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Abstract

Search and inference are two main strategies for opti-
mally solving Distributed Constraint Optimization Problems
(DCOPs). Recently, several algorithms were proposed to
combine their advantages. Unfortunately, such algorithms
only use an approximated inference as a one-shot preprocess-
ing phase to construct the initial lower bounds which lead to
inefficient pruning under the limited memory budget. On the
other hand, iterative inference algorithms (e.g., MB-DPOP)
perform a context-based complete inference for all possible
contexts but suffer from tremendous traffic overheads. In this
paper, (i) hybridizing search with context-based inference,
we propose a complete algorithm for DCOPs, named HS-
CAI where the inference utilizes the contexts derived from
the search process to establish tight lower bounds while the
search uses such bounds for efficient pruning and thereby
reduces contexts for the inference. Furthermore, (ii) we in-
troduce a context evaluation mechanism to select the context
patterns for the inference to further reduce the overheads in-
curred by iterative inferences. Finally, (iii) we prove the cor-
rectness of our algorithm and the experimental results demon-
strate its superiority over the state-of-the-art.

Introduction

Distributed Constraint Optimization Problems (DCOPs)
(Hirayama and Yokoo 1997; Fioretto, Pontelli, and Yeoh
2018) are an elegant model for representing Multi-Agent
Systems (MAS) where agents coordinate with each other to
optimize a global objective. Due to their ability to capture
essential MAS aspects, DCOPs can formalize various appli-
cations in the real world such as sensor network (Farinelli,
Rogers, and Jennings 2014), task scheduling (Maheswaran
et al. 2004; Fioretto, Yeoh, and Pontelli 2017), smart grid
(Fioretto et al. 2017) and so on.

Incomplete algorithms for DCOPs (Zhang et al. 2005;
Maheswaran, Pearce, and Tambe 2006; Farinelli et al. 2008;
Ottens, Dimitrakakis, and Faltings 2017) aim to rapidly
find solutions at the cost of sacrificing optimality. On the
contrary, complete algorithms guarantee the optimal solu-
tion and can be generally classified into inference-based
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and search-based algorithms. DPOP (Petcu and Faltings
2005b) and Action GDL (Vinyals, Rodriguez-Aguilar, and
Cerquides 2009) are typical inference-based complete al-
gorithms which employ a dynamic programming paradigm
to solve DCOPs. However, they require a linear number of
messages of exponential size with respect to the induced
width. Accordingly, ODPOP (Petcu and Faltings 2006) and
MB-DPOP (Petcu and Faltings 2007) were proposed to trade
the message number for smaller memory consumption by
propagating the dimension-limited utilities with the corre-
sponding contexts iteratively. That is, they iteratively per-
form a context-based inference to solve DCOPs optimally
when the memory budget is limited.

Search-based complete algorithms like SBB (Hirayama
and Yokoo 1997), AFB (Gershman, Meisels, and Zivan
2009), PT-FB (Litov and Meisels 2017), ADOPT (Modi et
al. 2005) and its variants (Yeoh, Felner, and Koenig 2010;
Gutierrez, Meseguer, and Yeoh 2011) perform distributed
backtrack searches to exhaust the search space. They have
a linear size of messages but an exponential number of mes-
sages. Furthermore, these algorithms only use local knowl-
edge to update the lower bounds, which exerts a trivial ef-
fect on pruning and makes them infeasible for solving large-
scale problems. Then, PT-ISABB (Deng et al. 2019), DJAO
(Kim and Lesser 2014) and ADPOT-BDP (Atlas, Warner,
and Decker 2008) came out to attempt to hybridize search
with inference, where an approximated inference is used
to construct the initial lower bounds for the search pro-
cess. More specifically, PT-ISABB and ADOPT-BDP use
ADPOP (Petcu and Faltings 2005a) to establish the lower
bounds, while DJAO employs a function filtering technique
(Brito and Meseguer 2010) to get them. Here, ADPOP is
an approximate version of DPOP by dropping the exceeding
dimensions to ensure that each message size is below the
memory limit. However, given the limited memory budget,
the lower bounds obtained in a one-shot preprocessing phase
are still inefficient for pruning since such bounds cannot be
tightened by considering the running contexts. That is, the
existing hybrid algorithms use only a context-free approxi-
mated inference as a one-shot phase to construct the initial
lower bounds.

In this paper, we investigate the possibility of combining
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Figure 1: An example of a DCOP and its pseudo tree

search with context-based inference to solve DCOPs effi-
ciently. Specifically, our main contributions are listed as fol-
lows:

• We propose a novel complete DCOP algorithm by hy-
bridizing search with context-based inference, called HS-
CAI where the search adopts a tree-based SBB to find the
optimal solution and provides contexts for the inference,
while the inference iteratively performs utility propaga-
tion for these contexts to construct the tight lower bounds
to speed up the search process.

• We introduce a context evaluation mechanism to extract
the context patterns for the inference from the contexts
derived from the search process so as to further reduce
the number of context-based inferences.

• We theoretically show the completeness of HS-CAI and
prove that the lower bounds produced by the context-
based inference are at least as tight as the ones estab-
lished by the context-free approximated inference under
the same memory budget. Moreover, the experimental
results demonstrate HS-CAI outperforms state-of-the-art
complete DCOP algorithms.

Background

In this section, we expound the preliminaries including
DCOPs, pseudo tree, MB-DPOP and ODPOP.

Distributed Constraint Optimization Problems

A distributed constraint optimization problem (Modi et al.
2005) can be defined by a tuple 〈A,X,D, F 〉 where

• A = {a1, a2, . . . , an} is a set of agents.

• X = {x1, x2, . . . , xm} is a set of variables.

• D = {D1, D2, . . . , Dm} is a set of finite, discrete do-
mains. Each variable xi takes a value in Di.

• F = {f1, f2, . . . , fq} is a set of constraint functions. Each
function fi : Di1 × · · · ×Dik → R≥0 specifies the non-
negative cost for each combination of xi1, · · · , xik.

For the sake of simplicity, we assume that each agent
holds exactly one variable (and thus the term agent and vari-
able could be used interchangeably) and all constraints are
binary (i.e., fij : Di ×Dj → R≥0). A solution to a DCOP

is the assignments to all the variables such that the total cost
is minimized. That is,

X∗ = argmin
di∈Di,dj∈Dj

∑

fij∈F

fij(xi = di, xj = dj)

A DCOP can be represented by a constraint graph where a
vertex denotes a variable and an edge denotes a constraint.
Fig. 1 (a) presents a DCOP with five variables and seven
constraints. For simplicity, the domain size of each variable
is four and all constraints are identical as shown in Fig. 1(b).

Pseudo Tree

A depth first search (Freuder and Quinn 1985; Dechter, Co-
hen, and others 2003) arrangement of a constraint graph is
a pseudo tree with the property that different branches are
independent, and categorizes its constraints into tree edges
and pseudo edges (i.e., non-tree edges). Thus, the neighbors
of agent ai can be classified into its parent P (ai), children
C(ai), pseudo parents PP (ai) and pseudo children PC(ai)
based on their positions in the pseudo tree and the type edges
they connect with ai. For clarity, we denote all the (pseudo)
parents of ai as AP (ai) = PP (ai)∪{P (ai)} and the set of
ancestors who share constraints with ai and its descendants
as its separators Sep(ai) (Petcu and Faltings 2005b). Fig.
1(c) presents a possible pseudo tree deriving from Fig. 1(a).

MB-DPOP and ODPOP

MB-DPOP and ODPOP apply an iterative context-based
utility propagation to aggregate the optimal global utility.
Specifically, MB-DPOP first uses a cycle-cuts idea (Dechter,
Cohen, and others 2003) on a pseudo tree to determine
cycle-cut variables and groups these variables into clusters.
Within the cluster, MB-DPOP preforms a bounded-memory
exploration; anywhere else, the utility propagation from
DPOP applies. Specifically, agents in each cluster propa-
gate memory-bounded utilities for all the contexts of cycle-
cut variables. As for ODPOP, each agent adopts an incre-
mental and best-first fashion to propagate the context-based
utility. Specifically, an agent repeatedly asks its children for
their suggested context-based utilities until it can calculate
a suggested utility for its parent during the utility propaga-
tion phase. The phase finishes after the root agent receiving
enough utilities to determine the optimal global utility.

Proposed Method

In this section, we present a novel complete DCOP algo-
rithm which utilizes both search and inference interleaved.

Motivation

It can be concluded that search can exploit bounds to prune
the solution space but the pruning efficiency is closely re-
lated to the tightness of bounds. However, most of search-
based complete algorithms can only use local knowledge to
compute the initial lower bounds, which leads to inefficient
pruning. On the other hand, inference-based complete algo-
rithms can aggregate the global utility promptly, but their
memory consumption is exponential in the induced width.
Therefore, it is natural to combine both search and inference
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by performing memory-bounded inferences to construct ef-
ficient lower bounds for search. Unfortunately, the existing
hybrid algorithms only perform an approximated inference
to construct one-shot bounds in the preprocessing phase,
which would lead to inefficient pruning given a limited
memory budget. In fact, the bounds can be tightened by the
context-based inference. That is, instead of dropping a set
of dimensions, named approximated dimensions, to stay be-
low the memory budget, we explicitly consider the running-
context assignments to a subset of approximated dimensions
(i.e., the context patterns) and compute tight bounds w.r.t.
the context patterns. Here, we denote an assigned subset of
approximated dimensions as decimated dimensions.

More specifically, we aim to combine the advantages
of search and context-based inference to optimally solve
DCOPs. Different from the existing hybrid methods, we
compute tight bounds for the running contexts by perform-
ing the context-based inference for the context patterns cho-
sen from the contexts derived from the search process.

Proposed Algorithm

Now, we present our proposed algorithm which consists of
a preprocessing phase and a hybrid phase.

Preprocessing Phase performs a bottom-up dimension
and utility propagation to accumulate the approximated di-
mensions and establish the initial lower bounds based on
these propagated utilities for search. Accordingly, we em-
ploy a tailored version of ADPOP with the limit k to prop-
agate the approximated dimensions and incomplete utilities
(we omit the pseudo code of this phase due to the limited
space). Particularly, during the propagation process, each
agent ai selects the dimensions Si of its highest ancestors
to approximate to make the dimension size of each out-
going utility below k. Then, the approximated dimensions
SListi (i.e., the dimensions approximated by ai and its de-
scendants) and utility preUtiliP (ai)

sent from ai to its parent
can be computed as follows:

SListi = Si ∪ ( ∪
ac∈C(ai)

SListci ) (1)

preUtiliP (ai)
= min

Si∪{xi}
(localUtili ⊗ ( ⊗

ac∈C(ai)
preUtilci )) (2)

Here, SListci and preUtilci are the approximated dimen-
sions and utility received from its child ac ∈ C(ai), respec-
tively. localUtili denotes the combination of the constraints
between ai and its (pseudo) parents, i.e.,

localUtili = ⊗
ai∈AP (ai)

fij (3)

Taking Fig. 1(c) for example, if we set k = 1, the di-
mensions approximated by a4 are {x1, x2}. Thus, the ap-
proximated dimensions and utility sent from a4 to a3 are
SList43 = {x1, x2} and preUtil43 = min

{x1,x2,x4}
(f41 ⊗ f42 ⊗

f43), respectively.

Hybrid Phase consists of the search and context-based in-
ference part. The search part uses a variant of SBB on a
pseudo tree (i.e., a simple version of NCBB (Chechetka and
Sycara 2006)) to expand any feasible partial assignments
and provides contexts for the inference part. By using such
contexts, the inference part propagates context-based utili-
ties iteratively to produce tight lower bounds for the search
part.

Traditionally, the context-based inference is implemented
by considering the assignments to the approximated dimen-
sions (that is, the decimated dimensions are equal to the ap-
proximated dimensions). For example, MB-DPOP performs
an iterative context-based inference by considering each as-
signment combination of cycle-cut variables. However, the
approach is not a good choice for our case due to the fol-
lowing facts. First, the number of the assignments of cycle-
cut variables is exponential, which would incur unacceptable
traffic overheads. Moreover, the propagated utilities w.r.t. a
specific combination may go out of date since another infer-
ence is required as long as the assignments change, which
would be very common in the search process. Therefore, it’s
unnecessary to perform inference for each assignment com-
bination of the approximated dimensions.

Therefore, we consider to reduce the number of context-
based inferences by making the propagated context-based
utilities compatible with more contexts. Specifically, for
agent ai, we consider the decimated dimensions PListi ⊆
SListi. Then, the specific assignments to PListi serve as a
context pattern and the propagated utilities will cover all the
partial assignments with the same context pattern. That is,
ai’s context pattern can be defined by:

ctxti = {(xj , Cpai(xj))|∀xj ∈ PListi} (4)

where Cpai refers to ai’s received current partial assign-
ment, and Cpai(xj) is the current assignment of xj .

Taking agent a3 in Fig. 1(c) as an example, given the
limit k = 1, we have SList3 = {x1, x2}. Assume that
PList3 = {x1}. Thus, only the assignment of x1 will
be considered and x4 (i.e., SList3\PList3) will be still
dropped during the context-based inference part. Further, as-
sume that ctxt3 = {(x1, 0)}. Then, ctxt3 covers four con-
texts ({(x1, 0), (x2, 0)},{(x1, 0), (x2, 1)},{(x1, 0), (x2, 2)}
and {(x1, 0), (x2, 3)}). Therefore, a3 only need to perform
inference for ctxt3 rather than the four contexts above in this
case.

Selecting a context pattern is challenging as it offers a
trade-off between the tightness of lower bounds and the
number of compatible partial assignments. Thus, a good
context pattern should comply with the following require-
ments. First, the good context pattern should be compati-
ble with more contexts so as to avoid unnecessary context-
based inference. In other words, these assignments are not
likely to change in a short term. Second, the context pattern
should result in tight lower bounds. Therefore, we propose
a context evaluation mechanism to select the context pat-
tern according to the frequency of an assignment of each
dimension in the approximated dimensions. In more detail,
we consider the context pattern consisting of the assign-
ments whose frequency is greater than a specified threshold
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Algorithm 1: Hybrid phase for agent ai
When Initialize():

1 perform ADPOP as a preprocessing phase
2 if ai is the root then

3 evali ← true
4 di ← the first element in Di, Cpa← (xi, di)
5 send CPA(Cpa, evali) to ac ∈ C(ai)

When received CPA(Cpa, eval) from P (ai):
6 preCpai ← Cpai,Cpai ← Cpa,evali ← eval
7 InitBounds()
8 UpdateSCounter()
9 if evali then

10 ctxti ← {(xj , Cpai(xj))|Cnti(〈xj , Cpai(xj)〉) > t, ∀xj ∈ SListi}
11 if |ctxti| > 0 then

12 AllocateContext()
13 evali ← flase
14 ctxti ← ∅
15 //mark ai as the starter of the context-based inference part
16 //original CPA message handler

When received CTXT (ctxti) from P (ai):
17 AllocateContext()
18 if |inferChildi| = 0 then

19 SendCtxtUtil()
When received CTXTUTIL (ctxtUtilc) from ac ∈ inferChildi:

20 ctxtUtilci ← ctxtUtilc
21 if received all CTXTUTIL from inferChildi and |ctxti| > 0 then

22 SendCtxtUtil()
Function InitBounds():

23 foreach ac ∈ C(ai) do

24 if received a CTXTUTIL that is compatible with Cpai from ac then

25 lbci (di)← ctxtUtilci (xi = di, Cpai(Sep(ac)))
26 else

27 lbci (di)← preUtilci (xi = di, Cpai(Sep(ac)))

Function UpdateSCounter():

28 foreach xj ∈ SListi ∧ (xj , dj) ∈ Cpai do

29 if preCpai(xj) = Cpai(xj) then

30 Cnti(〈xj , Cpai(xj)〉)← 1
31 else

32 Cnti(〈xj , Cpai(xj)〉)← Cnti(〈xj , Cpai(xj)〉) + 1

Function AllocateContext():

33 ctxtci ← {(xj , dj)|(xj , dj) ∈ ctxti, ∀xj ∈ SListci},∀ac ∈ C(ai)
34 inferChildi ← {ac||ctxtci | > 0, ∀ac ∈ C(ai)}
35 send CTXT(ctxtci ) to ac,∀ac ∈ inferChildi

Function SendCtxtUtil():

36 F ← localUtili ∪{ctxtUtilci |∀ac ∈ inferChildi}
∪{preUtilci |∀ac ∈ C(ai)\inferChildi}

37 S′
i ← {xj |∀xj ∈ Si ∧ (xj , dj) /∈ ctxti}

38 join← ⊗
f∈F

f (ctxti)

39 ctxtUtili ← min
S′
i
∪{xi}

join

40 send CTXTUTIL(ctxtUtili) to P (ai)

t. Given t, we have PListi = {xj |Cnti(〈xj , Cpai(xj)〉) >
t, ∀xj ∈ SListi} where Cnti(〈xj , Cpai(xj)〉) refers to the
frequency of Cpai(xj) for xj . With an appropriate t, the as-
signments in the context pattern could not change in a short
term. On the other hand, if a partial assignment is hard for
pruning, then there would be more assignments included in
the context pattern, which guarantees the lower bound tight-
ness.

In addition, we introduce the variable evali to ensure that
the descendants of ai perform an inference only for a context
pattern at a time. Once ai has found or received a context
pattern, evali is set to false to stop the context evaluation.
And when the context pattern is incompatible with Cpai,
evali is set to true to indicate that ai can find a new context
pattern.

Next, we will detail how to implement the context eval-
uation mechanism and context-based inference part. Algo-

rithm 1 presents the sketch of these procedures. We ignore
the search part since it is an analogy to the tree-based branch
and bound search algorithm PT-ISABB.

After the preprocessing phase (line 1), the root agent starts
the context evaluation by initializing evali with true (line 2-
3). Besides, it also starts the search part via CPA messages
with its first assignment to its children (line 4-5). Upon re-
ceipt of a CPA message, ai first holds the previous Cpai,
and stores the received Cpai and evali (line 6). Afterwards,
it initializes the lower bounds for each child ac ∈ C(ai) ac-
cording to its received utilities (line 7, 23-27). Concretely,
the lower bound for ac is established by the context-based
utility compatible with Cpai received from ac (line 24-25).
Otherwise, the bound is computed by the utility received
from ac in the preprocessing phase (line 26-27). Next, ai
updates Cnti based on Cpai and the previous one (line 8,
28-32). Specifically, for each dimension in SListi, ai clears
its counter if its assignment differs from its previous one
(line 29-30). Otherwise, ai increases that counter (line 31-
32). Then, ai finds a context pattern ctxti if the pattern for
the context-based inference has not been determined (line 9-
10). After finding one, it allocates ctxti and sends the allo-
cated patterns via CTXT messages to its children who need
to execute the context-based inference (i.e., inferChildi)
(line 11-15, 33-35). Here, ctxtci , the allocated pattern for ac,
is a partition of ctxti based on ac’s approximated dimen-
sions SListci (line 33).

When receiving a CTXT message, ai allocates the re-
ceived pattern if there is any child who needs to perform the
context-based inference (line 17, 33-35). Otherwise, it sends
its context-based utility to its parent (line 18-19, 36-40).
Here, its context-based utility is computed by the following
steps. Firstly, it joins its local utility with the context-based
utilities from inferChildi and the utilities from the other
children (line 36). Next, it applies ctxti to fix the values of
the partial dimensions in Si so as to improve the complete-
ness of the utility (line 38). Finally, it drops the dimensions
of the utility to stay below the limit k (line 39). After all
the context-based utilities from inferChildi have arrived,
ai sends its context-based utility to its parent if it is not the
starter of the context-based inference (line 21-22).

Considering a3 in Fig. 1(c), assume that the con-
text pattern has not been determined and Cnt3 =
{(〈x1, 0〉, 1), (〈x2, 0〉, 1)}. Given t = 1, we have Cnt3 =
{(〈x1, 0〉, 2), (〈x2, 1〉, 1)} and ctxt3 = {(x1, 0)} after a3
receives a CPA with {(x1, 0), (x2, 1)}. Since the approxi-
mated dimensions for its child a4 are {x1, x2}, a3 sends
a CTXT message with the context pattern {(x1, 0)} to
a4. When receiving the pattern {(x1, 0)}, a4 sends the
context-based utility ctxtUtil43 = min

{x2,x4}
(f41(x1 = 0) ⊗

f42 ⊗ f43) to a3. Then, a3 uses ctxtUtil43 to compute the
lower bound for a4 after receiving the CPA message with
{(x1, 0), (x2, 2)} or {(x1, 0), (x2, 3)}.

Theoretical Results

In this section, we first prove the effectiveness of the context-
based inference on HS-CAI, and further establish the com-
pleteness of HS-CAI. Finally, we give the complexity anal-
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ysis of the proposed method.

Lower Bound Tightness

Lemma 1. For a given Cpai, the lower bound lbci (di)
of ac ∈ C(ai) for di produced by the context-based
utility (ctxtUtilci ) is at least as tight as the one estab-
lished by the utility (preUtilci ). That is, ctxtUtilci (PA) ≥
preUtilci (PA), where PA = Cpai(Sep(ac)) ∪ {(xi, di)}.
Proof. Directly from the pseudo code, S′

c, the dimensions
dropped by ac in the context-based inference part (line 37),
can be defined by:

S′
c = {xj |(xj , dj) /∈ ctxtc, ∀xj ∈ Sc}

where ctxtc is the context pattern for ac’s context-based in-
ference, and Sc is the dimensions dropped by ac in the pre-
processing phase. Since ai has received ctxtUtilci from ac,
we have |ctxtc| > 0 (line 34-35, 20-21). Thus, S′

c ⊂ Sc is
established.

Next, we will prove Lemma 1 by induction.
Base case. ai’s children are leaf agents. For each child

ac ∈ C(ai), we have

ctxtUtilci (PA) = ( min
S′
c∪{xc}

localUtilc)(PA)

= min
xc

(
∑

xj∈AP (ac)\S′
c

fcj(xc, dj) +
∑

xj∈S′
c

min
xj

fcj(xc, xj))

= min
xc

(
∑

xj∈AP (ac)\Sc

fcj(xc, dj) +
∑

xj∈Sc

min
xj

fcj(xc, xj)

+
∑

xj∈Sc\S′
c

(fcj(xc, dj)−min
xj

fcj(xc, xj)))

≥ min
xc

(
∑

xj∈AP (ac)\Sc

fcj(xc, dj) +
∑

xj∈Sc

min
xj

fcj(xc, xj))

= ( min
Sc∪{xc}

localUtilc)(PA) = preUtilci (PA)

where dj is the assignment of xj in PA. The equation in the
third to the fourth step holds since S′

c ⊂ Sc. Thus, we have
proved the basis.

Inductive hypothesis. Assume that the lemma holds for
all ai’s children. Next, we are going to show the lemma
holds for ai as well. For each ac ∈ C(ai), we have

ctxtUtil
c
i (PA) = ( min

S′
c∪{xc}

(localUtilc +
∑

a
c′∈inferChildc

ctxtUtil
c′
c

+
∑

a
c′∈C(ac)\inferChildc

preUtil
c′
c ))(PA)

≥ ( min
Sc∪{xc}

(localUtilc +
∑

a
c′∈inferChildc

ctxtUtil
c′
c

+
∑

a
c′∈C(ac)\inferChildc

preUtil
c′
c ))(PA)

≥ ( min
Sc∪{xc}

(localUtilc +
∑

a
c′∈C(ac)

preUtil
c′
c ))(PA)

= preUtil
c
i (PA)

where inferChildc are ac’s children who need to perform
the context-based inference. Thus, Lemma 1 is proved.

Correctness

Lemma 2. Given the optimal solution X∗, costc(X
∗),

the cost to the sub-tree rooted at ac ∈ C(ai) is no less
than the lower bound lbci (X

∗(xi)). That is, costc(X∗) ≥
lbci (X

∗(xi)).

Proof. Since we have proved the lower bounds constructed
by the context-based inference part are at least as tight as the
ones established by the preprocessing phase in Lemma 1, to
prove the lemma, it is sufficient to show that costc(X∗) ≥
ctxtUtilci (X

∗).
Next, we will prove Lemma 2 by induction as well.
Base case. ai’s children are leaf agents. For each child

ac ∈ C(ai), we have

costc(X
∗) =

∑

aj∈AP (ac)

fcj(d
∗
c , d

∗
j )

= localUtilc(X
∗)

≥ ( min
S′
c∪{xc}

localUtilc)(X
∗)

= ctxtUtilci (X
∗)

where d∗l is the assignment of xl in X∗, and S′
c is the di-

mensions dropped by ac in the context-based inference part.
Thus, the basis is proved.

Inductive hypothesis. Assume the lemma holds for all
ac ∈ C(ai). Next, we will prove the lemma also holds for
ai. For each child ac ∈ C(ai), we have

cost(Spa∗c) =
∑

aj∈AP (ac)

fcj(d
∗
c , d

∗
j ) +

∑

ac′∈C(ac)

costc′ (X
∗)

= localUtilc(X
∗) +

∑

ac′∈C(ac)

costc′ (X
∗)

≥ localUtilc(X
∗) +

∑

ac′∈C(ac)

ctxtUtilc
′

c (X∗)

= (localUtilc +
∑

ac′∈C(ac)

ctxtUtilc
′

c )(X∗)

≥ ( min
S
′
c∪{xc}

(localUtilc +
∑

ac′∈C(ac)

ctxtUtilc
′

c ))(X∗)

≥ ( min
S
′
c∪{xc}

(localUtilc +
∑

ac′∈inferChildc

ctxtUtilc
′

c

+
∑

ac′∈C(ac)\inferChildc

preUtilc
′

c ))(X∗)

= ctxtUtilci (X
∗)

Thus, the lemma is proved.

Theorem 1. HS-CAI is complete.

Proof. Immediately from Lemma 2, the optimal solution
will not be pruned in HS-CAI. Furthermore, it has been
proved that each agent will not receive two identical Cpas
in the search part from PT-ISABB (Deng et al. 2019), and
the termination of HS-CAI relies on the search part. Thus,
HS-CAI is complete.
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Figure 2: Network load of varying ρ on different densities

Complexity

When it performs a context-based inference, ai needs to
store the context-based utilities and the utilities received
from all its children. Thus, the overall space complexity is
O(|C(ai)|dkmax) where dmax = maxaj∈Sep(ai) |Dj |, and
k is the maximum dimension limit. Since a CTXTUTIL
message only contains a context-based utility, its size is
O(dkmax). For a CPA message, it is composed of the assign-
ment of each agent and a context evaluation flag. Thus, the
size of a CPA message is O(|A|). Other messages like CTXT
only carry an assignment combination of the approximated
dimensions, it only requires O(|A|) space.

The preprocessing phase in HS-CAI only requires |A|−1
messages, since only the utility propagation are performed.
For the search part and context-based inference part in the
hybrid phase, the message number of the search part grows
exponentially to the agent number with the same as the
search-based complete algorithms. And the message num-
ber of the context-based inference part is proportional to the
number of the context patterns selected by the context eval-
uation mechanism.

Empirical Evaluation

In this section, we first investigate the effect of the parameter
t in the context evaluation mechanism on HS-CAI. Then, we
present the experimental comparisons of HS-CAI with state-
of-the-art complete DCOP algorithms.

Configuration and Metrics

We empirically evaluate the performance of HS-CAI and
state-of-the-art complete DCOP algorithms including PT-
FB, DPOP and MB-DPOP on random DCOPs. Besides, we
consider HS-CAI without the context-based inference part
as HS-AI and HS-CAI without the context evaluation mech-
anism as HS-CAI(-M). Here, HS-AI is actually a variant
of PT-ISABB in DCOP settings. All evaluated algorithms
are implemented in DCOPSovler1, the DCOP simulator de-
veloped by ourselves. Besides, we consider the parameter
t in HS-CAI related to both h and dmax, where dmax =
maxai∈A|Di| and h is the height of a pseudo tree. There-
fore, we set t = (dmax)

ρh. Moreover, we choose k = 6 and
k = 10 as the low and high memory budget for MB-DPOP,

1https://github.com/czy920/DCOPSovler

HS-AI, HS-CAI(-M) and HS-CAI. In our experiments, we
use the message number and network load (i.e., the size of
total information exchanged) to measure the communication
overheads, and the NCLOs (Netzer, Grubshtein, and Meisels
2012) to measure the hardware-independent runtime where
the logical operations in the inference and the search are
accesses to utilities and constraint checks, respectively. For
each experiment, we generate 50 random instances and re-
port the average of over all instances.

Parameter Tuning

Firstly, we aim to examine the effect of different ρ on the
performance of HS-CAI to verify the effectiveness of the
context evaluation mechanism. Specifically, we consider the
DCOPs with 22 agents and the domain size of 3. The graph
density varies from 0.2 to 0.6 and ρ varies from 0.05 to 0.65.
Here, we do not show the experiment results of ρ greater
than 0.65 since the larger ρ leads to the exact same results as
ρ with 0.65. Fig. 2 presents the network load of HS-CAI(-M)
and HS-CAI with different ρ. The average induced widths
in this experiment are 8 ∼ 16. It can be seen from the fig-
ure that HS-CAI requires much less network load than HS-
CAI(-M). That is because HS-CAI performs inference only
for the context patterns selected by the context evaluation
mechanism rather than all the contexts as HS-CAI(-M) does.

Besides, given the memory budget limit k, it can be ob-
served that HS-CAI does not decrease all the time with the
increase of ρ. This is due to the fact that increasing ρ which
leads to large t can decrease the number of context-based in-
ferences but also loose the tightness of lower bounds to some
degree. Exactly as mentioned above, the context pattern se-
lection offers a trade-off between the tightness of lower
bounds and the number of compatible partial assignments.
Moreover, it can be seen that the best value of ρ is close to
0.25 in HS-CAI(k = 6) while the one in HS-CAI(k = 10) is
near to 0.45. Thus, we choose ρ to 0.25 for HS-CAI(k = 6)
and 0.45 for HS-CAI(k = 10) in the following comparison
experiments.

Performance Comparisons

Fig. 3 gives the experimental results under different agent
numbers on the sparse configuration where we consider the
graph density to 0.25, the domain size to 3 and vary the agent
number from 22 to 32. Here, the average induced widths are
9 ∼ 17. It can be seen from Fig. 3(a) and (b) that although
the hybrid complete algorithms (e.g., HS-AI and HS-CAI)
and PT-FB all use the search strategy to find the optimal so-
lution, HS-AI and HS-CAI are superior to PT-FB in terms of
the network load and message number. This is because the
lower bounds in PT-FB cannot result in effective pruning
by only considering the constraints related to the assigned
agents. Also, given a fixed k, HS-CAI requires fewer mes-
sages than HS-AI since the lower bounds produced by the
context-based inference are tighter than the ones established
by the context-free approximated inference. Besides, it can
be seen that HS-CAI(k = 6) can solve larger problems than
HS-AI(k = 6) and the inference-based complete algorithms
like DPOP and MB-DPOP, which demonstrates the superior-
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Figure 3: Performance comparison under different agents on sparse configuration
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Figure 4: Performance comparison under different agents on dense configuration

ity of hybridizing search with context-based inference when
the memory budget is relatively low.

Although inference requires larger messages than search,
it can be observed from Fig. 3(b) that HS-CAI incurs less
network load than HS-AI, which indicates that HS-CAI can
find the optimal solution with fewer messages owing to the
effective pruning and context evaluation mechanism. More-
over, we can see from Fig. 3(c) that when solving problems
with the agent number to 28, HS-CAI(k = 6) requires fewer
NCLOs than HS-AI(k = 6) in spite of the exponential com-
putation overheads incurred by the iterative inferences. This
is because that HS-CAI(k = 6) can provide tight lower
bounds to speed up the search so as to greatly reduce the
constraint checks when solving the large scale problems un-
der the limited memory budget.

Besides, we consider the DCOPs with the domain size
of 3 and graph density of 0.6 as the dense configuration.
The agent number varies from 14 to 24 and the average in-
duced widths are 8 ∼ 18. Fig. 4 presents the performance
comparison. It can be seen from Fig. 4(a) that DPOP and
MB-DPOP cannot solve the problems with the agent num-
ber greater than 20 due to the large induced widths. Further-
more, since the inference-based complete algorithms have
to perform inference on the entire solution space, these al-
gorithms require much more NCLOs than the other com-
petitors as Fig. 4(c) shows. Additionally, although they both
perform the context-based inference, it can be seen from
Fig. 4(b) and (c) that HS-CAI exhibits great superiority over
MB-DPOP in terms of the network load and NCLOs. That
is because HS-CAI only performs inference for the con-

text patterns extracted by the context evaluation mechanism,
while MB-DPOP needs to iteratively perform inference for
all the contexts of cycle-cut variables. As for HS-CAI with
different k, it can be seen from Fig. 4(a) and (c) that HS-
CAI(k = 10) requires fewer messages but more NCLOs
than HS-CAI(k = 6). That is because HS-CAI(k = 10)
can produce tighter lower bounds but will incur more com-
putation overheads than HS-CAI(k = 6).

Conclusion

By analyzing the feasibility of hybridizing search and infer-
ence, we propose a complete DCOP algorithm, named HS-
CAI which combines search with context-based inference
for the first time. Different from the existing hybrid complete
algorithms, HS-CAI constructs tight lower bounds to speed
up the search by executing context-based inference itera-
tively. Meanwhile, HS-CAI only needs to perform inference
for a part of the contexts obtained from the search process by
means of a context evaluation mechanism, which reduces the
huge traffic overheads incurred by iterative context-based in-
ferences. We theoretically prove that the context-based in-
ference can produce tighter lower bounds compared to the
context-free approximated inference under the same mem-
ory budget. Moreover, the experimental results show that
HS-CAI can find the optimal solution faster with less traf-
fic overheads than the state-of-the-art.

In the future, we will devote to further accelerating the
search process by arranging the search space with the infer-
ence results. In addition, we will also work for reducing the
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overheads caused by a context-based utility propagation.
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