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Abstract

Agent programming languages have proved useful for for-
mally modelling implemented systems such as PRS and
JACK, and for reasoning about their behaviour. Over the past
decades, many agent programming languages and extensions
have been developed. A key feature in some of them is their
support for the specification of ‘concurrent’ actions and pro-
grams. However, their notion of concurrency is still limited,
as it amounts to a nondeterministic choice between (sequen-
tial) action interleavings. Thus, the notion does not represent
‘true concurrency’, which can more naturally exploit multi-
core computers and multi-robot manufacturing cells. This pa-
per provides a true concurrency operational semantics for a
BDI agent programming language, allowing actions to over-
lap in execution. We prove key properties of the semantics,
relating to true concurrency and to its link with interleaving.

1 Introduction

Agent programming languages have proved useful for for-
mally modelling implemented systems such as Jason (Bor-
dini and Hübner 2010), PRS (Georgeff and Ingrand 1989),
and JACK (Busetta et al. 1999), and for reasoning about their
behaviour. Over the past decades, many agent programming
languages and extensions have emerged, e.g. (Rao 1996;
Hindriks et al. 2001; Dastani 2008; Winikoff et al. 2002;
Morley and Myers 2004; Sardina, de Silva, and Padgham
2006; Chaouche et al. 2014; de Silva, Meneguzzi, and Lo-
gan 2018; de Giacomo, Lespérance, and Levesque 2000). A
key feature in some of them is their support for the specifica-
tion of ‘concurrent’ actions and programs. However, while
their notion of concurrency is useful in some applications,
it is still limited as it amounts to a nondeterministic choice
between (sequential) action interleavings. Thus, the notion
does not represent ‘true concurrency’, which can more natu-
rally exploit multi-core computers and multi-robot manufac-
turing cells, e.g. a cell comprising two robot arms that work
on a part simultaneously. This paper provides a true concur-
rency operational semantics for a BDI agent programming
language, allowing actions to overlap in execution.

From the implemented BDI agent systems, there are some
that support some form of true concurrency, e.g. SPARK
(Morley and Myers 2004), JAM (Huber 1999), BDI4JADE
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(Nunes, Lucena, and Luck 2011), PRS, and JACK.1 JACK
gives four (programmer selectable) definitions for the suc-
cess of a concurrent program: (1) it immediately succeeds
on the successful termination of a branch; (2) it allows all
branches to terminate but only succeeds if at least one of
them succeeds; (3) it succeeds iff all branches terminate suc-
cessfully, and immediately fails on the failure of a branch; or
(4) it allows all branches to terminate but only succeeds if all
branches succeed. We follow this last definition.

There is also related work in concurrent distributed sys-
tems, particularly three strands of work that define behaviour
in terms of transitions between configurations, using a struc-
tural operational semantics (Plotkin 1981). In the first strand
(Boudol and Castellani 1988b; 1989), every transition is
labelled with a representation of its ‘proof’, i.e., informa-
tion comprising the inference rules that were used when de-
riving the transition. This information enables the extrac-
tion of a transition labelled with a partially ordered multi-
set (pomset) of actions, representing the sequential and con-
current actions performed. A similar transition is extracted
in (Degano, De Nicola, and Montanari 1985; 1990), but
from information stored in configurations rather than transi-
tion labels. In the third strand (Boudol and Castellani 1987;
1988a), transitions are labelled with ‘composite actions’,
which represent pomsets. This avoids the need to extract a
pomset-labelled transition ‘a posteriori’ from a sequence of
transitions, as done above.

Our work was inspired by the last two strands: our transi-
tions represent composite actions, which are stored in con-
figurations. However, unlike the above strands, we account
for concerns specific to agent programming languages, e.g.
goal refinement, plan failure, and constructs beyond actions.
Our proposal, called Concurrent CAN (CCAN), is based on
the work in (Sardina and Padgham 2011), which refines and
extends the CAN agent programming language (Winikoff et
al. 2002). We discuss the syntax of CCAN (sec. 2) and its
semantics (secs. 3 and 4), and we prove key properties of
CCAN, in relation to true concurrency and to its link with
interleaving (sec. 5); e.g., we show that if a concurrent pro-
gram’s branches are interleaved as in CAN, Jason, etc., any
resulting behaviour can also be produced by the concurrent

1There are also implemented BDI systems that do not support
true concurrency but support action interleaving, e.g. Jason.
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program. We then conclude and discuss future work (sec. 6).

2 CCAN Syntax

In this paper, we use a first-order language with a vocabu-
lary comprising mutually disjoint and infinite sets of vari-
able, function, predicate, event-goal, and action symbols.

Like (Sardina and Padgham 2011), we define a CCAN
agent by a plan-library Π, an action-library Λ, and a belief
base B. A belief base is a set of ground atoms, and an ac-
tion-library is a set of action-rules representing actions the
agent can perform. An action, denoted by a, is of the form
act(�t), where act is an n-ary action symbol representing a
function that may affect the external environment, and �t =
t1, . . . , tn is a list of (possibly ground) terms. An action-
rule, as in STRIPS, is of the form act(�v):ψ ← Φ+; Φ−,
where �v = v1, . . . , vn is a list of distinct variables; ψ, the
precondition, is a formula; and Φ+ and Φ−, respectively the
add-list and delete-list, are each a set of atoms representing
the action’s effects. Any variable occurring in ψ,Φ+, or Φ−
also occurs in �v. For any action a that occurs in Π, there
is exactly one action-rule a′ : ψ ← Φ+; Φ− ∈ Λ such that
a = a′θ for some substitution θ; we define pre(a,Λ) = ψθ
and eff (a,Λ) = 〈Φ+θ,Φ−θ〉.

A plan-library Π is a set of plan-rules of the form
ev(�t):ψ ← Pb, where ev(�t), denoted by e, is an event-
goal and ev is an n-ary event-goal symbol; ψ, the context
condition, is a formula; and Pb, the plan-body is a ‘standard
operating procedure’ for achieving ewhenψ holds inB. For-
mally, a plan-body is a formula in the language defined by
the grammar Pb ::=

a | +b | −b | ?φ | !e | P 1
b ;P 2

b | P 1
b “|”P 2

b | P 1
b ‖ P 2

b

where +b is a belief addition, which adds the atom b to
B; −b is a belief removal, which removes b from B; ?φ is
a test condition, which tests whether formula φ holds in B;
!e is an event-goal program, which states that e needs to be
achieved; and P 1

b ;P 2
b is a sequential program, which states

that P 1
b must be executed before P 2

b . Finally, P 1
b |P 2

b is an in-
terleaved program, which allows the resulting actions to be
interleaved (but not overlapped);2 and P 1

b ‖ P 2
b is a (truly)

concurrent program, which allows the resulting actions to be
interleaved and/or overlapped, as described in (Allen 1983).
In the sequel, we use the terms ‘concurrency’ and ‘concur-
rent’ only when referring to the latter type of program or its
execution.

We impose two constraints relating to concurrency. First,
we limit how a concurrent program P 1

b ‖ P 2
b is interleaved

with another program: no other (non-concurrent) step is ex-
ecuted during P 1

b ‖ P 2
b ; for example, executing interleaved

program (a1 ‖ a2) | a3 will result in action a3 happening ei-
ther before or after both a1 and a2. Second, no two branches
of a concurrent program are ‘related’. Two branches are re-
lated if (i) a variable appearing in one branch can be bound
by the other, or (ii) the same atom can be both asserted by
one branch and checked or asserted by the other.

2The exact schedule that emerges from the resulting actions will
be based on runtime choices.

To formalise the assumption that the branches of a con-
current program are unrelated, we define some auxiliary no-
tions. Let Π and Λ be a plan- and an action-library, respec-
tively. First, given any expression E, we use ATS(E) to de-
note the set of atoms occurring inE. Second, given an event-
goal e, we use REL(e,Π) = {ψθ : Pbθ | e′ : ψ ← Pb ∈
Π, θ = mgu(e, e′)} to denote the relevant plan-rules for
e, i.e., rules with ‘heads’ e′ that match e via a most general
unifier (mgu). Third, given a plan-body Pb, we recursively
define the set of atoms that are possibly checked by Pb as
follows: CHK(Pb,Π,Λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∅ if Pb ∈ {+b,−b},
ATS(φ) if Pb = ?φ,
ATS(pre(a,Λ)) if Pb = a,⋃
ψ:P ′

b
∈REL(e,Π) ATS(ψ) ∪ CHK(P ′

b,Π,Λ) if Pb = !e,

CHK(P 1
b ,Π,Λ) ∪ CHK(P 2

b ,Π,Λ) if Pb ∈ {P 1
b | P 2

b ,
P 1
b ‖ P 2

b , P
1
b ;P

2
b }.

Similarly, we define the set of atoms that are possibly as-
serted by Pb as follows: ASS(Pb,Π,Λ) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{b} if Pb ∈ {+b,−b},
∅ if Pb = ?φ,
ATS(eff (a,Λ)) if Pb = a,⋃
ψ:P ′

b∈REL(e,Π) ASS(P ′
b,Π,Λ) if Pb = !e,

ASS(P 1
b ,Π,Λ) ∪ ASS(P 2

b ,Π,Λ) if Pb ∈ {P 1
b | P 2

b ,
P 1
b ‖ P 2

b , P
1
b ;P

2
b }.

Finally, for any concurrent program P 1
b ‖ . . . ‖ Pnb occur-

ring in Π, we assume that for any i, j ∈ [1, n], with i 	= j,
there does not exist a (i) variable that occurs in both P ib and
P jb , and (ii) unifier for any pair of atoms {l, l′}, where l ∈
CHK(P ib ,Π,Λ) ∪ ASS(P ib ,Π,Λ) and l′ ∈ ASS(P jb ,Π,Λ).

3

3 Single-Intention CCAN Semantics

We define an agent configuration as a tuple [Π ,Λ,B,A,Γ ],
where Π is a plan-library; Λ is an action-library; B is a belief
base; and A is an action history representing the sequential
and concurrent actions executed so far. Formally, an action
history is a formula in the language defined by the grammar

A ::= a | A1 ;A2 | A1 ‖ A2

whereA1 ‖ A2 is an abstract representation for all the asso-
ciated ‘schedules’, each comprising interleaved and/or over-
lapping actions. Finally, Γ is a set of programs, or ‘inten-
tions’, each of which is the current evolution in the execu-
tion of a plan-body that is being pursued in order to achieve
a top-level event-goal. As it is usual with small-step oper-
ational semantics of programming languages, the syntax of
plan-bodies has to be extended with new constructs to rep-
resent these current evolutions. Formally, a program is a for-
mula in the language defined by the grammar P ::=

a | +b | −b | ?φ | !e | P1 ;P2 | P1“|”P2 | P1 ‖ P2 |
η | e : �{ψ1 : P1, . . . , ψn : Pn}� | P1 � P2 | P1 ∦ P2

where η (or ‘nil’) indicates that a program has finished,
i.e., successfully terminated; P1 ∦ P2 indicates that a

3We refer the reader to (de Silva, Sardina, and Padgham 2016)
for insights into algorithms for checking these conditions.
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Δ = REL(e) 	= ∅
[B,A, !e] ONE−→ [B,A, e : �Δ�]

Ev
ψ : P ∈ Δ B |= ψθ

[B,A, e : �Δ�]
ONE−→ [B,A,Pθ � e : �Δ \ {ψ : P}�]

Sel

[B,A,P1 ]
ONE−→ [B′,A′,P ′

1 ]

[B,A,P1 ;P2 ]
ONE−→ [B′,A′,P ′

1 ;P2 ]
Seq1

FIN(P1)

[B,A,P1 ;P2 ]
ONE−→ [B,A,P2 ]

Seq2

[B,A,P1 ]
ONE−→ [B′,A′,P ′

1 ]

[B,A,P1 | P2 ]
ONE−→ [B′,A′,P ′

1 | P2 ]
|1

[B,A,P2 ]
ONE−→ [B′,A′,P ′

2 ]

[B,A,P1 | P2 ]
ONE−→ [B′,A′,P1 | P ′

2 ]
|2

[B,A,P1 ]
ONE−→ [B′,A′,P ′

1 ]

[B,A,P1 � P2 ]
ONE−→ [B′,A′,P ′

1 � P2 ]
�step

[B,A,P1 ] 	ONE−→ ¬FIN(P1) [B,A,P2 ]
ONE−→ [B,A,P ′

2 ]

[B,A,P1 � P2 ]
ONE−→ [B,A,P ′

2 ]
�fail

B |= φ

[B,A, ?φ] X−→ [B,A, η]
Test

a′ : ψ ← Φ+; Φ− ∈ Λ a′θ = a B |= ψθ

[B,A, a] X−→ [(B \ Φ−θ) ∪ Φ+θ,A ; a, η]
Act

[B,A,P1 ]
ALL−→ [B1 ,A1 ,P

′
1 ] [B,A,P2 ]

ALL−→ [B2 ,A2 ,P
′
2 ]

[B,A,P1 ‖ P2 ]
X−→ [MERGE(B1 ,B2 ,B), APPEND(A1 ,A2 ,A),P ′

1 ∦ P ′
2 ]
‖

[B,A,P1 ]
ONE−→ [B1 ,A1 ,P

′
1 ] [B1 ,A1 ,P

′
1 ;P2 ]

ALL−→ [B2 ,A2 ,P3 ] [B2 ,A2 ,P3 ] 	ALL−→
[B,A,P1 ;P2 ]

ALL−→ [B2 ,A2 ,P3 ]
Seq

‖
1

FIN(P1) [B,A,P2 ]
ALL−→ [B1 ,A1 ,P3 ]

[B,A,P1 ;P2 ]
ALL−→ [B1 ,A1 ,P3 ]

Seq
‖
2

[B,A,P1 ]
ONE−→ [B1 ,A1 ,P

′
1 ] [B1 ,A1 ,P

′
1 ;P2 ] 	ALL−→

[B,A,P1 ;P2 ]
ALL−→ [B1 ,A1 ,P

′
1 ;P2 ]

Seq
‖
3

P ∈ {!e, P1 | P2} [B,A,P ; ?�] ALL−→ [B′,A′,P ′]

[B,A,P ]
ALL−→ [B′,A′,P ′]

Rewrite‖

Figure 1: CCAN derivation rules for configurations with single intentions.

concurrent program has terminated (not necessarily suc-
cessfully); e : �{ψ1 : P1, . . . , ψn : Pn}� represents the set
of plan-rules that are relevant for achieving event-goal e;
and ‘failure handling’ program P � P ′, with P ′ = e :
�{ψ1 : P1, . . . , ψn : Pn}�, executes program P in order to
achieve event-goal e, and if P fails, an alternative program
(plan-body) Pi is tried if it is applicable. Note that a program
is more general than those generated by our semantics.

Like (Sardina and Padgham 2011), we define a transition
relation on configurations in terms of a set of derivation rules
(Plotkin 1981); we omit the elements Π and Λ from configu-
rations in our transitions as those elements do not change be-
tween transitions. A derivation rule has an antecedent and a
conclusion: the latter is a single transition, and the former is
either empty or a conjunction of auxiliary conditions and/or
transitions representing ‘internal’ execution steps. In this pa-
per we only use labelled transitions. A transition C ONE−→ C ′
indicates that doing one execution step on configuration C,
which may involve multiple internal execution steps, yields
configuration C ′. A transition C ALL−→ C ′ indicates that C ′
is a result of doing all possible internal execution steps from
C. Intuitively, ONE-type transitions model behaviour in the
context of standard execution, and ALL-type ones model be-
haviour in the context of concurrent execution.

We first give our semantics for single-intention configura-

tions of the form [Π ,Λ,B,A,P ], where P is a program. In
sec. 3.1 we give derivation rules for standard programs, and
in sec. 3.2 we give rules that relate to concurrent programs.

3.1 Derivation Rules for Standard Programs

Fig. 1 (top half) shows the derivation rules for standard
CCAN programs, including interleaved programs.

Rule Ev creates the set Δ of relevant plan-rules for a
given event-goal program !e. Rule Sel selects an applicable
plan-rule for an event-goal e from its relevant plan-rules Δ,
and schedules the corresponding plan-body for execution.

Rules Seq1 and Seq2 give semantics for sequential execu-
tion: Seq1 executes one step on a sequential program P1;P2

by executing a step on its first program P1, and Seq2 re-
moves P1 if it has finished (as we define in sec. 3.2), e.g., if
P1 = η. Rules |1 and |2 give semantics for interleaved ex-
ecution: given an interleaved program P1 | P2, one step is
executed either on P1 (using rule |1) or on P2 (using |2).

Rules �step and �fail give semantics for executing a pre-
viously selected plan-body and for failure handling, respec-
tively: rule �step executes one step on a program P1 � P2

by executing a step on P1, provided it has neither failed nor
finished, and rule �fail removes P1 if it has failed, and exe-
cutes a step on program P2 = e : �Δ�. A program has failed
if it has not finished (as in the second condition in the an-
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tecedent of �fail) but it is ‘stuck’ (as in the first condition
in the antecedent of �fail), i.e., it is not possible to execute
a step on the program (e.g., an event-goal program !e when
there are no relevant plan-rules for e). Given a configuration
C, we use C ONE−→ as an abbreviation for ∃C ′, C ONE−→ C ′ (and
use C ALL−→, C 	ONE−→, and C 	ALL−→ similarly).

Finally, rule Test executes one step on a test program ?φ
if condition φ holds in the belief base, and rule Act gives se-
mantics for actions. This rule’s antecedent checks whether
the relevant action-rule of a given action a is applicable, and
the conclusion applies the action’s effects to the belief base,
and appends a to action history A. When the transition la-
bel X occurs in a derivation rule, the associated transition
represents both transition types (ONE and ALL).

3.2 Derivation Rules for Concurrent Programs

Fig. 1 (bottom half) shows the derivation rules that relate to
concurrent programs. The main rule ‖ executes one step on a
program P1 ‖ P2, which amounts to independently doing all
possible internal execution steps on each branch P1 and P2.
The rule applies when at least one step is possible on each
branch, and in the context of both standard and concurrent
execution (which enables ‘nested’ concurrency).

The conclusion of the rule does two things. First, it merges
the independent and ‘local’ updates to (copies of) belief base
B by branches P1 and P2. We define MERGE(B1,B2,B) =
(B∪B+1 ∪B+2 )\(B−1 ∪B−2 ), where for both i ∈ [1, 2], B+i =
Bi \ B and B−i = B \ Bi. Second, the conclusion combines
the action histories (if any) yielded by the two branches to
form a new history, which is appended to A. This notion of
combining and appending is defined as follows. Let A,A1,
and A2 be as in rule ‖. For both i ∈ [1, 2], let Ai = A ;A′

i
for some A′

i, or let Ai = A, i.e., no actions were yielded
by the corresponding branch. Then, APPEND(A1,A2,A) is
defined as (i) A ; (A′

1 ‖ A′
2) if A1,A2 	= A, (ii) A2 if

A1 = A, and (iii) A1 if A2 = A.
Rules Seq‖1 , Seq

‖
2 and Seq‖3 give semantics for sequential

execution in the context of concurrency. Rule Seq‖1 applies
when at least two execution steps are possible on a given se-
quential program P1;P2. The antecedent executes one step
on P1, and then recursively performs all possible execution
steps on the remainder P ′

1;P2. Rule Seq‖3 applies when a
given sequential program P1;P2 (possibly a remainder) can
terminate in one step. Rule Seq‖2 is analogous to Seq2, and
applies when P1 has finished and at least one step is possible
on P2. Formally, given the set of all programs Pall, function
FIN : Pall → {�,⊥} indicates whether a given program
P ∈ Pall has finished. The function is defined as follows:

FIN(P ) =

⎧⎪⎨
⎪⎩

FIN(P1) ∧ FIN(P2) if P ∈ {P1 ∦ P2, P1 | P2},
FIN(P1) if P = P1 � P2,
� if P = η,
⊥ otherwise.

Proposition 1. If FIN(P ) holds for some program P , then
for any belief base B and action historyA, there is no B′,A′

and P ′ such that [B,A,P ]
ONE−→ [B′,A′,P ′].

Proof. The case P ∈ {η, P1 ∦ P2} (for some P1 and P2) is
trivial as no rules can be applied to P . If P = P1 � P2,

we show that neither rule �step nor �fail applies to P .
Since FIN(P ) holds, so does FIN(P1). Thus �fail cannot
be applied to P . Similarly, �step cannot be applied if P1 ∈
{η, P 1

1 ∦ P 2
1 }. If P1 = P 1

1 �P 2
1 , i.e., construct � is ‘nested’

in P , the proposition follows because FIN(P 1
1 ) holds, and �

can only be nested to a finite depth in P . The cases where
P1 and P are interleaved programs are proved similarly.

Finally, given an event-goal or interleaved program, rule
Rewrite‖ ‘rewrites’ it to make it the first program of a sim-
ple sequence, which is executed as above. This avoids the
need for rules to handle programs P1 | P2 and !e (and evo-
lutions such as P � P ’) in the context of concurrency.

3.3 An Example

We will now illustrate some of the derivation rules in fig.
1 with an example. Consider a manufacturing facility with a
robotic station that engraves the surfaces of wooden spheres.
The station comprises a camera, a fixture that holds and ro-
tates a sphere while other operations are being performed on
it, and a robotic arm with a built-in circular tool changing
rack comprising 6 tools (e.g. for milling and drilling).

The fixture can perform action rX(N) (resp. rZ(M)),
which rotates a wooden sphere, if it is currently in the fix-
ture, N (resp. M ) times on the x-axis (resp. z-axis); each
complete rotation takes 5 seconds and starts instantly. Both
actions have precondition in, which is a proposition that
holds only if a sphere is sensed in the fixture. In our scenario,
M = N = 2; the extra rotation on each axis leaves sufficient
time for a concurrent preparatory (tool changing) action to
complete. The camera performs action r(N), which records,
for N seconds, a video of all the actions that are being per-
formed on the sphere in the fixture; we use N = 25.

The capabilities of the robot are as follows. Event-goal e,
if it uses plan-rule e : in ∧ ¬at← c ;m(20), first prepares
to engrave the sphere by changing the current tool to the
milling tool, and then mills the sphere. Event-goal e uses
rule e : in ∧ at← m(20) if in holds and the milling tool
was used last, i.e., proposition at holds. Action c above ro-
tates the tool rack until the milling tool is reached; it takes a
second to rotate to the next tool on the rack (and thus at most
5 seconds). Action m(N), with precondition in, mills for N
seconds, which includes starting high speed rotation for the
milling tool, moving it into the sphere, moving it out, and
ending tool rotation, each of which takes negligible time.4

The derivation rule in the top row (eq. 1) of fig. 2 depicts
one execution step on the concurrent program r(25) ‖ !e ‖
(rX(2) | rZ(2)), which specifies that while the sphere is
being engraved, it should be (simultaneously) rotated on the
x-axis and the z-axis (which can be performed in either or-
der), and that all these activities should be recorded. The pro-
gram is executed using rule ‖, whose antecedent prescribes
the concurrent execution of two programs, each using a step
of type ALL. One such step is performed on action r(25), and

4For a given axis of rotation, we assume there will be no differ-
ence in the engraving on the sphere whether milling is performed
for exactly one rotation of the sphere or for longer (e.g. milling
starts before the rotation, or ends after).
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Figure 2: Equation 1 (first row) shows one execution step on concurrent program r ‖ !e ‖ (rX | rZ), which involves one step
on r, and all the possible steps on both !e (eqs. 2-4 in rows 2-4) and (rX | rZ) (eq. 5 in row 4). Action parameters are omitted,
as are obvious antecedents, and obvious belief bases and action histories in configurations. The action histories above are: (i)
A4 = A1; r, (ii) A2 = A1; c, (iii) A3 = A2;m, (iv) A5 = A1; rZ, (v) A6 = A5; rX , (vi) A7 = A1;

(
(c ;m) ‖ (rZ ; rX)

)
,

and (vii) A8 = A1;
(
r ‖ (c ;m) ‖ (rZ ; rX)

)
.

the other on concurrent ‘subprogram’ !e ‖ (rX(2) | rZ(2))
by recursively applying rule ‖, whose antecedent, in turn,
prescribes the concurrent execution of event-goal program
!e (eq. 2) and interleaved program rX(2) | rZ(2) (eq. 5).

Executing the top-level concurrent program yields action
history r(25) ‖ (c ;m(20)) ‖ (rZ(2) ; rX(2)), which (i)
abstractly represents all the associated action schedules (e.g.
where the branches are interleaved, and where r(25), c, and
rZ(2) start together and overlap),5 and (ii) corresponds to
the ‘terminated branches’ of the concurrent program.

4 Multiple-Intention CCAN Semantics

We now give our semantics for configurations with multiple
intentions, i.e., agent configurations, which are of the form
[Π ,Λ,B,A,Γ ], where Γ is a set of programs.

A transition between agent configurations is either of type
CCAN, EVENT, or INT, and the transition relation on agent
configurations is defined by the derivation rules in fig. 3.
Rule Accan is the main rule, which represents the CCAN
deliberation cycle. The CCAN-type step in the conclusion of

5Since, in systems such as PRS and JACK, branches (‘threads’)
typically start execution at roughly the same point in time, we as-
sume the same when writing concurrent branches in CCAN.

the rule involves two internal steps. In the first internal step,
an intention is either (i) removed (using rule Arem) if it has
failed or finished, (ii) progressed (using rule Aint) by one
step, or (iii) progressed by multiple steps, in which case a
concurrent program will have been executed. In the second
internal step, newly observed event-goals from the (external)
environment are processed (using rule Aev), by creating an
intention for each such event-goal.

5 Properties of CCAN

We now show that our concurrency semantics has three key
properties: a concurrent program does not terminate ‘pre-
maturely’ (before all the branches terminate), as ensured by
JACK’s fourth definition (sec. 1); the semantics is sound and
complete in terms of the action histories that are produced;
and if the concurrent program’s branches are interleaved,
any resulting action history corresponds to a valid action
schedule for the concurrent program, i.e., the history is an
ordering of a pomset yielded by the concurrent program. We
use action histories because we are interested in exploring
behavioural equivalence—we thus abstract from things such
as belief bases, and ‘unobservable steps’ such as the creation
of a relevant plan set (rule Ev in fig. 1).
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[B,A,Γ ]
INT
=⇒ [B′,A′,Γ ′] [B′,A′,Γ ′] EVENT

=⇒ [B′,A′,Γ ′′]

[B,A,Γ ]
CCAN
=⇒ [B′,A′,Γ ′′]

Accan
P ∈ Γ [B,A,P ]

ONE−→ [B′,A′,P ′]

[B,A,Γ ]
INT
=⇒ [B′,A′, (Γ \ {P}) ∪ {P ′}]

Aint

P ∈ Γ [B,A,P ] 	ONE−→
[B,A,Γ ]

INT
=⇒ [B,A,Γ \ {P}]

Arem
e1, . . . , en

[B,A,Γ ]
EVENT
=⇒ [B,A,Γ ∪ {!e1 , . . . , !en}]

Aev

Figure 3: CCAN derivation rules for configurations with multiple intentions.

We first define the notion of an execution trace, which is
a sequence of configurations obtained by performing ONE
type execution steps. In the sequel, we assume that all +b
and −b programs occurring in the plan-library Π have been
replaced by equivalent actions, and given a configuration
C = [B,A,P ], we define CB = B, CA = A, and CP = P .

Definition 1. An execution trace of a configuration C =
[B,A,P ] is a finite sequence of configurations C1 · . . . · Cn
such that C = C1, n > 1, and Ci

ONE−→ Ci+1 for all i ∈
[1, n− 1]; the trace is said to have terminated if Cn 	ONE−→.

The first theorem states that after one execution step on
a concurrent program (which yields a terminated concurrent
program P ′

1 ∦ . . . ∦ P ′
n), each branch will have performed

all the possible (internal) execution steps and terminated.

Theorem 1. Let B be a belief base, A an action history,
and P‖ = P1 ‖ . . . ‖ Pn a concurrent program s.t. Pi 	=
P 1
i ‖ P 2

i (for any P 1
i , P

2
i and i ∈ [1, n]).6 If [B,A,P‖]

ONE−→
[B′,A′,P ′

1 ∦ . . . ∦ P ′
n ], then [B′,A′,P ′

i ] 	
ONE−→ for i ∈ [1, n].

Proof Sketch. Consider any Pi above. From the assump-
tion of the theorem and derivation rule ‖, it follows that
[B,A,Pi ]

ALL−→ [B′′,A′′,P ′
i ], where B′′ and A′′ correspond

to P ′
i and form part of respectively B′ and A′.

If Pi ∈ {?φ, a}, only rule Test or Act can apply, which
guarantee that [B′′,A′′,P ′

i ] 	
ONE−→. If Pi ∈ {!e, P | P ′} (for

some P and P ′), it is rewritten as a sequential program.
Thus, the final case is where Pi is a sequence, or evolves
into one. Consider the former (the latter is analogous). Since
rule Seq‖2 cannot apply to configuration [B,A,Pi ] (because
Pi is a plan-body and thus unfinished), either rule Seq‖1 or
Seq

‖
3 must have been applied to [B,A,Pi ], both of whose

antecedents ensure that [B′′,A′′,P ′
i ] 	

ALL−→ holds. Finally, we
prove by contradiction that [B′′,A′′,P ′

i ] 	
ONE−→ also holds.

Let us assume instead that [B′′,A′′,P ′
i ]

ONE−→. Consider the
case where P ′

i = P 1
i ;P

2
i is a sequence such that P 1

i is not
a sequence and ¬FIN(P 1

i ) holds. Since [B′′,A′′,P1
i ]

ONE−→
is entailed by our assumption, either the antecedent of rule
Seq

‖
1 or Seq‖3 must hold w.r.t. P ′

i . This contradicts the fact
that [B′′,A′′,P ′

i ] 	
ALL−→. The cases where FIN(P 1

i ) holds or P ′
i

is not a sequence also lead to contradictions. �
The theorem can be straightforwardly extended to show

that, due to the definition of ‘FIN’ (sec. 3.2), the concurrent

6Any concurrent program can be represented in this ‘full’ form.

program P‖ succeeds, i.e., yields a terminated (concurrent)
program that has finished, iff each branch Pi has succeeded.

Theorem 2 concerns soundness and completeness for the
derivation rules that relate to concurrent programs. Sound-
ness is due to the fact that any action history yielded by a
branch of a concurrent program can also be yielded when
the branch is executed separately from the program (perhaps
using only rules in the top half of fig. 1). Conversely, com-
pleteness is due to the fact that any action history yielded by
a non-concurrent program upon its termination can also be
yielded when the latter is a branch of a concurrent program.

Theorem 2. Let B,A and P‖ = P1 ‖ . . . ‖ Pn be as above.

There exists a transition [B,A,P‖]
ONE−→ [B′,A ;A′,P ′

‖],
with A′ = A1 ‖ . . . ‖ An, iff there exists a terminated ex-
ecution trace C1 = [B,A,Pi ] · . . . · Cm = [B′′,A ;A′

i ,P
′
i ]

for each i ∈ [1, n], such that A′
i = Ai.7

Proof Sketch. We discuss one direction of the proof: con-
sider an execution trace C1 · . . . · Cm as above. The proof
is involved, requiring induction on the length of the trace
and the structure of each Ci. The main part is the inductive
case, which takes any pair of configurations Cj and Cj+1

(for j ∈ [1,m − 1]), and the corresponding action history
A′′ (if Cj+1|A = Cj |A;A

′′), and shows that A′′ can also
be yielded by an ALL-type transition from Cj .

Let us consider the two main cases. In the first, Cj |P =
P 1
j ;P

2
j (for some P 1

j and P 2
j ), and P 1

j is not a sequential

program and ¬FIN(P 1
j ) holds. Since the transition Cj

ONE−→
Cj+1 must have used rule Seq1, it follows that transition
[Cj |B,Cj |A,P1

j ]
ONE−→ [Cj+1 |B,Cj+1 |A,P1 ′

j ] is possible,
with Cj+1|P = P 1′

j ;P 2
j . Thus, the first condition in the an-

tecedents of both Seq‖1 and Seq‖3 holds. The interesting sub-
case is where¬FIN(P 1′

j ). Now ifCj+1 	ONE−→ (i.e., j+1 = m),
it follows that the second condition also holds in the an-
tecedent of Seq‖3 . Thus, A′′ can be yielded by applying the
rule to Cj . If Cj+1

ONE−→, the second condition holds in the
antecedent of Seq‖1 , and consequently also the third. Thus,
A′′ can be yielded by applying the rule to Cj .

The second main case is where Cj |P = !e (the case where
Cj |P = P 1

j | P 2
j is analogous). Then, transition Cj

ONE−→
Cj+1 must have used rule Ev, and Cj+1|P = e : �Δ�. This
transition can be simulated by applying rule Rewrite‖ to
Cj : the rule’s antecedent holds because we showed above

7We omit the trivial corollary where some Ai are ‘empty’.
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that either Seq‖1 or Seq‖3 must be applicable to configura-
tions such as [Cj |B,Cj |A, !e ; ?�]. �

The third theorem links concurrency and interleaving, and
is based on the standard notions of a pomset and a linear
extension of one. We first give some auxiliary definitions to
represent action histories produced by a concurrent program
in terms of pomsets, which enables comparing their linear
extensions with the action histories that are produced when
the program’s branches are interleaved.
Definition 2. An action pomset (or simply a pomset) is a
4-tuple ρ = 〈V ,A,≺, f 〉, where the ‘vertices’ V is a fi-
nite set of natural numbers, A is a finite set of actions, the
‘ordering relation’ ≺ is an irreflexive, a transitive, and an
asymmetric binary relation on V , and the ‘labelling func-
tion’ f is a surjection from V to A. A sequence of ac-
tions a1; . . . ; an is a linear extension of a pomset ρ, denoted
a1; . . . ; an ∈ LIN(ρ), iff there exists a permutation v1·. . .·vn
of the vertices of ρ such that (vi, vj) ∈≺ implies i < j, and
ak = f(vk) for all k ∈ [1, n].8

Next, we define how a pomset is built from a given action
history, by the recursive application of sequential and/or par-
allel composition operators. Let ρ1 = 〈V1 ,A1 ,≺1 , f1 〉 and
ρ2 = 〈V2 ,A2 ,≺2 , f2 〉 be pomsets, and let r (a ‘renaming’)
be a bijection from V2 to a set V3 such that V3 ∩ V1 = ∅ and
V3 ∩ V2 = ∅. Let 〈V3 ,A3 ,≺3 , f3 〉 be the pomset obtained
from ρ2 by renaming it using r, i.e., replacing each occur-
rence in ρ2 of each vertex v ∈ V2 with r(v). Then, we define
ρ1 ≺∗ ρ2 as the pomset 〈V ,A,≺, f 〉, where V = V1 ∪ V3,
A = A1∪A3, f = f1∪f3, and≺=≺1 ∪ ≺3 ∪ V1×V3; sim-
ilarly, we define ρ1∪∗ρ2 as the pomset 〈V ,A,≺1 ∪ ≺3 , f 〉.
Finally, given an action historyA, we define the correspond-
ing pomset as

P(A) =
{

P(A1) ≺∗ P(A2) if A = A1;A2,
P(A1) ∪∗ P(A2) if A = A1 ‖ A2,
〈{1}, {a}, ∅, {(1 , a)}〉 if A = a.

Proposition 2. If A is an action history, P(A) is a pomset.

Proof. Let a be any action. First, if action history A = a,
then P(A) is the ‘atomic’ pomset comprising the single ac-
tion ‘a’, the empty ordering relation, and the single vertex
‘1’ labelled with the action. Second, each incremental appli-
cation of either ≺∗ or ∪∗ to two (initially ‘atomic’) pomsets
ρ1 and ρ2 will also yield a pomset because (i) the vertices
in ρ2 will be renamed to V3 (guaranteeing that the resulting
labelling function is a surjection), and (ii) the entire cross
product of V1 and V3 is added to the resulting ordering rela-
tion in the definition of ρ1 ≺∗ ρ2, ensuring transitivity.

Finally, Theorem 3 states that if the branches of a concur-
rent program are executed as part of an interleaved program,
any linear extension of (the pomset of) a resulting action
history will also be a linear extension of some action history
that is yielded by the concurrent program. We need to use
linear extensions of the former action history (as opposed
to using the history directly) to account for concurrent pro-
grams that might emerge within the branches as they evolve.

8We treat relations and functions as sets of ordered pairs.

Theorem 3. Let B,A and P‖ = P1 ‖ . . . ‖ Pn be as above,

and suppose [B,A,P‖]
ONE−→. Let [B,A,P1 | . . . | Pn ] · . . . ·

[B′,A ;A|,P ′] be a terminated execution trace. Then, there

exists a transition [B,A,P‖]
ONE−→ [B′,A ;A‖,P ′

‖] such that
LIN(P(A|)) ⊆ LIN(P(A‖)).
Proof Sketch. Consider the case n = 2, i.e., P‖ = P1 ‖ P2,
and let T be the above trace. Let A′ ∈ LIN(P(A|)) be a
linear extension corresponding to T . Consider the subcase
where the first x actions in A′ are yielded by P1, and the
next y (but not y+1) by P2, with x, y > 0. Now consider the
prefix of T that yields the first x actions. The prefix is also
an execution trace from [B,A,P1 ] if we remove program P2

from the prefix, i.e., we replace program C|P = P ′
1 | P2 in

each configuration C in the prefix by P ′
1.

Suppose the prefix ends with C1 = [B1 ,A1 ,P ′
1 | P2 ].

Consider the trace T ′ that starts fromC1 in T , executes only
P2, and ends immediately on yielding the next y actions.
Suppose T ′ ends with C2 = [B2 ,A2 ,P ′

1 | P ′
2 ]. While be-

lief bases B and B1 may differ, we can show that T ′ can be
simulated by a trace from [B,A,P2 ] that ends with a config-
uration C s.t. C|P = P ′

2. This follows from our assumption
in sec. 2 that P1 and P2 are unrelated. A similar reasoning
can be applied to the next actions yielded by P ′

1 and P ′
2, by

the resulting P ′′
1 and P ′′

2 , and so on, until we build termi-
nated execution traces for [B,A,P1 ] and [B,A,P2 ]. Using
the traces, we can show that the antecedent of rule ‖ holds
for [B,A,P‖], from which the theorem also follows. �

The converse of the theorem does not hold due to our con-
straint in sec. 2 that no other (non-concurrent) step can be
executed while a concurrent program is being executed. For
example, take concurrent program P = ((a1 ‖ a2) ; a3) ‖
a4, which also represents its action history A. While the se-
quence a1; a4; a2; a3 is a linear extension of the pomset of
A, the sequence cannot be produced by the interleaved pro-
gram corresponding to P , namely, ((a1 ‖ a2) ; a3) | a4.

6 Discussion
We provide a BDI agent programming language supporting
(true) concurrency. This differs from past work on similar
languages, which interpret concurrency as interleaving. We
support ‘nested’ concurrency, and a limited form of nesting
between concurrency and interleaving. We prove key prop-
erties of the semantics in relation to concurrency, e.g. sound-
ness and completeness w.r.t. action histories. Our results can
be extended to develop further notions, e.g. what it means
for a program to be ‘more concurrent’ than another.

Concurrency enables branches to be executed on separate
processors or machines, yielding smaller makespans than
would otherwise be possible. Concurrency also enables par-
ticular desirable action schedules (or expressing an aspect of
‘user intent’ (Fox 1997; Kambhampati, Mali, and Srivastava
1998)) that would not be possible by interleaving actions,
e.g. the schedule in which the recording action r(25) spans
over both the rotate actions rX(2) and rZ(2).

There are many interesting avenues to explore in future
work. In particular, we could formalise other approaches
to concurrency, such as the more sophisticated approach of
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immediately aborting execution of the remaining branches
upon the failure of one branch in a concurrent program (Har-
land et al. 2015). The semantics that we have presented is a
crucial step toward formalising such alternative approaches,
which would then enable formal comparison. We could also
explore how to relax our constraint on how a concurrent pro-
gram can be interleaved; enable interaction between concur-
rent branches, e.g. to communicate the binding assigned to a
variable that is shared between multiple branches; add con-
currency to other systems, e.g. AgentSpeak; model check
concurrent (user supplied) JACK plans (cf. (Bordini et al.
2003)); and explore what concurrency means in the presence
of advanced agent constructs, e.g. the declarative goal (e.g.
(Hindriks et al. 2001; Winikoff et al. 2002)) and planning
(e.g. (Sardina and Padgham 2011)) constructs.
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