
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Distributed Machine Learning through Heterogeneous Edge Systems

Hanpeng Hu,1 Dan Wang,2 Chuan Wu1

1The University of Hong Kong, 2The Hong Kong Polytechnic University
{hphu, cwu}@cs.hku.hk, csdwang@comp.polyu.edu.hk.

Abstract

Many emerging AI applications request distributed machine
learning (ML) among edge systems (e.g., IoT devices and
PCs at the edge of the Internet), where data cannot be up-
loaded to a central venue for model training, due to their
large volumes and/or security/privacy concerns. Edge devices
are intrinsically heterogeneous in computing capacity, posing
significant challenges to parameter synchronization for paral-
lel training with the parameter server (PS) architecture. This
paper proposes ADSP, a parameter synchronization model
for distributed machine learning (ML) with heterogeneous
edge systems. Eliminating the significant waiting time oc-
curring with existing parameter synchronization models, the
core idea of ADSP is to let faster edge devices continue train-
ing, while committing their model updates at strategically de-
cided intervals. We design algorithms that decide time points
for each worker to commit its model update, and ensure not
only global model convergence but also faster convergence.
Our testbed implementation and experiments show that ADSP
outperforms existing parameter synchronization models sig-
nificantly in terms of ML model convergence time, scalability
and adaptability to large heterogeneity.

1 Introduction

Many edge-based AI applications have emerged in recent
years, where various edge systems (e.g., PCs, smart phones,
IoT devices) collect local data, collaboratively train a ML
model, and use the model for AI-driven services. For ex-
ample, smart cameras are deployed in surveillance sys-
tems (Ved 2019; Park et al. 2018), which capture local im-
ages/videos and train a global face recognition model ag-
gregately. In Industry AI Operations (AIOps) (Qu and Ha
2017), chillers in a building or an area collect temperature
and electricity consumption data in the households, and de-
rive a global COP (Coefficient of Performance) prediction
model (Chen et al. 2019).

A straightforward way of training a global model with
data collected from multiple edge systems is to send all data
to a central venue, e.g., a cloud data center, and train the
datasets using a ML framework, such as TensorFlow (Abadi

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2016), MXNet (Chen et al. 2015) and Caffe2 (Hazel-
wood et al. 2018)). Such a ‘data aggregation → training’
approach may well incur large network bandwidth cost, due
to large data transmission volumes and continuous gener-
ation nature of the data flow, as well as data security and
privacy concerns. To alleviate these issues, collaborative,
distributed training among edge systems has been advo-
cated (Tao and Li 2018), where each edge system locally
trains the dataset it collects, and exchanges model param-
eter updates (i.e., gradients) with each other through pa-
rameter servers (Wang et al. 2018; Konečnỳ et al. 2016;
Park et al. 2018) (a.k.a., geo-distributed data parallel train-
ing).

Edge systems are intrinsically heterogeneous: their hard-
ware configurations can be vastly different, leading to differ-
ent computation and communication capacities. This brings
significant new issues on parameter synchronization among
the edge workers. In a data center environment, synchronous
training (i.e., Bulk Synchronous Parallel (BSP) (Ho et al.
2013; Li et al. 2013; Low et al. 2012)) is adopted by the
majority of production ML jobs (based on our exchanges
with large AI cloud operators), given the largely homoge-
neous worker configuration: each worker trains a mini-batch
of input data and commits computed gradients to the PS;
the PS updates global model after receiving commits from
all workers, and then dispatches updated model parameters
to all workers, before each worker can continue training its
next mini-batch. In the edge environment, the vastly differ-
ent training speeds among edge devices call for a more asyn-
chronous parameter synchronization model, to expedite ML
model convergence.

Stale Synchronous Parallel (SSP) (Ho et al. 2013) and To-
tally Asynchronous Parallel (TAP) (Hsieh et al. 2017) are
representative asynchronous synchronization models. With
TAP, the PS updates the global model upon commit from
each individual worker, and dispatches updated model im-
mediately to the respective worker; it has been proven that
such complete asynchrony cannot ensure model conver-
gence (Hsieh et al. 2017). SSP enforces bounded asynchro-
nization: fast workers wait for slow workers for a bounded
difference in their training progress, in order to ensure model
convergence. A few recent approaches have been proposed

7179



to further improve convergence speed of asynchronous train-
ing(Hadjis et al. 2016; Wang and Joshi 2018) (see more in
Sec. 2).

We investigate how existing parameter synchronization
models work in a heterogeneous edge environment with
testbed experiments (Sec. 2.3), and show that the waiting
time (overall model training time minus gradient computa-
tion time) is still more than 50% of the total training time
with the representative synchronization models.

Aiming at minimizing the waiting time and optimizing
computing resource utilization, we propose ADSP (ADap-
tive Synchronous Parallel), a new parameter synchronization
model for distributed ML with heterogeneous edge systems.
Our core idea is to let faster workers continue with their
mini-batch training all the time, while enabling all workers
to commit their model updates at the same strategically de-
cided intervals, to ensure not only model convergence but
also faster convergence. The highlights of ADSP are sum-
marized as follows:
� ADAP is tailored for distributed training in heteroge-

neous edge systems, which fully exploits individual work-
ers’ processing capacities by eliminating the waiting time.
� ADSP actively controls the parameter update rate from

each worker to the PS, to ensure that the total number of
commits from each worker to the PS is roughly the same
over time, no matter how fast or slow each worker performs
local model training. Our algorithm exploits a momentum-
based online search approach to identify the best cumulative
commit number across all workers, and computes the com-
mit rates of individual workers accordingly. ADSP is proven
to converge after a sufficient number of training iterations.
� We have done a full-fledged implementation of ADSP

and evaluated it with real-world edge ML applications. Eval-
uation results show that it outperforms representative param-
eter synchronization models significantly in terms of model
convergence time, scalability and adaptability to large het-
erogeneity.

2 Background and Motivation

2.1 SGD in PS Architecture

Stochastic Gradient Descent (SGD) is the widely used al-
gorithm for training neural networks (Hadjis et al. 2016;
Abadi et al. 2016). Let Wt be the set of global parameters of
the ML model at t. A common model update method with
SGD is:

Wt+1 = Wt − η∇�(Wt) + μ(Wt −Wt−1) (1)

where∇�(Wt) is the gradient, η is the learning rate, and μ ∈
[0, 1] is the momentum introduced to accelerate the training
process, since it accumulates gradients in the right direction
to the optimal point (Polyak 1964; Sutskever et al. 2013).

In widely adopted data-parallel training with the parame-
ter server (PS) architecture(Chilimbi et al. 2014), SGD up-
date rule can be applied at both the workers and the PS
(Jiang et al. 2017). Each worker holds a local copy of the ML
model, its local dataset is divided into mini-batches, and the
worker trains its model in an iterative fashion: in each step,
the worker calculates gradients of model parameters using

one mini-batch of its data, and may commit its gradients to
the PS and pull the newest global model parameters from
the PS. The PS updates the global model using Eqn. (1) with
gradients received from the workers and a global learning
rate η. In the case that a worker does not synchronize model
parameters with the PS per step, the worker may carry out
local model updates using computed gradients according to
Eqn. (1), where the gradients are multiplied by a local learn-
ing rate η′.

2.2 Existing Parameter Synchronization Models

A parameter synchronization model specifies when each
worker commits its gradients to the PS and whether it should
be synchronized with updates from other workers; it crit-
ically affects convergence speed of model training. Three
representative synchronization models, BSP, SSP and TAP,
have been compared in (Hsieh et al. 2017), which proves
that BSP and SSP guarantee model convergence whereas
TAP does not. Training convergence with BSP is signifi-
cantly slower than SSP (Ho et al. 2013), due to BSP’s strict
synchronization barriers. Based on the three synchronization
models, many studies have followed, aiming to reduce the
convergence time by reducing communication contention
or overhead (Chen, Wang, and Li 2019; Lin et al. 2017;
Sun et al. 2016), adjusting the learning rate (Jiang et al.
2017), and others (Zhang et al. 2018). ADACOMM (Wang
and Joshi 2018) allows accumulating local updates before
committing to the PS, and adopts BSP-style synchronization
model, i.e., all workers run τ training steps before synchro-
nizing with the PS. It also suggests reducing the commit rate
periodically according to model loss; however, the instabil-
ity in loss values during training and the rapidly declining
commit rate are not ideal for expediting training (according
to our experiments).

Aiming at minimizing waiting time among heterogeneous
workers, our synchronization model, ADSP, employs an on-
line search algorithm to automatically find the optimal/near-
optimal update commit rate for each worker to adopt.

2.3 Impact of Waiting

We divide the time a worker spends in each training step
into two parts: (i) the computation time, to carry out forward
propagation to produce output and backward propagation to
compute gradients/apply model updates (Chen et al. 2015);
and (ii) the waiting time, including the time for exchanging
gradients/parameters with the PS and the blocked time due
to synchronization barrier (i.e., the time when the worker is
not doing computation nor communication).

We experiment with representative synchronization mod-
els to investigate their waiting time incurred. We train a
convolutional neural network (CNN) model on the Cifar10
dataset (Krizhevsky and Hinton 2010) with 1 PS and 3 work-
ers with heterogeneous computation capacities (time ratio
to train one mini-batch is 1:1:3). Fig. 1 shows the conver-
gence time (overall training time to model convergence) and
the average time spent per training step, incurred with BSP,
SSP, and ADACOMM (See Sec. 5 for their details). TAP is
not compared as it has no convergence guarantee. The com-
putation/waiting time is averaged among all workers. We

7180



Figure 1: Training time breakdown with different parameter
synchronization models.

see that with heterogeneous workers, the waiting time dom-
inates the overall training time with BSP and SSP, and their
overall convergence time and time spent per training step are
long. With ADACOMM, the waiting time and overall train-
ing time are much shorter. Nevertheless, its waiting time is
still close to half of the total training time, i.e., the effective
time used for model training is only around 50%, due to its
relative conservative approach on local model updates.

Our key question is: what is the limit that we can fur-
ther reduce the waiting time to, such that time is spent
most efficiently on model computation and convergence can
be achieved in the most expedited fashion? Our answer,
ADSP, allows fast workers to keep training while maintain-
ing approximately the same gradient commit rates among all
workers. Fig. 1 shows that the waiting time is minimized to a
negligible level with ADSP, as compared to the computation
time. As such, almost all training time is effectively used for
model computation and fast model convergence is achieved.

3 ADSP Overview

We consider a set of heterogeneous edge systems and a pa-
rameter server (PS) located in a datacenter, which together
carry out SGD-based distributed training to learning a ML
model. ADSP (ADaptive Synchronous Parallel) is a new pa-
rameter synchronization model for this distributed ML sys-
tem. The design of ADSP targets the following goals: (i)
make full use of the computation capacity of each worker;
(ii) choose a proper commit rate to balance the tradeoff be-
tween hardware efficiency (utilization of worker computing
capacity) and statistical efficiency (i.e., reduction of loss per
training step), in order to minimize the overall time taken to
achieve model convergence; (iii) ensure model convergence
under various training speeds and bandwidth situations at
different workers.

With ADSP, time is divided into equal-sized slots of du-
ration Γ > 0: 0,Γ, 2Γ, . . ., which we call as check periods.
We refer to time points Γ, 2Γ, . . . , pΓ, . . ., as checkpoints.

Parameters Storage

……

Worker 0

Scheduler

Data Collect Module

Timer

Parameter 
Server

ΔW W
Commit rate

ΔCitarget

ML Model

Figure 2: ADSP workflow.

More precisely, we define the process of a worker sending
computed gradients to the PS as a commit, and the number
of commits from worker i during a check period as commit
rate ΔCi

target. ADSP consists of two modules: 1) a novel
synchronization model, which allows faster edge systems to
perform more training before each update to the PS, and en-
sures that the commit rates of all worker are the same; 2) a
global commit rate search algorithm, which selects an ap-
propriate commit rate for all workers to pursue, in order to
achieve fast convergence.

Let ci denote the total number of commits from worker
i to the PS, since the very beginning. At each checkpoint,
we compute the target total number of commits that each
worker is expected to have submitted by the next checkpoint,
Ctarget, and adjust the commit rate of each worker i in the
next check period as ΔCi

target = Ctarget − ci, respectively.
Fig. 2 shows the workflow of our ADSP model. The data

produced/collected at each edge system/worker is stored into
training datasets. For each mini-batch in its dataset, an edge
system computes a local update of model parameters, i.e.,
gradients, using examples in this mini-batch. After training
one mini-batch, it moves on to train the next mini-batch and
derives another local update. Worker i pushes its accumula-
tive update (i.e., sum of all gradients it has produced since
last commit multiplied with the local learning rate) accord-
ing to the commit rate ΔCi

target. A scheduler adjusts and
informs each end system of the target commit rate ΔCi

target
over time. Upon receiving a commit from worker i, the PS
multiplies the accumulated update with the global learning
rate (Jiang et al. 2017) and then updates the global model
with it; worker i then pulls updated parameters from the PS
and continues training the next mini-batch.

4 ADSP Algorithms and Analysis

It is common to have large heterogeneity among edge sys-
tems, including different computation power and network
delays to the datacenter hosting the PS. Our core idea in de-
signing ADSP is to adapt to the heterogeneity, i.e., to trans-
form the training in heterogeneous settings into homoge-
neous settings using a no-waiting strategy: we allow differ-
ent workers to process different numbers of mini-batches be-
tween two commits according to their training speed, while
ensuring the number of commits of all the workers approxi-
mately equal at periodical checkpoints. To achieve this, we

7181



Figure 3: (a) the impact of Ctarget on convergence time; (b)
an illustration of μimplicit ; (c) convergence time with dif-
ferent μimplicit values.

mainly control the hyper-parameter, commit rate, making
faster workers accumulate more local updates before com-
mitting their updates, so as to eliminate the waiting time. By
enforcing approximately equal numbers of commits from all
the workers over time, we can ensure model convergence.

4.1 The Impact of Ctarget on Convergence

The target total number of commits to be achieved by each
worker by the next checkpoint, Ctarget, decides commit
rate of each worker i within the next check period, as
ΔCi

target = Ctarget−ci (ci is i’s current total commit num-
ber). The commit rate has a significant impact on the train-
ing progress: if ΔCi

target is large, a slow worker may fail to
achieve that many commits in the next period, due to the lim-
ited compute capacity; even if it can hit the target, too many
commits may incur high communication overhead, which in
turn slows down the training process. On the other hand, if
the number of target commits is too small, which implies
that each end system commits its gradients after many steps
of mini-batch training using local parameters, large differ-
ence and significant staleness exist among the model copies
at different workers, which may adversely influence model
convergence as well.

To illustrate this, we train a CNN model on the Cifar10
dataset (Krizhevsky and Hinton 2010) with 1 PS and 3 work-
ers (time ratio to train one mini-batch is 1:1:3), where all
workers keep training their mini-batches and commit gradi-
ents to the PS at the same commit rate ΔCtarget over time.
We vary the value of ΔCtarget in different runs of the exper-
iment. Fig. 3(a) shows that with the increase of ΔCtarget,
the model convergence time becomes smaller at first and
then increases. This is consistent with our discussions above.

We next quantify the effect of the commit rate ΔCtarget

on model convergence. Suppose that all m workers com-
municate with the PS independently. Let U(Wt) denote the
accumulative local updates that a worker commits when the
global model is Wt, and vi denote the number of steps that
worker i can train per unit time. We have the following the-
orem.

Theorem 1. Set the momentum μ in the SGD update for-
mula (1) to zero. The expected SGD update on the global
model is equivalent to

E(Wt+1−Wt)=(1− p)E(Wt−Wt−1)− pηEU(Wt) (2)

where p = 1/(1 + (1− 1/m)

m∑

i=1

Γ

ΔCi
targetvi

) (3)

The detailed proof is given in the supplemental file (Hu,
Wang, and Wu 2019). Compared to the SGD update formula
in Eqn. (1), the result is interesting: with our ADSP model,
staleness induced by cumulative local updates can be con-
sidered as inducing an extra momentum term (i.e., 1 − p)
into the SGD update equation. To distinguish this term from
the original momentum μ in Eqn. (1), we refer to this term
as the implicit momentum, denoted by μimplicit = 1 − p.
As we increase ΔCi

target, the implicit momentum becomes
smaller according to Eqn. (2).

With the same CNN training experiments as above,
Fig. 3(b) illustrates how 1−p varies with ΔCtarget (accord-
ing to Eqn. (3)). The optimal momentum is derived based on
Fig. 3(c), where we vary the value of μimplicit in Eqn. (2)
in our experiments, and show how the time taken for model
convergence varies with different μimplicit values. Inspired
by the observations, we seek to identify the best commit rate
ΔCtarget for the workers, that decides the best μimplicit to
achieve the shortest convergence time.

4.2 The Commit Rate Search Algorithm

We propose a local search method to identify a near-optimal
commit rate to achieve the fastest convergence, exploiting
the observations that the staleness induced by local updates
can be converted to an implicit momentum term in SGD up-
date and the implicit momentum decreases as we increase
the commit rate. The algorithm is given in Alg. 1, which is
executed by the scheduler (Fig. 2).

In the algorithm, an epoch is a time interval containing
multiple check periods, for commit rate adjustment. At the
beginning of each epoch (e.g., 1 hour), the scheduler per-
forms the search for the optimal commit rates of workers in
this epoch. We start with a small target total commit num-
ber Ctarget, allowing each worker to commit at least once in
each check period; in this case, the commit rates ΔCi

target’s
are small, asynchrony-induced implicit momentum is large,
and the corresponding point in Fig. 3(b) is located to the
left of the optimal momentum. Then the scheduler evaluates
the training performance (i.e., loss decrease speed, to be de-
tailed in Sec. 4.2) induced by Ctarget and Ctarget + 1, by
running the system using commit rates computed based on
the two values for a specific period of time (e.g., 1 minute). If
Ctarget+1 leads to better performance, the scheduler repeats
the search, comparing performance achieved by Ctarget +1
and Ctarget + 2 further; otherwise, the search stops and the
commit rates ΔCi

target’s decided by the current Ctarget are
used for the rest of this epoch. The rationale behind is that
the optimal Ctarget for each epoch is larger than the initial
value (maxi=1,...,M ci + 1), so we only need to determine
whether to increase it or not.

Online Search and Reward Design. Traditional search
methods are usually offline (Hadjis et al. 2016), blocking the

7182



Algorithm 1 Commit Rate Adjustment at the Scheduler
1: function MAINFUNCTION
2: for epoch e = 1, 2, . . . do
3: Ctarget = maxi=1,...,M ci + 1
4: Ctarget ← DECIDECOMMITRATE(Ctarget)
5: run PARAMETERSERVER and WOKERS for the

remaining time
6: end for
7: end function
8: function DECIDECOMMITRATE(Ctarget)
9: r1 ← ONLINEEVALUATE(Ctarget)

10: r2 ← ONLINEEVALUATE(Ctarget + 1)
11: if r2 > r1 then
12: return DECIDECOMMITRATE(Ctarget + 1).
13: else
14: return Ctarget

15: end if
16: end function
17: function ONLINEEVALUATE(Ctarget)
18: for i = 0, 1, 2, . . . ,M do
19: ΔCi

target = Ctarget − ci
20: Send ΔCi

target to worker i
21: end for
22: Training for 1 minute
23: return reward r
24: end function

whole system when trying out a specific set of variable val-
ues and trying each configuration starting with the same sys-
tem state. With an offline search method, one can select the
best configuration by comparing the final loss achieved after
running different configurations for the same length of time.
However, such a search process incurs significant extra delay
into the training progress and hence significant slowdown of
model convergence. In Alg. 1, we instead adopt an online
search method (in DECIDECOMMITRATE()): we consec-
utively run each configuration for a specific time (e.g., 1
minute) without blocking the training process.

To compare the performance of the configurations when
they do not start with the same system state, we define a re-
ward as follows. The loss convergence curve of SGD train-
ing usually follows the form of O(1/t) (Peng et al. 2018).
We collect a few (time t, loss �) pairs when the system is run-
ning with a particular configuration, e.g., at the start, middle
and end of the 1 minute period, and use them to fit the fol-
lowing formula on the left:

� =
1

a21t+ a2
+ a3 ⇒ r =

a21
1

�−a3
− a2

where a1, a2, a3 are parameters. Then we obtain the reward
r as the loss decrease speed, by setting � to a constant and
calculating the reciprocal of corresponding t. The target of
the online search algorithm is to find the commit rate that
reaches the maximum reward, i.e., the minimum time to con-
verge to a certain loss.

Algorithm 2 ADSP: Worker and PS Procedures
End System: i = 1, 2, ..., m

1: function WORKER
2: for epoch e = 1, 2, . . . do
3: receive ΔCi

target from the scheduler
4: set a timer with a timeout of Γ

ΔCi
target

−Oi and
invoking TimeOut() upon timeout

5: while model not converged do
6: train a minibatch to obtain gradient gi
7: accumulated gradient Ui ← Ui + η′gi (η′ is

the local learning rate)
8: end while
9: end for

10: end function
11: function TIMEOUT
12: commit Ui to the PS
13: receive updated global model parameters from the

PS and update local model accordingly
14: restart the timer with timeout of Γ

ΔCi
target

−Oi

15: end function

Parameter Server:
1: function PARAMETERSERVER
2: while model not converged do
3: if receive commit Ui from worker i then
4: W ←W − ηUi

5: Send W to worker i
6: end if
7: end while
8: end function

4.3 Worker and PS Procedures

The procedures at each end system (i.e., worker) and the PS
with ADSP is summarized in Alg. 2, where Oi represents
the communication time for worker i to commit an update
to the PS and pull the updated parameters back. At each
worker, we use a timer to trigger commit of local accumu-
lative model update to the PS asynchronously, once every

Γ
ΔCi

target
−Oi time.

4.4 Convergence Analysis

We show that ADSP in Alg. 2 ensures model convergence.
We define ft(W ) as the objective loss function at step t with
global parameter state W , where t is the global number of
steps (i.e., cumulative number of training steps carried out
by all workers). Let W̃t be the set of global parameters ob-
tained by ADSP right after step t, and W ∗ denote the op-
timal model parameters that minimize the loss function. We
make the following assumptions on the loss function and the
learning rate, which are needed for our convergence proof,
but are not followed in our experimental settings.
Assumptions:

(1) ft(W ) is convex
(2) ft(W ) is L-Lipschitz, i.e., ‖∇ft‖ � L

(3) The learning rate decreases as ηt = η√
t
, t = 1, 2, . . .,

where η is a constant.

7183



Based on the assumptions, we have the following theorem
on training convergence of ADSP.

Theorem 2 (Convergence). ADSP ensures that by each
checkpoint, the numbers of update commits submitted by
any two different workers i1 and i2 are roughly equal, i.e.,
ci1 ≈ ci2 . The regret R =

∑T
t=1 ft(W̃t)− f(W ∗) is upper-

bounded by O(
√
T ), when T → +∞.

The regret is the accumulative difference between the loss
achieved by ADSP and the optimal loss over the training
course. When the accumulative difference is under a sub-
linear bound about T (where T is the total number of pa-
rameter update steps at the PS), we have ft(W̃t) → f(W ∗)
when t is large. Then R/T → 0 as T → +∞, showing that
our ADSP model converges to the optimal loss. The detailed
proof is given in the supplemental file (Hu, Wang, and Wu
2019).

5 Performance Evaluation

We implement ADSP as a ready-to-use Python library based
on TensorFlow (Abadi et al. 2016), and evaluate its perfor-
mance with testbed experiments.

5.1 Experiment Setup

Testbed. We emulate heterogeneous edge systems following
the distribution of hardware configurations of edge devices
in a survey (Jkielty 2019), using 19 Amazon EC2 instances
(Wang and Ng 2010): 7 t2.large instances, 5 t2.xlarge
instances, 4 t2.2xlarge instances and 2 t3.xlarge in-
stances as workers, and 1 t3.2xlarge instance as the PS.
Applications. We evaluate ADSP with three distributed
ML applications: (i) image classification on Cifar-10
(Krizhevsky and Hinton 2010) using a CNN model from the
TensorFlow tutorial (Tensorflow 2019); (ii) Fatigue life pre-
diction of bogies on high-speed trains, training a recurrent
neural network (RNN) model with the dataset collected from
the China high-speed rail system; (iii) Coefficient of Perfor-
mance (COP) prediction of chillers, training a global linear
SVM model with a chiller dataset.
Baselines. (1) SSP (Ho et al. 2013), which allows the fastest
worker to run ahead of the slowest worker by up to s steps;
(2) BSP (Valiant 1990), where the PS strictly synchronizes
among all workers such that they always perform the same
number of training steps. (3) ADACOMM (Wang and Joshi
2018), which allows all workers to accumulate τ updates
before synchronizing with the PS and reduces τ periodically.
(4) Fixed ADACOMM, a variant of ADACOMM with τ fixed
for all workers.
Default Settings. By default, each mini-batch in our model
training includes 128 examples. The check period of ADSP
is 60 seconds, and each epoch is 20 minutes long. The global
learning rate is 1/M (which we find works well through ex-
periments). The local learning rate is initialized to 0.1 and
decays exponentially over time.

5.2 Experiment Results

All results given in the following are based on CNN training
on the Cifar-10 dataset. More experiment results on fatigue

Figure 4: Comparison of ADSP with baselines in training
efficiency: training CNN on the Cifar-10 dataset.

life prediction and CoP prediction are given in the supple-
mental file (Hu, Wang, and Wu 2019).

Performance of ADSP. We compare ADSP with the base-
lines in terms of the wall-clock time and the number of
training steps needed to reach model convergence, to val-
idate the effectiveness of no-waiting training of ADSP. In
Fig. 4, the global loss is the loss evaluated on the global
model on the PS, and the number of steps is the cumula-
tive number of steps trained at all workers. We stop train-
ing, i.e., decide that the model has converged, when the loss
variance is smaller than a small enough value for 10 steps.
Fig. 4(a) plots the loss curves and Fig. 4(b) correspondingly
shows the convergence time with each method. We see that
ADSP achieves the fastest convergence: 80% acceleration
as compared to BSP, 53% to SSP, and 33% to Fixed ADA-
COMM. For ADACOMM, although we have used the opti-
mal hyper-parameters as in (Wang and Joshi 2018), it con-
verges quite slowly, which could be due to its instability in
tuning τ : τ is tuned periodically based on the current loss;
if the loss does not decrease, it simply multiplies τ with a
constant. In Fig. 4(c), we see that ADSP carries out many
more training steps within its short convergence time, which
may potentially lead to a concern on its training efficiency.
Fig. 4(d) further reveals that the per-training-step loss de-
crease achieved by ADSP is slightly lower than that of Fixed
ADACOMM, and better than other baselines. The spike in
ADSP curve at the beginning stage is due to small com-
mit rates that our search algorithm derives, which make the
loss fluctuates significantly. However, with ADSP, the model
eventually converges to a smaller loss than losses that other
baselines converge to.

Adaptability to Heterogeneity. We next evaluate ADSP’s
adaptability to different levels of end system heterogeneity.
Besides hardware configuration difference among the work-
ers, we further enable each worker to sleep for a specific
short time after each step of training one mini-batch, and
tune the sleep time to adjust training speeds of workers. We

7184



Figure 5: Comparison of ADSP with Fixed ADACOMM at
different degrees of heterogeneity and system scales.

define the heterogeneity degree among the workers as fol-
lows:

H =

∑M
i vi/M

mini=1,...,M vi

where vi is the number of mini-batches that worker i can
process per unit time. The discussion of the heterogeneity
degree considering communication overhead is given in our
supplemental file (Hu, Wang, and Wu 2019).

Since BSP, SSP and ADACOMM are significantly slower
than ADSP in training convergence, here we only com-
pare ADSP with Fixed ADACOMM. Fig. 5(a)-(d) show that
ADSP achieves faster convergence than Fixed ADACOMM
(though with more spikes) in different heterogeneity lev-
els. The corresponding convergence times are summarized
in Fig. 5(e), which shows that the gap between ADSP and
Fixed ADACOMM becomes larger when the workers dif-
fer more in training speeds. ADSP achieves a 62.4% con-
vergence speedup as compared to Fiexd ADACOMM when
H = 3.2. The reason lies in that Fixed ADACOMM still en-
forces faster workers to stop and wait for the slower workers
to finish τ local updates, so the convergence is significantly
influenced by the slowest worker. With ADSP, the hetero-
geneity degree hardly affects the convergence time much,
due to its no-waiting strategy. Therefore, ADSP can adapt
well to heterogeneity in end systems.

System Scalability We further evaluate ADSP with 36
workers used for model training, whose hardware config-
uration follows the same distribution as in the 18-worker
case. Fig. 5(f) shows that when the worker number is larger,
both ADACOMM and ADSP become slower, and ADSP
still achieves convergence faster than Fixed ADACOMM
(which is more obvious than in the case of smaller worker
number). Intuitively, when the scale of the system becomes
larger, the chances increase for workers to wait for slower
ones to catch up, resulting in that more time being wasted
with Fixed ADACOMM; ADSP can use this part of time to
do more training, and is hence a more scalable solution in
big ML training jobs.

Figure 6: Comparison of ADSP with baselines with different
network delays.

The Impact of Network Latency. Edge systems usually
have relatively poor network connectivity (Konečnỳ et al.
2016); the communication time for each commit is not neg-
ligible, and could be even larger than the processing time
in each step. Fig. 6 presents the convergence curve of each
method as we add different extra delays to the communica-
tion module. When we increase the communication delay,
the speed-up ratio of ADSP, Adacomm and Fixed Adacomm,
as compared to BSP and SSP, becomes larger. This is be-
cause the first three models allow local updates and commit
to the PS less frequently, consequently less affected by the
communication delay than the last two methods. Among the
first three models, ADSP still performs the best in terms of
convergence speed, regardless of the communication delay.

The rationale behind is that we can count the communica-
tion time when evaluating a worker’s ‘processing capacity’:
for worker i, the average processing time per training step
is ti + Oi/τi, where ti is the time to train a mini-batch, Oi

is the communication time for each commit, and τi is the
number of local updates between two commits.Therefore,
we can extend the scope of heterogeneity in processing ca-
pacity to include the heterogeneity of communication time
as well. ADSP only needs to ensure the commit rates of all
workers are consistent, and can inherently handle the gen-
eralized heterogeneity without regard to which components
cause the heterogeneity.

6 Concluding Remarks

This paper presents ADSP, a new parameter synchronization
model for distributed ML with heterogeneous edge systems.
ADSP allows workers to keep training with minimum wait-
ing and enforces approximately equal numbers of commits
from all workers to ensure training convergence. An online
search algorithm is carefully devised to identify the near-
optimal global commit rate. ADSP maximally exploits com-
putation resources at heterogeneous workers, targeting train-
ing convergence in the most expedited fashion. Our testbed
experiments show that ADSP achieves up to 62.4% conver-

7185



gence acceleration as compared to most of the state-of-the-
art parameter synchronization models. ADSP is also well
adapted to different degrees of heterogeneity and large-scale
ML applications.

7 Acknowledgements

This work was supported in part by grants from Hong Kong
RGC GRF HKU 17204715, 17225516, PolyU 15210119,
CRF C7036-15G, C5026-18G, WHU-Xiaomi AI Lab, ITF
UIM/363, PolyU 1-ZVPZ, and a Huawei Collaborative
Grant.

References

Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.
2016. Tensorflow: A system for large-scale machine learn-
ing. In OSDI, volume 16, 265–283.
Chen, T.; Li, M.; Li, Y.; Lin, M.; Wang, N.; Wang, M.; Xiao,
T.; Xu, B.; Zhang, C.; and Zhang, Z. 2015. Mxnet: A flexi-
ble and efficient machine learning library for heterogeneous
distributed systems. arXiv:1512.01274.
Chen, Q.; Zheng, Z.; Hu, C.; Wang, D.; and Liu, F. 2019.
Data-driven task allocation for multi-task transfer learning
on the edge. In IEEE ICDCS.
Chen, C.; Wang, W.; and Li, B. 2019. Round-robin synchro-
nization: Mitigating communication bottlenecks in parame-
ter servers. In IEEE INFOCOM, 532–540.
Chilimbi, T. M.; Suzue, Y.; Apacible, J.; and Kalyanaraman,
K. 2014. Project adam: Building an efficient and scalable
deep learning training system. In OSDI, volume 14, 571–
582.
Hadjis, S.; Zhang, C.; Mitliagkas, I.; Iter, D.; and Ré, C.
2016. Omnivore: An optimizer for multi-device deep learn-
ing on cpus and gpus. arXiv:1606.04487.
Hazelwood, K.; Bird, S.; Brooks, D.; Chintala, S.; Diril, U.;
Dzhulgakov, D.; Fawzy, M.; Jia, B.; Jia, Y.; Kalro, A.; et al.
2018. Applied machine learning at facebook: A datacenter
infrastructure perspective. In HPCA, 620–629.
Ho, Q.; Cipar, J.; Cui, H.; Lee, S.; Kim, J. K.; Gibbons, P. B.;
Gibson, G. A.; Ganger, G.; and Xing, E. P. 2013. More effec-
tive distributed ml via a stale synchronous parallel parameter
server. In NIPS, 1223–1231.
Hsieh, K.; Harlap, A.; Vijaykumar, N.; Konomis, D.;
Ganger, G. R.; Gibbons, P. B.; and Mutlu, O. 2017. Gaia:
Geo-distributed machine learning approaching lan speeds.
In NSDI, 629–647.
Hu, H.; Wang, D.; and Wu, C. 2019. Distributed
machine learning through heterogeneous edge systems.
arXiv:1911.06949.
Jiang, J.; Cui, B.; Zhang, C.; and Yu, L. 2017.
Heterogeneity-aware distributed parameter servers. In SIG-
MOD, 463–478.
Jkielty. 2019. The most popular smartphones in 2018. https:
//deviceatlas.com/blog/most-popular-smartphones.

Konečnỳ, J.; McMahan, H. B.; Yu, F. X.; Richtárik, P.;
Suresh, A. T.; and Bacon, D. 2016. Federated learn-
ing: Strategies for improving communication efficiency.
arXiv:1610.05492.
Krizhevsky, A., and Hinton, G. 2010. Convolutional deep
belief networks on cifar-10. Unpublished manuscript.
Li, M.; Zhou, L.; Yang, Z.; Li, A.; Xia, F.; Andersen, D. G.;
and Smola, A. 2013. Parameter server for distributed ma-
chine learning. In NIPS, volume 6, 2.
Lin, Y.; Han, S.; Mao, H.; Wang, Y.; and Dally, W. J. 2017.
Deep gradient compression: Reducing the communication
bandwidth for distributed training. arXiv:1712.01887.
Low, Y.; Bickson, D.; Gonzalez, J.; Guestrin, C.; Kyrola, A.;
and Hellerstein, J. M. 2012. Distributed graphlab: a frame-
work for machine learning and data mining in the cloud.
PVLDB 5(8):716–727.
Park, J.; Samarakoon, S.; Bennis, M.; and Debbah,
M. 2018. Wireless network intelligence at the edge.
arXiv:1812.02858.
Peng, Y.; Bao, Y.; Chen, Y.; Wu, C.; and Guo, C. 2018.
Optimus: an efficient dynamic resource scheduler for deep
learning clusters. In EuroSys.
Polyak, B. T. 1964. Some methods of speeding up the con-
vergence of iteration methods. USSR Computational Math-
ematics and Mathematical Physics 4(5):1–17.
Qu, X., and Ha, J. 2017. Next generation of devops: Aiops
in practice@ baidu. In SREcon17.
Sun, P.; Wen, Y.; Duong, T. N. B.; and Yan, S. 2016. Timed
dataflow: Reducing communication overhead for distributed
machine learning systems. In ICPADS, 1110–1117.
Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013.
On the importance of initialization and momentum in deep
learning. In ICML, 1139–1147.
Tao, Z., and Li, Q. 2018. esgd: Communication efficient
distributed deep learning on the edge. In HotEdge.
Tensorflow. 2019. Use tensorflow to train a cnn on
cifar-10. https://github.com/tensorflow/models/tree/master/
tutorials/image/cifar10.
Valiant, L. G. 1990. A bridging model for parallel compu-
tation. Commun. ACM 33(8):103–111.
Ved, M. 2019. Artificial intelligence (ai) solutions on edge
devices. https://medium.com/@mehulved1503/artificial-
intelligence-ai-solutions-on-edge-devices-1cc08d411a7c.
Wang, J., and Joshi, G. 2018. Adaptive communication
strategies to achieve the best error-runtime trade-off in local-
update sgd. arXiv:1810.08313.
Wang, G., and Ng, T. E. 2010. The impact of virtualization
on network performance of amazon ec2 data center. In IEEE
INFOCOM, 1–9.
Wang, S.; Tuor, T.; Salonidis, T.; Leung, K. K.; Makaya, C.;
He, T.; and Chan, K. 2018. Adaptive federated learning in
resource constrained edge computing systems. J-SAC 8:9.
Zhang, C.; Tian, H.; Wang, W.; and Yan, F. 2018. Stay
fresh: Speculative synchronization for fast distributed ma-
chine learning. In ICDCS, 99–109.

7186


