
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

ODSS: Efficient Hybridization for Optimal Coalition Structure Generation

Narayan Changder,1 Samir Aknine,2 Sarvapali Ramchurn,3 Animesh Dutta1

1National Institute of Technology Durgapur, India. 2LIRIS, Lyon 1 University, France. 3University of Southampton,UK.
narayan.changder@gmail.com, samir.aknine@univ-lyon1.fr, sdr1@soton.ac.uk, animesh@cse.nitdgp.ac.in

Abstract

Coalition Structure Generation (CSG) is an NP-complete
problem that remains difficult to solve on account of its com-
plexity. In this paper, we propose an efficient hybrid algo-
rithm for optimal coalition structure generation called ODSS.
ODSS is a hybrid version of two previously established algo-
rithms IDP (Rahwan and Jennings 2008) and IP (Rahwan et
al. 2009). ODSS minimizes the overlapping between IDP and
IP by dividing the whole search space of CSG into two dis-
joint sets of subspaces and proposes a novel subspace shrink-
ing technique to reduce the size of the subspace searched by
IP with the help of IDP. When compared to the state-of-the-art
against a wide variety of value distributions, ODSS is shown
to perform better by up to 54.15% on benchmark inputs.

1 Introduction

Coalition formation involves the coming together of collec-
tives of agents to achieve both their individual and common
goals. It is a key concept in multi-agent systems. Coalition
formation can be applied to many real-world problems such
as task allocation (Shehory and Kraus 1998), and to logistics
applications (Sandhlom and Lesser 1997).

Various algorithms have been proposed to solve the CSG
problem. (Michalak et al. 2016) proposed a hybrid version
of IDP (Rahwan and Jennings 2008) and IP (Rahwan et al.
2009) called ODP-IP and showed empirically that it is faster
than other algorithms. The Inclusion-Exclusion algorithm
proposed by (Björklund, Husfeldt, and Koivisto 2009) was
tested in practice by (Michalak et al. 2016) and the authors
found that the growth rate resembles O(6n).

The ODP-IP algorithm is the fastest exact algorithm for
the CSG problem to date. However, as we show in this paper,
ODP-IP struggles to cope with specific types of inputs which
undermine its hybridization approach. Specifically:

1. we show that many operations in ODP-IP involve redun-
dant searches by IDP and IP. Hence, both IDP and IP per-
form many duplicated operations.

2. we define a new technique to reduce the size of the sub-
space searched by IP with the help of IDP.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3. we show that ODSS 1 delays the overlapping of IDP and
IP operations by dividing the whole subspace of CSG into
two disjoint sets: IDPSET and IPSET. In the first stage,
each set is assigned to IDP and IP. ODSS performs better
by up to 54.15% on benchmark inputs.

4. hence, this paper advances the state-of-the-art by provid-
ing a novel hybridization method.

The rest of the paper is organized as follows: Sections 2 and
3 describe the optimal CSG problem and the ODP-IP algo-
rithm. Section 4 shows the limitations of ODP-IP. Section 5
delineates the new techniques used in the ODSS algorithm,
while sections 6 and 7 describe the empirical evaluation and
draw some conclusions.

2 CSG problem formulation

Let A be the set of agents A = {a1, a2, . . . , an}, n the
number of agents in A. We denote any coalition C =
{a1, a2, . . . , al} as a coalition of agents, where l ≤ n. Let
v be a characteristic function, where v assigns a real value
v(C) to each coalition C. Formally, v : 2A → R.

A coalition structure (CS) over A is a partitioning of A
into a set of disjoint coalitions {C1, C2, . . . , Ck}, where k =
|CS|. In other words, {C1, C2, . . . , Ck} satisfies the following
constraints: 1) Ci, Cj �= ∅ , i, j ∈ {1, 2, . . . , k}. 2) Ci∩Cj =

∅, for all i �= j. 3)
k⋃

i=1

Ci = A.

Definition 1 Given a characteristic function v which maps
each coalition C to a utility value, the value of any coali-
tion structure CS = {C1, C2, . . . , Ck} is defined by v(CS) =∑

Ci∈CS(v(Ci)).

The optimal solution of CSG is a coalition structure CS∗ ∈
ΠA, where ΠA denotes the set of all coalition structures
overA. Thus, CS∗ = arg maxCS∈ΠAv(CS). The CSG prob-
lem is then the problem of finding such CS∗. Note that
{a1, a2, . . . , an} and {1, 2, . . . , n} are used interchangeably
throughout this paper.

1ODSS stands for Overlapping, Dividing the subspace, and
Subspace Shrinking.

7079

3 The ODP-IP Algorithm

OOP-IP is a hybrid algorithm, where two algorithms IDP
(Rahwan and Jennings 2008) and IP (Rahwan et al. 2009)
run in parallel. As soon as any one of IDP or IP returns the fi-
nal result, ODP-IP terminates. The main difference between
IDP and IP is in their working principles. IDP and IP are
based on different design paradigms, where each has its own
strengths and weaknesses compared to the other.

3.1 The IDP Algorithm

The IDP algorithm is an improved version of the DP algo-
rithm (Yeh 1986). The DP is based on dynamic program-
ming: given n agents, to find an optimal partition of the set
of agents A, DP starts by computing an optimal partition of
every subset C ⊆ A with |C| = 2, then DP uses these to
compute an optimal partition of every C ⊆ A with |C| = 3,
and so on, until |C| = n.

The IDP algorithm runs serially just like DP. However,
IDP finds an optimal partition of the set of agents A by
computing an optimal partition of all the coalitions of size
|C| ∈ {2, 3, . . . , 	 2n3
}. IDP uses all these optimal partitions
and computes the optimal partition of A.

3.2 The IP Algorithm

The IP is based on the representation of the search spaces
of the CSG problem using integer partitions of the number
of agents (Rahwan et al. 2009). A subspace is represented
by an integer partition of an integer n, where n is the given
number of agents. A partition of n is an increasing sequence
of positive integers p1, p2, . . . , pk whose sum is n. Each pi
is called a part of the partition. Let the function p(n) de-
note the number of partitions of the integer n. As an exam-
ple, p(4) = 5. All the partitions of the integer n = 4 are
[4], [1, 3], [2, 2], [1, 1, 2], and [1, 1, 1, 1].

In this representation, it is possible to compute upper
and lower bounds on the best coalition structure value in
each subspace. By comparing the bounds for the differ-
ent subspaces, it is possible to prune many non-promising
subspaces and identify the most promising one. For every
promising subspace, IP algorithm constructs multiple search
branches of a search tree, where a node in the branch of the
tree represents a coalition, and every path (from the root
node to a leaf node) represents a partition. IP explores the
tree in a depth-first manner. To speed up the search pro-
cess, IP uses the branch-and-bound technique to avoid the
branches of the search tree which have no potential of con-
taining an optimal solution.

3.3 Key observations

Each subspace in the integer partition graph represents an in-
teger partition. In ODSS, we use the parts and the properties
of the integer partitions and develop a new way of exploring
the CSG subspaces. We observed that the integer partitions
of an integer n have some interesting properties defined be-
low:

P1: the highest part of many integer partitions is greater
than or equal to �n2 �.

P2: the subset-sum of many integer partitions is equal to
�n2 �. Given an integer partition, the subset-sum problem
is to find a subset of parts that are selected from the
parts of the given integer partition whose sum adds up
to a given number (Kleinberg and Tardos 2006).

P3: the subset-sum of some integer partitions is not equal to
�n2 � nor is the highest part of these integer partitions is
greater than or equal to �n2 �

The above properties can be categorized into two disjoint
sets: one with the properties 1 and 2, and the other with the
property 3. Clearly, the subspaces following the properties 1
and 2 are always disjoint with the subspaces following the
property 3. We know that IDP is a serial algorithm and that
it starts exploring the subspaces with the property 1, then the
property 2 and so on. IDP cannot explore the subspaces with
the property 2 before exploring the subspaces with the prop-
erty 1. On the other hand, IP can search any of the promising
subspaces out of all the subspaces. That means that IP can
switch to anywhere in the integer partition graph but that
IDP cannot switch.

4 Limitations of ODP-IP

To elaborate the limitations of ODP-IP, we use the integer
partition graph for ten agents (cf. Figure 1). Given n agents,
the nodes in the integer partition graph are categorized into
n levels, where each level Li ∈ {1, 2, . . . , n} contains the
nodes representing partitions of the integer n containing i
parts. For example, any node in level 2 contains the par-
titions of the integer n which have two parts. In the inte-
ger partition graph, each node P represents a set of coali-
tion structures corresponding to this node P . For example,
the node [1, 1, 8] in the integer partition graph represents all
the coalition structures containing three disjoint coalitions
C1, C2 and C3 with |C1| = 1; |C2| = 1 and |C3| = 8.

In ODP-IP, the way IDP explores the subspaces in the in-
teger partition graph (cf. Figure 1) can be viewed through
the properties of the integer partitions as follows:
1. First, IDP explores the subspaces where the integer parti-

tions associated with these subspaces have a highest part
greater than �n2 �.

2. Next, IDP explores the subspaces where the subset-sum
of the integer partitions associated with these subspaces
equals �n2 �.

3. Finally, IDP explores the subspaces where the integer
partitions associated with these subspaces do not have a
part greater than or equal to �n2 � nor does the subset-sum
of the integer partitions equals �n2 �.
Assume that IDP completes the evaluation of all the

coalition sizes 2, 3 and 4. Figure 1 shows that all the shaded
subspaces in the integer partition graph are explored by
IDP. Now, IP will check only for promising subspaces
out of the remaining subspaces. Any subspace out of all
these subspaces may be a promising one. We observe
that in many cases IP and IDP search the same subspace.
This is due to the fact that IDP and IP are based on
fundamentally different design paradigms. Let us consider
the example given in Figure 1. Assume that the promising

7080

subspaces are searched by IP in the following order:
[1, 1, 8], [1, 2, 7], [1, 1, 1, 7], [1, 3, 6], [1, 1, 2, 6], [1, 1, 1, 1, 6],
. . . [3, 3, 4]. This sequence of subspaces is the same as the
sequence of subspaces explored by IDP. In this scenario, IP
and IDP run in parallel, but they both duplicate the same
parallel processing.

5 The ODSS Algorithm

ODSS is a hybrid algorithm like ODP-IP, where IDP and IP
run in parallel. However, ODSS minimizes the overlapping
between IDP and IP by dividing the whole search space of
CSG into two disjoint sets of subspaces and proposes a novel
subspace shrinking technique to reduce the size of the sub-
space searched by IP with the help of IDP.

ODSS divides the subspaces into two sets of disjoint sub-
spaces: IDPSET and IPSET and allocates IDPSET to IDP
and IPSET to IP. Before going into more details about the
subspace division technique, first we formally detail the
subset-sum problem.
Subset-sum: We define the subset-sum problem as fol-
lows: Given a set (or multiset) of numbers X and a tar-
get integer T , does there exist a set (or multiset) X ′ ⊆
X such that the elements of X ′ sum to T ? Formally,
is SUBSETSUM(X ′)=T? where SUBSETSUM checks if
there is a subset X ′ of the given set X with the sum equal to
T .

Example 1 Assume that the multiset X = {1, 1, 2, 2, 4}
and T = 5. In this example, X ′ = {1, 2, 2} or {1, 4}. The
sum of the integers in {1, 2, 2} and {1, 4} equals 5.

We now describe how ODSS divides the whole search
space of CSG into IDPSET and IPSET.

5.1 Creating IDPSET

ODSS creates the IDPSET using the properties 1 and 2
of the integer partitions. ODSS assigns the subspaces to
IDPSET, where the integer partitions associated with these
subspaces follow the properties 1 and 2. Lines 1-7 in algo-
rithm 1 detail the process of computing IDPSET. In line 3,
MAXINTEGER(SP) returns the highest part in the integer
partitions associated with the subspace SP .

For example, given ten agents, consider the subspace
[1, 2, 3, 4]. Clearly, one of the subsets {1, 4} or {2, 3} of the
set {1, 2, 3, 4} sums to �102 � = 5. i.e. SUBSETSUM(X ′) =
5, where X ′ is {1, 4} or {2, 3}. Hence, ODSS assigns the
subspace [1, 2, 3, 4] to IDPSET. On the other hand, the sub-
space [1, 2, 7] has seven as the highest part which is greater
than � 102 � = 5. So, ODSS assigns [1, 2, 7] to IDPSET.

5.2 Creating IPSET

ODSS creates the IPSET using the property 3 of the inte-
ger partitions. The integer partitions associated with all the
subspaces in IPSET follow the property 3. Lines 2-8 in al-
gorithm 1 detail the computing of the IPSET.

In the integer partition graph (cf. Figure 1), ODSS as-
signs the subspaces [2, 4, 4], [3, 3, 4], [2, 2, 2, 4], [1, 3, 3, 3]
and [2, 2, 2, 2, 2] to IPSET since the subset-sum of the inte-
ger partitions associated with all these subspaces is not equal

[10]

[3, 7]

[2, 2, 6]

[1, 1, 4, 4]

[1, 1, 2, 2, 4]

[1, 1, 1, 1, 3, 3]

[1, 1, 1, 1, 1, 2, 3]

[2, 8][1, 9] [4, 6] [5, 5]

[1, 3, 6] [1, 4, 5] [2, 3, 5] [2, 4, 4][1, 2, 7][1, 1, 8] [3, 3, 4]

[1, 2, 3, 4][2, 2, 3, 3] [1, 2, 2, 5] [1, 1, 3, 5][1, 1, 2, 6][1, 1, 1, 7] [2, 2, 2, 4] [1, 3, 3, 3]

[1, 1, 1, 2, 5] [1, 2, 2, 2, 3] [2, 2, 2, 2, 2][1, 1, 1, 3, 4][1, 1, 2, 3, 3][1, 1, 1, 1, 6]

[1, 1, 1, 2, 2, 3] [1, 1, 2, 2, 2, 2][1, 1, 1, 1, 2, 4][1, 1, 1, 1, 1, 5]

[1, 1, 1, 1, 2, 2, 2][1, 1, 1, 1, 1, 1, 4]

[1, 1, 1, 1, 1, 1, 1, 3] [1, 1, 1, 1, 1, 1, 2, 2]

[1, 1, 1, 1, 1, 1, 1, 1, 2]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

IDPSET IPSET

ID
P

finishes
searching

ID
PSE

T

IP
finishes

searching
IPSE

T

Figure 1: All the subspaces of CSG, given ten agents. The
shaded area indicates the subspaces that are explored when
IDP finishes evaluating all the coalitions of size four. The
white colored subspaces have not yet been searched. Ini-
tially, ODSS assigns IDPSET to IDP and IPSET to IP in
order to search for the optimal coalition structure.

to �n2 � = 5 and nor is the highest part of the integer parti-
tions associated with any of these subspaces greater than 5.

In Figure 1, we can see that IPSET={[2, 4, 4], [3, 3, 4],
[2, 2, 2, 4], [1, 3, 3, 3], [2, 2, 2, 2, 2]} and IDPSET contains
the rest of the subspaces.

Algorithm 1 Subspace division technique

Input: Set of all possible subspaces of size 3,4,. . . n − 1,
given n agents.
Output: Two disjoint sets of subspaces: IDPSET and
IPSET.

1: for i = 3 to n− 1 do
2: for each SP, |SP| == i do
3: if MAXINTEGER(SP) >= �n2 � or

SUBSETSUM(SP) == �n2 � then
4: IDPSET← SP
5: else
6: IPSET← SP
7: end if
8: end for
9: end for

10: Return IDPSET and IPSET

We now formalize the number of subspaces assigned to
IDPSET and IPSET for n agents. The IDPSET contains
the subspaces when the highest part (k) in the integer par-
titions associated with any of the subspaces is greater than
or equal to �n2 �. It means that one part is fixed, namely k and
that the other parts are all the possible integer partitions of

7081

20 21 22 23 24 25 26

102

103

Number of agents

N
um

be
ro

fs
ub

sp
ac

es

IDPSET
IPSET

Figure 2: The number of subspaces in IDPSET and IPSET
for different numbers of agents.

n−k. For example, given ten agents, consider that the high-
est part in the integer partitions is 7. All the possible sub-
spaces where the integer partitions have a highest part seven
are [3, 7], [1, 2, 7], and [1, 1, 1, 7]. In all these subspaces, if
we delete 7 from these integer partitions, then it is exactly
the integer partitions of 3. If the highest part in the integer
partitions of the subspace is greater than or equal to �n2 �,
then the number of subspaces assigned to the IDPSET is de-
fined by the Equation 1. Here, p(n−i) represents the number
of distinct partitions of integer n − i, where i is the highest
part in the integer partitions of subspaces.

n−1∑

i=�n
2 �+1

p(n− i) (1)

In the other case, where the integer partitions have the
highest part less than or equal to �n2 �, these subspaces in
IDPSET are reachable from the subspace [�n2 � − 1, �n2 �] in
the integer partition graph. In this case, the integer �n2 � − 1
is partitioned in all the possible ways, and in the CSG search
space each partition is repeated at most �n2 � times. So, the
total number of subspaces in this case is:

i=�n
2 �∑

1

p(n− �n
2
�+ 1) (2)

By combining the Equations 1 and 2, we observe that
the IDPSET contains at most

∑n−1
i=�n

2 �+1 p(n − i) − 1 +
∑i=�n

2 �
1 p(n − �n2 � + 1) subspaces. Figure 2 shows the ac-

tual number of subspaces allocated to IDPSET and IPSET
for different numbers of agents.

5.3 ODSS Search process

Initially, ODSS assigns IDPSET to IDP and IPSET to IP.
Now, three cases may arise.

Case:1 IP finishes searching all the subspaces in IPSET,
and IDP finishes exploring all the subspaces in
IDPSET. Hence, all the subspaces of the CSG have

been explored. ODSS stops and returns the opti-
mal solution. There is no duplicated work done by
IP and IDP because IP and IDP finished searching
two disjoint sets of subspaces: IPSET and IDPSET.
Lines 2-21 in Algorithm 2 show that IDP and IP
algorithms run in parallel. IP finishes searching all
the promising subspaces in IPSET, and when IP
checks for any other promising subspaces in the
IDPSET (Line 19 in Algorithm 2), IP finds that all
the subspaces in IDPSET have been explored by
IDP. Hence, IP stops and returns the final result.

Case:2 IP finishes searching all the subspaces in IPSET,
and IDPSET is not fully explored by IDP. In this
case, IP starts searching only the promising sub-
spaces in IDPSET (IP ignores the subspaces al-
ready explored by IDP). If IP finishes searching all
the promising subspaces in IDPSET before IDP ex-
plores all the subspaces in IDPSET, ODSS will re-
turn the optimal solution. Otherwise, IDP will ex-
plore all the subspaces in IDPSET.

Case:3 IDPSET has been explored by IDP, but IPSET is
not fully searched by IP. In this case, IDP starts ex-
ploring the subspaces in IPSET in a sequential man-
ner. Note that IDP starts searching the subspaces
in IPSET irrespective of whether IP has already
searched those subspaces or not.

5.4 Searching Multiple Subspaces

We now detail how, with the help of IDP, IP can search
more subspaces. Assume that IP is now searching the sub-
space I = [i1, i2, . . . , ik] and that, at the same time, IDP
already finished evaluating all the coalitions of size s ∈
{2, 3, . . . s∗} (s∗ is the maximum coalition size evaluated
by IDP). IP now performs the following steps:
a) Finding reachable subspaces:Assume that the current

subspace to be searched by IP is I . IP finds the set of all
reachable subspaces from the subspace I using the paths
already evaluated by IDP in the integer partition graph.

b) Identifying the integer to split: To identify a single in-
teger in the subspace I , IP picks an integer x ∈ I so
that splitting x makes it possible to reach the largest
number of integer partitions in X ∗. For instance, given
I = [2, 4, 4], if exactly one integer is split, all the sub-
spaces reachable from [2, 4, 4] are [1, 2, 3, 4], [2, 2, 2, 4],
[1, 1, 2, 2, 4], and [1, 1, 1, 1, 2, 4] by splitting integer four
only. IP simulteneously searches these extra subspaces.

As both IDP and IP algorithms primarily work on two dis-
joint sets of subspaces, their overlapped computations are
delayed. We show in the experimental results that this de-
layed overlap between IDP and IP ensures more positive
synergies between them.

5.5 Subspace size reduction

The efficiency of the IP algorithm depends on the input
data distributions as well as on the size of the subspaces.
In this section, we detail how IP can search more subspaces
by making the subspace size smaller using a new technique

7082

Algorithm 2 ODSS Algorithm

Input: Set of all possible non-empty subsets (2n − 1) of
n agents. The value of a coalition C is v(C). Two disjoint
sets of subspaces: IDPSET and IPSET are also given,
where IDPSET ∪ IPSET=whole subspaces of CSG.

Output: Optimal coalition structure CS∗ and its value.

1: IP algorithm sorts IDPSET and IPSET according to
the upper bound values of subspaces.
//Begin parallel (IDP algorithm runs in parallel)

2: for i = 2 to 	 2n3
 do
3: for each C, C ⊂ A, where |C| = i do

4: for each C′, C′ ⊂ C, where 1 ≤ |C′| ≤ |C|
2 do

5: if v(C′) + v(C \ C′) > v(C) then
6: v(C)← v(C′) + v(C \ C′)
7: end if
8: end for
9: end for

10: end for
11: for each C′, C′ ⊂ A, where 1 ≤ |C′| ≤ |A|

2 do
12: if v(C′) + v(A \ C′) > v(A) then
13: v(A)← v(C′) + v(A \ C′)
14: end if
15: end for

//End parallel
//Begin parallel (IP algorithm runs in parallel)

16: for each promising subspace SP ∈ IPSET do
17: IP searches the subspace SP
18: end for
19: for each promising subspace SP ∈ IDPSET do
20: IP searches the subspace SP
21: end for
22: Return CS∗, v(CS∗)

//End parallel

called subspace shrinking. Assume that the current subspace
IP should search, is Y . The subspace shrinking technique
searches for a smaller sized subspace T and guarantees that,
if T is searched then the subspace Y will also be searched
simultaneously.

The subspace shrinking method visits each node T in the
integer partition graph below the nodeY and checks whether
the node Y is reachable from the node T by splitting exactly
one integer. If IP finds such a node T , then IP searches the
node T and still guarantees to explore the node Y because
IP is searching the nodes T , Y and other reachable nodes
from the node T simultaneously. On the other hand, if IP
does not find the node T , then IP searches the subspace Y
and other subspaces reachable from the node Y by splitting
exactly one integer.

For example, in Figure 1 assume that IDP has evaluated
all the coalitions of size s ∈ {2, 3, 4} and that the current
upper bound subspace is Y = [1, 1, 1, 2, 5]. Using IP’s mul-
tiple subspace search technique, IP can search only two sub-
spaces, i.e. [1, 1, 1, 1, 1, 5], and [1, 1, 1, 2, 5]. On the other

hand using the subspace shrinking method, before search-
ing the subspace [1, 1, 1, 2, 5], IP visits all the nodes T be-
low the node Y = [1, 1, 1, 2, 5] in the integer partition graph
(cf. Figure 1) and checks if the subspace [1, 1, 1, 2, 5] is
reachable from the node T . In our example, IP finds that
the node Y = [1, 1, 1, 2, 5] is reachable from the node
T = [1, 4, 5] by splitting integer 4 only. Now, if IP searches
the subspace T = [1, 4, 5], it will simultaneously search the
subspaces [1, 4, 5], [1, 1, 3, 5], [1, 2, 2, 5], [1, 1, 1, 2, 5], and
[1, 1, 1, 1, 1, 5]. The improvement in the subspace shrinking
method is two-fold: First, the size is reduced, thus speeding
up IP’s depth-first search; second, IP is now searches more
subspaces.

Time complexity of the search space division: If the
highest part of the integer partition associated with a sub-
space is greater than �n2 �, then this subspace is stored in the
IDPSET. In Figure 1 every node is sorted, so the algorithm
needs to check the last part of the integer partitions. For ex-
ample, in the subspace SP = [1, 1, 2, 6]), the last part of the
integer partitions is 6. Hence, the algorithm takes constant
time to return the highest part of the integer partitions in the
subspace SP .

SUBSETSUM(SP) returns true if the sum of any subset
of parts that are selected from the parts of the integer par-
titions associated with the subspace SP equals �n2 �. One
naive solution strategy is to check all the subsets of the parts
from the integer partitions of SP . Therefore, time complex-
ity of the naive solution is exponential.

To compute SUBSETSUM(SP), we used a pseudo-poly-
time algorithm (Papakonstantinou 2006).

We now prove that our algorithm always finds a solution
if it exists and we analyze the computational complexity of
ODSS.

Theorem 1 Given n agents, ODSS always finds the optimal
solution.

Proof: Each node in the integer partition graph corresponds
to a subspace consisting of all coalition structures in which
the sizes of the coalitions match the parts of the integer par-
tition.

Let us fix any particular node P in the integer partition
graph, which contains the optimal coalition structure CS∗.
The ODSS is a hybrid version of IDP and IP. We prove
the correctness of ODSS by using the previously established
algorithms IDP and IP. The correctness of algorithms IDP
(Rahwan and Jennings 2008) and IP (Rahwan et al. 2009) is
well established.

In ODSS, IDP and IP start working on IDPSET and
IPSET. The optimal coalition structure CS∗ is found if IDP
reaches the node P from the bottom node in the integer par-
tition graph, or if IP finishes searching all the feasible coali-
tion structures associated with the node P . The node P rep-
resents a subspace which is either in IDPSET or IPSET but
not in both since IDPSET and IPSET are disjoint. ODSS
stops if all the subspaces in IDPSET and IPSET are searched
by IDP or IP. It follows that the node P containing the op-
timal coalition structure is always found by IDP or IP or by
both of them. �
Theorem 2 Given n agents, ODSS runs in O(3n) time.

7083

Proof: In ODSS, IDP and IP run in parallel and return
the optimal solution as soon as one of IDP or IP returns the
optimal result. Worst case running times of IDP and IP al-
gorithms are O(3n) and O(nn). Hence, the time complexity
of ODSS is minimum(O(3n), O(nn)) = O(3n).�

6 Empirical Evaluation

Both ODP-IP and ODSS were implemented in Java, and the
experiments were run on an Intel(R) Xeon(R) CPU E7-4830
v3 with 160 GB of RAM. For ODP-IP, we used the code pro-
vided by the authors (Michalak et al. 2016). The number of
operations performed by IDP is not influenced by the char-
acteristic function at hand, i.e. it depends solely on the num-
ber of agents. On the other hand, the number of operations
performed by IP (and consequently by ODP-IP and ODSS)
depends on the effectiveness of IP’s branch-and-bound tech-
nique, which in turn depends on the characteristic function
at hand. For each distribution, we took an average of 50 tests
for each point on Figure 3. We considered the following dis-
tributions:

1. Agent-based Uniform (ABU): Each agent ai is assigned
a random power pi ∼ U(0, 10), reflecting its average per-
formance over all the coalitions. Then for each coalition
C in which the agent ai appears, the actual power of ai in
C is determined as pCi ∼ U(0, 2 × pi) and the coalition
value is calculated as the sum of all the members’ power
in that coalition (Rahwan, Michalak, and Jennings 2012).
That is, ∀C, v(C) =

∑
ai∈C p

C
i .

2. Agent-based Normal (ABN): Each agent ai is assigned
a random power pi ∼ N(10, 0.01). Then for all coali-
tions C in which agent ai appears, the actual power of ai
in C is determined as pCi ∼ N(pi, 0.01), and the coali-
tion value is calculated as the sum of all the members’
power in that coalition (Michalak et al. 2016). That is,
∀C, v(C) =

∑
ai∈C p

C
i .

3. Chi-square (χ2): The value of each coalition C is drawn
from v(C) ∼ χ2(ν), where ν = |C| is the degree of free-
dom.

4. Beta (β): The value of each coalition C is drawn as
v(C) ∼ |C|× Beta (α, β), where α = β = 0.5 (Michalak
et al. 2016).

5. Exponential (EXP): The value of each coalition C is
drawn as v(C) ∼ |C| × Exp (λ), where λ = 1 and n
is the number of agents for all the coalitions C ∈ 2A − 1
(Michalak et al. 2016).

6. Gamma (γ): The value of each coalition C is drawn as
v(C) ∼ |C| × Gamma (x, θ), where x = θ = 2 (Micha-
lak et al. 2016).

7. Modified Normal (MN): The value of each coalition C
is first drawn as v(C) ∼ N(a, b), where a = 10 × |C|
and b = 0.01, next a random number r is generated r ∼
U(0, 50) and is added to the coalition value v(C) with
probability 0.2 (Rahwan, Michalak, and Jennings 2012).

8. Modified Uniform (MU): The value of each coalition
C is drawn uniformly as v(C) ∼ U(a, b), where a = 0
and b = 10 × |C|, next a random number r is generated

r ∼ U(0, 50) and is added to the coalition value v(C)
with probability 0.2 (Service and Adams 2010).

9. Normally Distributed Coalition Structures (NDCS):
The value of each coalition C is drawn as v(C) ∼
N(μ, σ2), where μ = |C| and σ =

√
|C| (Rahwan et

al. 2009).

10. Normal distribution (ND): Each coalition value is
drawn as v(C) ∼ N(μ, σ2), where μ = 10 × |C| and
σ = 0.1 (Rahwan et al. 2007).

11. Uniform distribution (UD): For all the coalitions C ∈
2A−1, v(C) ∼ U(a, b), where a = 0 and b = |C| (Larson
and Sandholm 2000).

For each of the above distributions, we plotted the termi-
nation times of ODP-IP and ODSS given different numbers
of agents (cf. Figure 3). Here, time is measured in seconds.
For each distribution and each number of agents, we took an
average over 50 runs. As can be observed , for all the afore-
mentioned distributions, ODP-IP is faster in a few cases,
while ODSS is faster for other cases. The results show that
the search space division technique in the ODSS algorithm
provides more positive synergy.

• for example, given 27 agents, with agent-based normal,
agent-based uniform, chi-square, modified-uniform, nor-
mal, and uniform distributions, the time gain with ODSS
is 1808, 1474, 342, 311, 30, and 8 seconds, respectively,
compared to ODP-IP. With these distributions, ODSS per-
forms well (cf. Table 1).

• with modified-normal, NDCS, gamma, and exponential
distributions, the search space division technique does
not work well. When comparing ODSS with ODP-IP, we
found that the time loss for these distributions in the case
of 27 agents is, respectively 19, 48, 65, 79 seconds.

• We observe that, in most cases the optimal result is given
by the IDPSET. Figure 4 shows the percentage of the op-
timal coalition structure location.

The results in Table 1 show that there are problem in-
stances where the subspace division technique provides

Time in seconds P value
Distribution ODP-IP ODSS α = 0.01

time (t1) time (t2) P < α?
Agent-based normal 3339 1531 Yes
Agent-based uniform 3617 2143 Yes
Chi-square 1000 658 Yes
Modified uniform 424 113 No
Normal 152 122 No
Uniform 169 161 No
Beta 1 1 No
Modified normal 18 37 Yes
NDCS 534 582 No
Gamma 358 423 No
Exponential 363 442 No

Table 1: Evaluating the effectiveness of ODP-IP and ODSS.
The table shows the runtime (in seconds) for 27 agents.

7084

more positive synergies. A paired-samples t-test was con-
ducted to compare the runtimes of ODSS and ODP-IP for
27 agents. We used a two-tailed, type 1 test. We considered
the null hypothesis (H0): the means of the runtime of ODSS
and ODP-IP are the same. We used the value of α = 0.01.
P < 0.01 means that there is very strong evidence against
H0. In Table 1, we can see that in Agent-based normal,
Agent-based uniform, Chi-square, and Modified normal dis-
tributions, we have strong evidence to reject the H0. We
failed to reject the null hypothesis for other distributions. It
means that for other distributions, we don’t have evidence to
suggest that the runtime means are different.

It is clear that ODSS performance is better for many dis-
tributions. The underlying reason is that, at first, the sub-
space division technique creates two disjoint sets of sub-
space: IPSET and IDPSET. We observe that in ODP-IP there
is no control over the IP algorithm except for the condi-
tion that IP searches the subspaces according to the upper
bound of the subspaces. On the other hand, in both ODP-IP
and ODSS, IDP searches the subspaces sequentially, i.e. IDP
evaluates the coalitions sequentially according to the size. In

23 24 25 26 27

102

103

Number of agents

Ti
m

e
(i

n
se

co
nd

s)

Agent-based normal

ODP-IP
ODSS

(a)

23 24 25 26 27

102

103

Number of agents

Ti
m

e
(i

n
se

co
nd

s)

Agent-based uniform

ODP-IP
ODSS

(b)

23 24 25 26 27

101

102

103

Number of agents

Ti
m

e
(i

n
se

co
nd

s)

Chi-square

ODP-IP
ODSS

(c)

23 24 25 26 27

101

102

Number of agents

Ti
m

e
(i

n
se

co
nd

s)

Modified uniform
ODP-IP
ODSS

(d)

23 24 25 26 27

101

102

Number of agents

Ti
m

e
(i

n
se

co
nd

s)

Normal
ODP-IP
ODSS

(e)

23 24 25 26 27

101

102

Number of agents

Ti
m

e
(i

n
se

co
nd

s)

Uniform
ODP-IP
ODSS

(f)

Figure 3: Time performance of ODP-IP vs. ODSS. Here,
time is measured in seconds.

A
B

U

A
B

N χ
2 β γ

E
X

P

M
N

M
U

N
D

C
S

N
D

U
D

0

20

40

60

80

100

Distributions

Pe
rc

en
ta

ge

IPSET
IDPSET

Figure 4: The optimal coalition structure location percentage
in IDPSET and IPSET.

ODP-IP, many subspaces are searched by both IDP and IP.
On the contrary, using the subspace division technique,

IDP and IP work on two disjoint subspaces. Hence, in ODSS
duplicated operations performed by IDP and IP are mini-
mized. Second, the subspace shrinking method used in the
IP algorithm makes it possible to search more subspaces si-
multeneously.

7 Conclusion

Coalition structure generation in multiagent systems is a
well-known hard problem. Precisely identifying the optimal
coalition structure is a hard task, and researchers have come
up with different solution techniques to cope with this sig-
nificant problem. Currently, the best known exact algorithm
for the CSG problem is ODP-IP (Michalak et al. 2016). In
our paper, we have presented a new guided search method,
ODSS, using the IDP and IP algorithms. We found that IP’s
search techniques frequently overlap with IDP’s processing.
Thus, we introduced an effective search space division tech-
nique, which produces two disjoint sets of subspaces and
gives one subspace to IDP and another to IP. By doing so, we
reduced the duplicated processing performed by IDP and IP.
We also found that, by reducing the size of the subspace with
the help of IDP, IP explores more subspaces simultaneously.
When experimented over 11 different value distributions, we
found that, for some problem instances, ODSS speeds up the
process significantly.

8 Acknowledgments

The research presented in this article is funded by “Visves-
varaya PhD Scheme for Electronics & IT”, grant no: PhD-
MLA/4(29)/2015-16.

References

Björklund, A.; Husfeldt, T.; and Koivisto, M. 2009. Set
partitioning via inclusion-exclusion. SIAM Journal on Com-
puting 39(2):546–563.
Kleinberg, J., and Tardos, E. 2006. Algorithm design. Pear-
son Education India.

7085

Larson, K. S., and Sandholm, T. W. 2000. Anytime coali-
tion structure generation: an average case study. Journal of
Experimental & Theoretical Artificial Intelligence 12(1):23–
42.
Michalak, T.; Rahwan, T.; Elkind, E.; Wooldridge, M.; and
Jennings, N. R. 2016. A hybrid exact algorithm for complete
set partitioning. Artificial Intelligence 230:14–50.
Papakonstantinou, P. A. 2006. A pseudo-polynomial time
algorithm for subset-sum*. University Lecture.
Rahwan, T., and Jennings, N. R. 2008. An improved dy-
namic programming algorithm for coalition structure gener-
ation. In Proceedings of the 7th international joint confer-
ence on Autonomous agents and multiagent systems-Volume
3, 1417–1420. International Foundation for Autonomous
Agents and Multiagent Systems.
Rahwan, T.; Ramchurn, S. D.; Dang, V. D.; Giovannucci,
A.; and Jennings, N. R. 2007. Anytime optimal coalition
structure generation. In AAAI, volume 7, 1184–1190.
Rahwan, T.; Ramchurn, S. D.; Jennings, N. R.; and Giovan-
nucci, A. 2009. An anytime algorithm for optimal coalition
structure generation. Journal of Artificial Intelligence Re-
search 34:521–567.
Rahwan, T.; Michalak, T. P.; and Jennings, N. R. 2012. A
hybrid algorithm for coalition structure generation. In AAAI,
1443–1449.
Sandhlom, T. W., and Lesser, V. R. 1997. Coalitions
among computationally bounded agents. Artificial intelli-
gence 94(1):99–137.
Service, T. C., and Adams, J. A. 2010. Approximate coali-
tion structure generation. In Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence.
Shehory, O., and Kraus, S. 1998. Methods for task allocation
via agent coalition formation. Artificial intelligence 101(1-
2):165–200.
Yeh, D. 1986. A dynamic programming approach to the
complete set partitioning problem. BIT Numerical Mathe-
matics 26(4):467–474.

7086

