ot as I(t),
which is the first available arm in ot or K if no arms are
available. Pre-observing each arm induces a constant cost
τ ; in CRNs, this represents a constant time τ for sensing
each channel’s occupancy. We assume for simplicity that
0 < Kτ < 1. The payoff received by the player at t then
equals: (1− I(t) τ)Y

o
(I(t))
t ,t

; if all the arms are bad (reward
= 0) in round t, then the player will get zero reward for any
ot. Given {ot}Tt=1, we can then define the total realized and
expected rewards received by the player in T rounds:

r(T ) :=
T∑

t=1

(1− I(t) τ)Y
o
(I(t))
t ,t

(1)

E[r(T )] =

T∑
t=1

K∑
k=1

{
(1− k τ)μ

o
(k)
t

k−1∏
i=1

(1− μ
o
(i)
t
)

}
, (2)

where
∏0

i=1(1 − μ
o
(i)
t
) := 1. We next design an algorithm

for choosing ot at each round t to maximize E[r(T )]. We
assume μ1 ≥ μ2 ≥ · · · ≥ μK without loss of generality and
first establish the optimal offline policy:
Lemma 3.1. The optimal offline policy o∗

t that maximizes
the expected total reward is observing arms in the descend-
ing order of their expected rewards, i.e., o∗

t = (1, 2, . . . ,K).
Given this result, we propose an UCB (upper confidence

bound)-type online algorithm, Observe-Before-Play UCB
(OBP-UCB), to maximize the cumulative expected reward
without prior knowledge of the {μk}Kk=1. The OBP-UCB al-
gorithm is formally described in Algorithm 1 and uses UCB
values to estimate arm rewards as in traditional MAB al-
gorithms (Auer, Cesa-Bianchi, and Fischer 2002). Define
μi(t) as the sample average of μi up to round t and ni(t)
as the number of times that arm i has been observed. De-
fine μ̂i(t) := μi(t) +

√
2 log t
ni(t)

as the UCB value of arm i at
round t. At each round, the player ranks all the arms i in de-
scending order of μ̂i(t), and sets that order as ot. The player
observes arms starting at o(1)t , stopping at the first good arm

Algorithm 1 Observe-Before-Play UCB (OBP-UCB)

Initialization: Pull all arms once and update ni(t), μi(t),
μ̂i(t) for all i ∈ [K]
while t do
ot = argsort(μ̂1(t), μ̂2(t), . . . , μ̂K(t));
for i = 1 : K do

Observe arm o
(i)
t ’s reward Y

o
(i)
t ,t

;
n
o
(i)
t
(t+ 1) = n

o
(i)
t
(t) + 1;

μ
o
(i)
t
(t+1) = (μ

o
(i)
t
(t)n

o
(i)
t
(t)+Y

o
(i)
t ,t

)/n
o
(i)
t
(t+1);

if Y
o
(i)
t ,t

= 1 then

Play arm i for this round;
n
o
(j)
t
(t+ 1) = n

o
(j)
t
(t) for all j > i;

μ
o
(j)
t
(t+ 1) = μ

o
(j)
t
(t) for all j > i;

break;
end if

end for
Update μ̂i(t) for all i ∈ [K];
t = t+ 1;

end while

(Y
o
(i)
t ,t

= 1) or when the list exhausts. She then updates the
UCB values and enters the next round. Since we store and
update each arm’s UCB value, the storage and computing
overhead grow only linearly with the number of arms K.

We can define and bound the regret of this algorithm as
the difference between the expected reward of the optimal
policy (Lemma 3.1) and that of the real policy:

R(T ) :=E[r∗(T )]− E[r(T )]

=

T∑
t=1

K∑
k=1

{
(1− k τ)μk

k−1∏
i=1

(1− μi)−

(1− k τ)μ
o
(k)
t

k−1∏
i=1

(1− μ
o
(i)
t
)

}
.

(3)

Theorem 3.2. The total expected regret can be bounded as:

E[R(T )] ≤ ∑K−1
i=1

{
iWi

∑K
j=i+1[

8 log T
Δi,j

+(1+ π2

3 )Δi,j ]

}
,

where Wk := (1− k τ)
∏k−1

i=1 (1−μi) and Δi,j := μi−μj .
The expected regret E[R(T )] is upper-bounded in the or-

der of O(K2 log T ), as also shown by (Li et al. 2014). How-
ever, our proof method is distinct from theirs and preserves
the dependence on the arm rewards (through the Wi in The-
orem 3.2). Since Wk converges to 0 as k → ∞, we expect
that the constant in our O(K2 log T ) bound will be small.
Numerically, when there are more than 8 arms with expected
rewards uniformly drawn from (0, 1), our new regret bound
is tighter than the result from (Li et al. 2014) in 99% of
our experiments. Moreover, unlike the analysis in (Li et al.
2014), our regret analysis can be easily generalized to multi-
player settings, as we show in the next section.

Algorithms with better regret order in T can be de-
rived (Combes et al. 2015), but the regret bound of their
proposed algorithm has a constant term (independent of T ),
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(a) Non-greedy optimal policy. (b) Assigning arms.

Figure 2: Multi-player observation lists, with rewards in the
boxes.

K2η2, where η =
∏K

i=1(1−μi)
−1. This constant term is ex-

ponential in K so it can be significant if K is large. The same
work also provides a lower bound in the order of Ω(K log T )
when the player can only choose less than K arms to pre-
observe in each round.

4 Centralized Multi-player Setting

In the multi-player setting, we still consider K arms with
i.i.d Bernoulli rewards; Yk,t denotes the realized reward of
arm k at round t, with an expected value μk ∈ [0, 1]. There
are now M ≥ 1 players (M ≤ K) making decisions on
which arms to observe and play in each round. We define a
collision as two or more users playing the same arm in the
same round, forcing them to share that arm’s reward or even
yielding zero reward for all colliding players, e.g., in CRNs.
In this setting, simply running the OBP-UCB algorithm on
all players will lead to severe collisions, since all users may
tend to choose the same observation list and play the same
arm. To prevent this from happening, we first consider the
case where a central controller can allocate different arms to
different players.

At each round, the central controller decides pre-
observation lists for all players; as in the single-player
setting, each player sequentially observes the arms in its
list and stops at the first good arm. The players report
their observation results to the central controller, which
uses them to choose future lists. A policy consists of a
set of pre-observation lists for all players. Define om,t :=

(o
(1)
m,t, o

(2)
m,t, . . . , o

(i)
m,t, . . . ) as the pre-observation list of

player m at round t, where o
(i)
m,t represents the ith arm to be

observed. The length of om,t can be less than K. Since col-
lisions will always decrease the total reward, we only con-
sider collision-free policies, i.e., those in which players’ pre-
observation lists are disjoint. Policies that allow collisions
are impractical in CRNs as they waste limited transmission
energy and defeat the purpose of pre-observations (sensing
channel availability), which allow users to find an available
channel without colliding with primary users. The expected
overall reward of all players is then:

E[r(T )] =

T∑
t=1

M∑
m=1

|om,t|∑
k=1

{
(1− kτ)μ

o
(k)
m,t

k−1∏
i=1

(1− μ
o
(i)
m,t

)

}
. (4)

Unlike in the single-player setting, the collision-free re-
quirement now makes the expected reward for one player
dependent on the decisions of other players. Intuitively, we
would expect that a policy of always using better arms in

earlier steps would perform well. We can in fact generalize
Lemma 3.1 from the single-player setting:

Lemma 4.1. Given a pre-observation list om,t for time t,
player m maximizes its expected reward at time t by observ-
ing the arms in descending order of their rewards.

With Lemma 4.1, we can consider the offline optimiza-
tion of the centralized multi-player bandits problem. With
the full information of expected rewards of all arms, i.e.,
{μi}Ki=1, the central controller allocates disjoint arm sets to
different players, aiming to maximize the expected overall
reward shown in (4). We show in Theorem 4.2 that the of-
fline problem is NP-hard.

Theorem 4.2. The offline problem of our centralized multi-
player setting is NP-hard.

Proof. Define xij = 1 if the central controller allocates arm
j to player i and 0 otherwise. The offline optimization prob-
lem can be formulated as:

max
M∑
i=1

K∑
j=1

{[
1− (

∑
k<j

xik + 1)τ
]
xijμj

∏
k<j

(1− xikμk)
}

s.t. xij ∈ {0, 1},
M∑
i=1

xij ≤ 1, j = 1, . . . ,K,

where we define
∑

∅ := 0 and
∏

∅ := 1. We show the
Weapon Target Assignment (WTA) problem (Ahuja et al.
2007) with identical targets, which is NP-hard (Biasi 2013),
can be reduced in polynomial time to a special case of our
problem with τ = 0: The WTA problem with identical tar-
gets aims to maximize the sum of expected damage done
to all targets (mapped to be players), each of which can be
targeted by possibly multiple weapons (mapped to be chan-
nels), where each weapon can only be assigned to at most
one target and weapons of the same type have the same prob-
ability (mapped to be μk) to successfully destroy any target.
Then, it is equivalent to maximizing the expected reward of
all players when τ = 0 in our problem.

Although it is hard to find the exact offline optimal pol-
icy, Lemma 4.1 suggests that a collision-free greedy policy,
which we also refer to as a greedy policy, might be closed to
the optimal one. We first define the ith observation step in
a policy as the set of arms in the ith positions of the players’
observation lists, denoted by si,t := (o

(i)
1,t, o

(i)
2,t, . . . , o

(i)
M,t)

for each round t. We define a greedy policy as one in which
at each observation step, the players greedily choose the
arms with highest expected rewards from all arms not pre-
viously observed. Formally, assuming without loss of gen-
erality that μ1 ≥ μ2 ≥ · · · ≥ μK , in the ith observa-
tion step, players should observe different arms from the set
si,t = {(i− 1)M + 1, (i− 1)M + 2, . . . , iM}. In the sim-
ple greedy-sorted policy, for instance, player m will choose
arm (i− 1)M +m in the ith observation step. A potentially
better candidate is the greedy-reverse policy: at each obser-
vation step, arms are allocated to players in the reverse order
of the probability they observe an available arm from previ-
ous observation steps. Formally, in the ith observation step,
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Algorithm 2 Centralized Multi-Player OBP (C-MP-OBP)

1: Initialization: Pull all arms once and update ni(t),
μi(t), μ̂i(t) for all i ∈ [K]

2: while t do
3: α = argsort(μ̂1(t), μ̂2(t), . . . , μ̂K(t));
4: for i = 1 : L do
5: si,t = α[(i− 1) ∗M + 1 : i ∗M ]
6: end for
7: for m = 1 : M do
8: for i = 1 : L do
9: Observe arm si,t[m]’s reward Ysi,t[m],t;

10: nsi,t[m](t+ 1) = nsi,t[m](t) + 1;
11: μsi,t[m](t+ 1)

12: =
(
μsi,t[m](t) + Ysi,t[m],t

)
/nsi,t[m](t+ 1);

13: if Ysi,t[m],t = 1 then

14: Player m plays arm si,t[m] for this round;
15: nsj,t[m](t+ 1) = nsj,t[m](t) for all j > i;
16: μsj,t[m](t+ 1) = μsj,t[m](t) for all j > i;
17: break;
18: end if
19: end for
20: end for
21: Update μ̂i(t) for all i ∈ [K];
22: t = t+ 1;
23: end while

arm (i − 1)M + j is assigned to the player m with the jth
highest value of Πi−1

l=1(1 − μ
o
(l)
m,t

), or the probability player
m has yet not found an available arm. Experiments show that
when there are 3 players and 9 arms with expected rewards
uniformly drawn from (0, 1), the greedy-reverse policy is the
optimal greedy policy 90% of the time. In fact,

Lemma 4.3. When K ≤ 2M , the optimal policy is the
greedy-reverse policy.

In general, the optimal policy may not be the greedy-
reverse one, or even a greedy policy. Figure 2a shows such a
counter-intuitive example. In this example, player 1 should
choose the arm with 0.15 expected reward, not the one with
0.25 expected reward, in step 2. Player 1 should reserve the
higher-reward arm for player 3 in a later step, as player 3
has a lower chance of finding a good arm in steps 1 or 2.
In practice, we expect these examples to be rare; they occur
less than 30% of the time in simulation. Thus, we design an
algorithm that allocates arms to players according to a speci-
fied greedy policy (e.g., greedy-sorted) and bound its regret.

We propose an UCB-type online algorithm, Centralized
Multi-Player Observe-Before-Play (C-MP-OBP), to learn
a greedy policy without prior knowledge of the expected re-
wards {μk}Kk=1. The C-MP-OBP algorithm is described in
Algorithm 1, generalizing the single-player setting. To sim-
plify the discussion, we assume K/M = L, i.e., each player
will have an observation list of the same length, L, when us-
ing a greedy policy. Note that if K is not a multiple of M ,
we can introduce virtual arms with zero rewards to ensure
K/M = L. At each round t, the central controller ranks all

the arms in the descending order of μ̂i(t), the UCB value
of arm i at round t, and saves that order as α. Then it sets
the first M arms in α, α[1 : M ], as s1,t, the second M
arms in α, α[M + 1 : 2M ] as s2,t, and so on, assign-
ing the arms in each list to players according to the speci-
fied greedy policy. Each player m’s observation list is then
om,t = (s1,t[m], . . . , sL,t[m]). At the end of this round, the
central controller aggregates all players’ observations to up-
date the UCB values and enter the next round.

We define the regret, R(T ) := E[r∗(T )]−E[r(T )], as the
difference between the expected reward of the target policy
and that of C-MP-OBP algorithm:

R(T ) =

T,M,L∑
t,m,k=1

{
(1− kτ)μ(k−1)M+m

k−1∏
i=1

(1− μ(i−1)M+m)

− (1− kτ)μ
o
(k)
m,t

k−1∏
i=1

(1− μ
o
(i)
m,t

)

}
. (5)

Defining cμ := μmax
Δmin

, we show the following regret bound:

Theorem 4.4. The expected regret of C-MP-OBP is
E[R(T )] ≤ cμK

2(L2 + L)
(

8 log T
Δmin

+ (1 + π2

3 )Δmax

)
,

where Δmax = max
i<j

μi − μj , Δmin = min
i<j

μi − μj .

The expected regret E[R(T )] is upper bounded in the
order of O(K2L2 log T ), compared to O(K2 log T ) in the
single-player setting. Thus, we incur a “penalty” of L2 in the
regret order, due to sub-optimal pre-observations’ impact on
the subsequent pre-observations of other users. We note that,
if pre-observations are not allowed, we can adapt the proof
of Theorem 4.4 to match the lower bound of O(KM log T )
given by (Besson and Kaufmann 2018).

5 Distributed Multi-player Setting

We finally consider the scenario without a central controller
or any means of communication between players. In the
CRN setting, for instance, small Internet-of-Things devices
may not be able to tolerate the overhead of communication
with a central server. The centralized C-MP-OBP policy is
then infeasible, and specifying a collision-free policy is dif-
ficult, as the players make their decisions independently.
We propose a Distributed Multi-Player Observe-Before-
Play (D-MP-OBP) online algorithm in which each player
distributedly learns a “good” policy that effectively avoids
collisions with others. Specifically, it converges to one of
the offline collision-free greedy policies that we defined in
Section 4; we then show that D-MP-OBP can be adapted to
achieve a pre-specified greedy policy, e.g., greedy-reverse.
To facilitate the discussion, we define η

(t)
k as an indicator

that equals 1 if more than one player plays arm k in round t

and 0 otherwise. As in the centralized setting, o(k)m,t denotes
the kth arm in player m’s observation list at round t.

The D-MP-OBP algorithm is shown in Algorithm 3. As in
the C-MP-OBP algorithm, in each round, each player inde-
pendently updates its estimate of the expected reward (μk)
for each arm k using the UCB of μk. Each player then sorts
the estimated {μk}Kk=1 into descending order and groups the
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Algorithm 3 Distributed Multi-Player OBP (D-MP-OBP)

1: Initialization: Pull all arms once and update ni(t),
μi(t), μ̂i(t) for all i ∈ [K]

2: while t do
3: α = argsort(μ̂1(t), μ̂2(t), . . . , μ̂K(t));
4: for i = 1 : L do
5: si,t = α[(i− 1) ∗M + 1 : i ∗M ]
6: end for
7: for i = 1 : L do
8: if m∗

i = 0 OR m∗
i /∈ si,t then

9: The player uniformly at random selects an arm
from si,t to observe and record the index of the
chosen arm as m∗

i ;
10: end if
11: Observe the reward Ysi,t[m∗

i ],t
;

12: nsi,t[m∗
i ]
(t+ 1) = nsi,t[m∗

i ]
(t) + 1;

13: μsi,t[m∗
i ]
(t+ 1)

14: =
(
μsi,t[m∗

i ]
(t) + Ysi,t[m∗

i ],t

)
/nsi,t[m∗

i ]
(t+ 1);

15: if Ysi,t[m∗
i ],t

= 1 then

16: The player plays arm si,t[m∗] for this round;
17: nsj,t[m∗](t+ 1) = nsj,t[m∗](t) for all j > i;
18: μsj,t[m∗](t+ 1) = μsj,t[m∗](t) for all j > i;
19: break;
20: end if
21: end for
22: if a collision occurs then
23: Update m∗

i = 0;
24: end if
25: Update μ̂i(t) for all i ∈ [K];
26: t = t+ 1;
27: end while

K arms into L sets. We still use si,t to denote the list of
arms that the players observe in step i at round t. Since users
may have different lists si,t depending on their prior obser-
vations, we cannot simply allocate the arms in si,t to users.
Instead, the users follow a randomized strategy in each step
i at round t. If there was a collision with another player on
arm i at round t − 1 or the arm chosen in round t − 1 does
not belong to her own set si,t, then the player uniformly at
random chooses an arm from her si,t to observe. Otherwise,
the player observes the same arm as she did in step i in round
t−1. If the arm is observed to be available, the player plays it
and updates the immediate reward and the UCB of the arm.
Otherwise, she continues to the next observation step. Note
that this policy does not require any player communication.

To evaluate D-MP-OBP, we define a performance met-
ric, Loss(T ), to be the maximum difference in total reward
over T rounds between any collision-free greedy policy and
the reward achieved by D-MP-OBP. Thus, unlike the re-
gret E[R(T )] defined for our C-MP-OBP policy, E[Loss(T )]
does not target a specific greedy policy. Moreover, unlike C-
MP-OBP, our D-MP-OBP algorithm provides fairness in ex-
pectation for all players, as they have equal opportunities to
use the best arms in each observation step.

Theorem 5.1. The total expected loss, E[Loss(T )], of our
distributed algorithm D-MP-OBP is logarithmic in T .

We finally define the D-MP-Adapt-OBP algorithm,
which adapts Algorithm 3 to steer the players towards a spe-
cific policy by adding a small extra term for each player.
We define a function f(·) for each player to map the arm
chosen in the first observation step to the arm chosen in
the following steps given the predictions of each μk. With
some abuse of notation, we define olm,t as the arm cho-
sen by player m for step l in round t. The function f then
steers the players to the collision-free greedy policy given
by ol+1

m,t = f(olm,t, { ˆμk(t)}Kk=1), ∀l = 1, ..., L − 1 for each
player m; we define the regret with respect to this policy.

We can view the function f as replacing the player index
in the centralized setting with the relative ranking of the arm
chosen by this player in prior observation steps. As an ex-
ample, the greedy-sorted policy used in Section 4 is equiv-
alent to: (1) letting players choose different arms, and (2)
the player that chooses the arm in position m continuing to
choose the arm with the mth best reward of its set si,t in
each subsequent step. Thus, we can steer the players to spe-
cific observation lists within a given collision-free greedy
policy. Their decisions then converge to the specified policy.

Theorem 5.2. The expected regret, E[R(T )] of our dis-
tributed algorithm D-MP-Adapt-OBP is logarithmic in T .

We observe from the proof of Theorem 5.2 that the re-
gret is combinatorial in M but logarithmic in T , unlike the
centralized multi-player setting’s O(K2L2 log T ) regret in
Theorem 4.4. This scaling with M comes from the lack of
coordination between players and the resulting collisions.

6 Experiments

We validate the theoretical results from Sections 3–5 with
numerical simulations. We summarize our results as follows:

Sublinear regret: We show in Figure 3 that our algo-
rithms in the single-player, multi-player centralized, and
multi-player distributed settings all achieve a sublinear re-
gret, respectively defined relative to the single-player of-
fline optimal (Lemma 3.1), the greedy-sorted policy, and a
collision-free-greedy-random policy that in each step greed-
ily chooses the set of arms but randomly picks one collision-
free allocation. Figure 3b shows our C-MP-OBP algorithm’s
regret is even negative for a few runs: by deviating from the
greedy-sorted policy towards the true optimum, the C-MP-
OBP algorithm may obtain a higher reward. The regret of
D-MP-OBP in Figure 3c is larger than that of C-MP-OBP,
likely due to collisions in the distributed setting.

Superiority to baseline strategies: We show in Tables 1
and 2 that our algorithms consistently outperform two base-
lines, in both synthetic reward data (K = 9 arms with ex-
pected rewards uniformly drawn from [0, 0.5] and M = 3
players for multi-player settings) and real channel avail-
ability traces (Wang 2018). Our first baseline is a random
heuristic (called random for synthetic data and random-
real for real data trace) in which users pre-observe arms uni-
formly at random and play the first available arm. Compar-
isons to this baseline demonstrate the value of strategically
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(a) OBP-UCB. (b) C-MP-OBP. (c) D-MP-OBP.

Figure 3: Sublinear regret in each setting. Each line repre-
sents an experiment run with randomly chosen reward dis-
tributions; the bold line is the average over 100 runs.

τ single-opt random single-real random-real
0.01 102% 5% 76% 6%
0.05 92% 34% 71% 47%
0.1 78% 140% 63% 245%

Table 1: Average % reward improvements of OBP-UCB

choosing the order of the pre-observations. Our second base-
line is an optimal offline single-observation policy (single-
opt), which allocates the arms with the M highest rewards
to each player (in the single-player setting, M = 1). These
optimal offline policies are superior to any learning-based
policy with a single observation, so comparisons with this
baseline demonstrate the value of pre-observations. When
the rewards are drawn from a real data trace, they may no
longer be i.i.d. Bernoulli distributed, so these offline poli-
cies are no longer truly “optimal.” Instead, we take a single-
observation UCB algorithm (single-real) as the baseline;
this algorithm allocates the arms with the top M (≥ 1) high-
est UCB values to different users, and each player still ob-
serves and plays one such arm in each round.

Tables 1 and 2 show the average improvements in the cu-
mulative reward achieved by our algorithms over the base-
lines after 5000 rounds over 100 experiment repetitions with
different τ . In each setting, increasing τ causes the improve-
ment over the random baseline to increase: when τ is small,
there is little cost to mis-ordered observations, so the random
algorithm performs relatively well. Conversely, increasing τ
narrows the reward gap with the single-observation baseline:
as pre-observations become more expensive, allowing users
to make them does not increase the reward as much.

Effect of μ: We would intuitively expect that increas-
ing the average rewards μi would increase the reward gap
with the random baseline: it is then more important to pre-
observe “good” arms first, to avoid the extra costs from pre-
observing occupied arms. We confirm this intuition in each
of our three settings. However, increasing the μ’s does not
always increase the reward gap with the single-observation
baseline, since if the μ’s are very low or very high, pre-
observations are less valuable. When the μ’s are small, the
player would need to pre-observe several arms to find an
available one, decreasing the final reward due to the cost
of these pre-observations. When the μ’s are large, simply
choosing the best arm is likely to yield a high reward, and
the pre-observations would add little value. Figures 4a and
4b plot the reward gap with respect to x ( μ’s are drawn from
U(0, x)) : an increase in x increases the reward gap with the

τ single-opt random single-real random-real
0.1 41%, 27% 7%, 39% 35%, 198% 4%, 30%
0.2 33%, 20% 15%, 47% 28%, 183% 10%, 36%
0.3 22%, 11% 30%, 60% 19%, 165% 20%, 47%

Table 2: Average C-MP-OBP, D-MP-OBP % improvement.

(a) Single-observation baseline. (b) Random baseline.

Figure 4: Average cumulative reward gaps in the single-
player (OBP-UCB) setting after 5000 rounds over 100 ex-
periments, when τ = 0.1 and K = 9 arms with expected
rewards μ’s uniformly drawn from the range [0, x].

random baseline, but has a non-monotonic effect compared
to the single-observation baseline. Similar trends in multi-
player settings are shown in the technical report.

7 Discussion and Conclusion

In this work, we introduce pre-observations into multi-
armed bandit problems. Such pre-observations introduce
new technical challenges to the MAB framework, as players
must not only learn the best set of arms, but also the optimal
order in which to pre-observe these arms. This challenge is
particularly difficult in multi-player settings, as each player
must learn an observation set of arms that avoids colli-
sions with other players. We develop algorithms for both the
single- and multi-player settings and show that they achieve
logarithmic regret over multiple rounds. As one of the first
works to consider pre-observations, however, we leave sev-
eral problems open for future work. One might, for instance,
consider user arrivals and departures, which would affect the
offline optimal observation lists; or temporal reward correla-
tions. Both of these would likely arise in our motivating sce-
nario of cognitive radio networks, as devices move in and
out of range and channel incumbents exhibit temporal be-
havior patterns. Another challenging extension would be to
consider cases with more limited collisions, where one arm
might serve multiple users (e.g., if an “arm” is a city block
when users are searching for parking spaces). In such cases,
we must learn not just the probability that the arm is avail-
able (i.e., its expected reward) but also the full distribution
of the number of users that the arm can accommodate.
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