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Abstract

In situations where explicit communication is limited, human
collaborators act by learning to: (i) infer meaning behind their
partner’s actions, and (ii) convey private information about
the state to their partner implicitly through actions. The first
component of this learning process has been well-studied in
multi-agent systems, whereas the second — which is equally
crucial for successful collaboration — has not. To mimic both
components mentioned above, thereby completing the learn-
ing process, we introduce a novel algorithm: Policy Belief
Learning (PBL). PBL uses a belief module to model the other
agent’s private information and a policy module to form a
distribution over actions informed by the belief module. Fur-
thermore, to encourage communication by actions, we pro-
pose a novel auxiliary reward which incentivizes one agent
to help its partner to make correct inferences about its pri-
vate information. The auxiliary reward for communication is
integrated into the learning of the policy module. We evalu-
ate our approach on a set of environments including a matrix
game, particle environment and the non-competitive bidding
problem from contract bridge. We show empirically that this
auxiliary reward is effective and easy to generalize. These re-
sults demonstrate that our PBL algorithm can produce strong
pairs of agents in collaborative games where explicit commu-
nication is disabled.

Introduction

In collaborative multi-agent systems, communication is es-
sential for agents to learn to behave as a collective rather
than a collection of individuals. This is particularly impor-
tant in the imperfect information setting, where private in-
formation becomes crucial to success. In such cases, effi-
cient communication protocols between agents are needed
for private information exchange, coordinated joint-action
exploration, and true world-state inference.

In typical multi-agent reinforcement learning (MARL)
settings, designers incorporate explicit communication
channels hoping to conceptually resemble language or ver-
bal communication which are known to be important for hu-
man interaction (Baker et al. 1999). Though they can be used
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for facilitating collaboration in MARL, explicit communica-
tion channels come at additional computational and memory
costs, making them difficult to deploy in decentralized con-
trol (Roth, Simmons, and Veloso 2006).

Environments where explicit communication is difficult
or prohibited are common. These settings can be synthetic
such as those in games, e.g., bridge and Hanabi, but also
frequently appear in real-world tasks such as autonomous
driving and autonomous fleet control. In these situations,
humans rely upon implicit communication as a means of in-
formation exchange (Rasouli, Kotseruba, and Tsotsos 2017)
and are effective in learning to infer the implicit meaning be-
hind others’ actions (Heider and Simmel 1944). The ability
to perform such inference requires the attribution of a men-
tal state and reasoning mechanism to others. This ability is
known as theory of mind (Premack and Woodruff 1978). In
this work, we develop agents that benefit from considering
others’ perspectives and thereby explore the further devel-
opment of machine theory of mind (Rabinowitz et al. 2018).

Previous works have considered ways in which an agent
can, by observing an opponent’s behavior, build a model of
opponents’ characteristics, objectives or hidden information
either implicitly (He et al. 2016; Bard et al. 2013) or explic-
itly (Raileanu et al. 2018; Li and Miikkulainen 2018). Whilst
these works are of great value, they overlook the fact that an
agent should also consider that it is being modeled and adapt
its behavior accordingly, thereby demonstrating a theory of
mind. For instance, in collaborative tasks, a decision-maker
could choose to take actions which are informative to its
teammates, whereas, in competitive situations, agents may
act to conceal private information to prevent their opponents
from modeling them effectively.

In this paper, we propose a generic framework, titled pol-
icy belief learning (PBL), for learning to cooperate in im-
perfect information multi-agent games. Our work combines
opponent modeling with a policy that considers that it is be-
ing modeled. PBL consists of a belief module, which models
other agents’ private information by considering their previ-
ous actions, and a policy module which combines the agent’s
current observation with their beliefs to return a distribution
over actions. We also propose a novel auxiliary reward for
encouraging communication by actions, which is integrated

7261



into PBL. Our experiments show that agents trained using
PBL can learn collaborative behaviors more effectively than
a number of meaningful baselines without requiring any ex-
plicit communication. We conduct a complete ablation study
to analyze the effectiveness of different components within
PBL in our bridge experiment.

Related Work
Our work is closely related to (Albrecht and Stone 2017;
Lowe et al. 2017; Mealing and Shapiro 2017; Raileanu
et al. 2018) where agents build models to estimate other
agents’ hidden information. Contrastingly, our work en-
hances a “flat” opponent model with recursive reasoning.
“Flat” opponent models estimate only the hidden informa-
tion of opponents. Recursive reasoning requires making de-
cisions based on the mental states of others as well as the
state of the environment. In contrast to works such as I-
POMDP (Gmytrasiewicz and Doshi 2005) and PR2 (Wen et
al. 2019) where the nested belief is embedded into the train-
ing agent’s opponent model, we incorporate level-1 nested
belief “I believe that you believe” into our policy by a novel
auxiliary reward.

Recently, there has been a surge of interest in using rein-
forcement learning (RL) approaches to learn communication
protocols (Foerster et al. 2016; Lazaridou, Peysakhovich,
and Baroni 2016; Mordatch and Abbeel 2017; Sukhbaatar,
Szlam, and Fergus 2016). Most of these works enable agents
to communicate via an explicit channel. Among these works,
Mordatch and Abbeel (2017) also observe the emergence
of non-verbal communication in collaborative environments
without an explicit communication channel, where agents
are exclusively either a sender or a receiver. Similar re-
search is also conducted in (de Weerd, Verbrugge, and Ver-
heij 2015). In our setting, we do not restrict agents to be ex-
clusively a sender or a receiver of communications – agents
can communicate mutually by actions. Knepper et al. (2017)
propose a framework for implicit communication in a co-
operative setting and show that various problems can be
mapped into this framework. Although our work is con-
ceptually close to (Knepper et al. 2017), we go further and
present a practical algorithm for training agents. The recent
work of (Foerster et al. 2018) solves an imperfect informa-
tion problem as considered here from a different angle. We
approach the problem by encouraging agents to exchange
critical information through their actions whereas Foerster
et al. train a public player to choose an optimal determinis-
tic policy for players in a game based on publicly observable
information. Implicit communication is also considered in
the human-robot interaction community. In Cooperative In-
verse RL (CIRL) where robotic agents try to infer a human’s
private reward function from their actions (Hadfield-Menell
et al. 2016), optimal solutions need to produce behavior that
conveys information.

Dragan, Lee, and Srinivasa (2013) consider how to train
agents to exhibit legible behavior (i.e. behavior from which
it is easy to infer the intention). Their approach is dependent
on a hand-crafted cost function to attain informative behav-
ior. Mutual information has been used as a means to promote
coordination without the need for a human engineered cost

function. Strouse et al. (2018) use a mutual information ob-
jective to encourage an agent to reveal or hide its intention.
In a related work, Jaques et al. (2019) utilize a mutual in-
formation objective to imbue agents with social influence.
While the objective of maximal mutual information in ac-
tions can yield highly effective collaborating agents, a mu-
tual information objective in itself is insufficient to necessi-
tate the development of implicit communication by actions.
Eccles et al. (2019) introduce a reciprocity reward as an al-
ternative approach to solve social dilemmas.

A distinguishing feature of our work in relation to previ-
ous works in multi-agent communication is that we do not
have a predefined explicit communication protocol or learn
to communicate through an explicit channel. Information ex-
change can only happen via actions. In contrast to previous
works focusing on unilaterally making actions informative,
we focus on bilateral communication by actions where infor-
mation transmission is directed to a specific party with po-
tentially limited reasoning ability. Our agents learn to com-
municate through iterated policy and belief updates such that
the resulting communication mechanism and belief mod-
els are interdependent. The development of a communica-
tion mechanism therefore requires either direct access to the
mental state of other agents (via centralized training) or the
ability to mentalize, commonly known as theory of mind.
We investigate our proposed algorithm in both settings.

Problem Definition

We consider a set of agents, denoted by N , interacting with
an unknown environment by executing actions from a joint
set A = {A1, ... ,AN}, with Ai denoting the action space
of agent i, and N the total number of agents. To enable
models that approximate real-world scenarios, we assume
private and public information states. Private information
states, jointly (across agents) denoted by X = {X1, ... ,XN}
are a set of hidden information states where Xi is only
observable by agent i, while public states O are observed
by all agents. We assume that hidden information states at
each time step are sampled from an unknown distribution
Px : X → [0, 1], while public states evolve from an initial
distribution Po : O → [0, 1], according to a stochastic tran-
sition model T : O×X×A1×···×AN×O → [0, 1]. Having
transitioned to a successor state according to T , agents re-
ceive rewards from R : S × A1 × ··· × AN → R, where
we have used S = O × X to denote joint state descriptions
that incorporate both public and private information. Finally,
rewards are discounted over time by a factor γ ∈ (0, 1].
With this notation, our problem can be described succinctly
by the tuple: 〈N ,A,O,X , T ,R,Px,Po, γ〉, which we re-
fer to as an imperfect information Markov decision process
(I2MDP)1. In this work, we simplify the problem by assum-
ing that hidden information states X are temporally static
and are given at the beginning of the game.

We interpret the joint policy from the perspective of agent
i such that π = (πi(ai|s), π−i(a−i|s)), where π−i(a−i|s)

1We also note that our problem can be formalized as a de-
centralized partially observable Markov decision process (Dec-
POMDP) (Bernstein, Zilberstein, and Immerman 2013).
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is a compact representation of the joint policy of all agents
excluding agent i. In the collaborative setting, each agent is
presumed to pursue the shared maximal cumulative reward
expressed as

max ηi(π) = E

[ ∞∑
t=1

γtR(st, a
i
t, a

−i
t )

]
, (1)

where st = [xi
t, x

−i
t , ot] is the current full information state,

(ait, a
−i
t ) are joint actions taken by agent i and all other

agents respectively at time t and γ is a discount factor.

Policy Belief Learning

Applying naive single agent reinforcement learning (SARL)
algorithms to our problem will lead to poor performance.
One reason for this is the partial observability of the envi-
ronment. To succeed in a partially observable environment,
an agent is often required to maintain a belief state. Recall
that, in our setting, the environment state is formed from the
union of the private information of all agents and the pub-
licly observable information, st = [xi

t, x
−i
t , ot]. We there-

fore learn a belief module Φi(x−i
t ) to model other agents’

private information x−i
t which is the only hidden informa-

tion from the perspective of agent i in our setting. We as-
sume that an agent can model x−i

t given the history of
public information and actions executed by other agents
hi
t = {o1:t−1, a

−i
1:t−1}. We use a NN to parameterize the

belief module which takes in the history of public informa-
tion and produces a belief state bit = Φi(x−i

t |hi
t). The belief

state together with information observable by agent i forms
a sufficient statistic, ŝit = [xi

t, b
i
t, ot], which contains all the

information necessary for the agent to act optimally (Åström
1965). We use a separate NN to parameterize agent i’s pol-
icy πi(ait|ŝit) which takes in the estimated environment state
ŝit and outputs a distribution over actions. As we assume hid-
den information is temporally static, we will drop the time
script for it in the rest of the paper.

The presence of multiple learning agents interacting with
the environment renders the environment non-stationary.
This further limits the success of SARL algorithms which
are generally designed for environments with stationary dy-
namics. To solve this, we adopt centralized training and de-
centralized execution, where during training all agents are
recognized as one central representative agent differing only
by their observations. Under this approach, one can imagine
belief models Φi(x−i|hi

t) and Φ−i(xi|h−i
t ) sharing param-

eters φ. The input data, however, varies across agents due
to the dependency on both hi

t and h−i
t . In a similar fash-

ion, we let policies share the parameters θ. Consequently,
one may think of updating θ and φ using one joint data set
aggregated across agents. Without loss of generality, in the
remainder of this section, we discuss the learning procedure
from the point of view of a single agent, agent i.

We first present the learning procedure of our belief mod-
ule. At iteration k, we use the current policy π[k](a

i|ŝ) to
generate a data set of size M , Ω[k] = {(x−i

j , hi
j)

M
j=1}, using

self-play and learn a new belief module by minimizing:

φ[k] := argmin
φ

E(x−i,hi)∼Ω[k−1]

[
KL(x−i

j ||bij(hi
j ;φ)

]
,

(2)

where KL(·||·) is the Kullback–Leibler(KL) divergence and
we use a one-hot vector to encode the ground truth, x−i

j ,
when we calculate the relevant KL-divergence.

With updated belief module Φ[k], we learn a new pol-
icy for the next iteration, π[k+1], via a policy gradient al-
gorithm. Sharing information in multi-agent cooperative
games through communication reduces intractability by en-
abling coordinated behavior. Rather than implementing ex-
pensive protocols (Heider and Simmel 1944), we encourage
agents to implicitly communicate through actions by intro-
ducing a novel auxiliary reward signal. To do so, notice that
in the centralized setting agent i has the ability to consult
its opponent’s belief model Φ−i(xi|h−i

t ) thereby exploiting
the fact that other agents hold beliefs over its private infor-
mation xi. In fact, comparing b−i

t to the ground-truth xi en-
ables agent i to learn which actions bring these two quanti-
ties closer together and thereby learn informative behavior.
This can be achieved through an auxiliary reward signal de-
vised to encourage informative action communication:

ric,t = KL(xi||b−i,∗)− KL(xi||b−i
t+1), (3)

where b−i,∗ = Φ−i
[k](x

i|h−i
t,∗) is agent −i’s best belief (so-far)

about agent i’s private information:

b−i,∗ = argmin KL(xi||b−i
u ) ∀ u ≤ t.

In other words, ric,t encourages communication as it is pro-
portional to the improvement in the opponent’s belief (for a
fixed belief model Φ−i

[k](x
i|h−i

t+1)), measured by its proxim-
ity to the ground-truth, resulting from the opponent observ-
ing agent i’s action ait. Hence, during the policy learning
step of PBL, we apply a policy gradient algorithm with a
shaped reward of the form:2

r = re + αrc, (4)

where re is the reward from the environment, rc is the com-
munication reward and α ≥ 0 balances the communication
and environment rewards.

Initially, in the absence of a belief module, we pre-train a
policy π[0] naively by ignoring the existence of other agents
in the environment. As an agent’s reasoning ability may
be limited, we may then iterate between Belief and Policy
learning multiple times until either the allocated computa-
tional resources are exhausted or the policy and belief mod-
ules converge. We summarize the main steps of PBL in Al-
gorithm 1. Note that, although information can be leaked
during training, as training is centralized, distributed test-
phase execution ensures hidden-private variables during ex-
ecution.

2Please note, we omit the agent index i in the reward equation,
as we shape rewards similarly for all agents.
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(a) Payoff for the matrix game (b) Learning curves of PBL and baselines over 100 runs

Figure 1: Matrix game experiment and results.

Algorithm 1 Per-Agent Policy Belief Learning (PBL)

1: Initialize: Randomly initialize policy π0 and belief Φ0

2: Pre-train π0

3: for k = 0 to max iterations do
4: Sample episodes for belief training using self-play

forming the data set Ω[k]

5: Update belief network using data from Ω[k] solving
Equation 2

6: Given updated beliefs Φ[k+1](·), update policy π(·)
(policy gradients with rewards from Equation 4)

7: end for
8: Output: Final policy, and belief model

Machine Theory of Mind

In PBL, we adopt a centralized training and decentralized
execution scheme where agents share the same belief and
policy models. In reality, however, it is unlikely that two
people will have exactly the same reasoning process. In con-
trast to requiring everyone to have the same reasoning pro-
cess, a person’s success in navigating social dynamics re-
lies on their ability to attribute mental states to others. This
attribution of mental states to others is known as theory
of mind (Premack and Woodruff 1978). Theory of mind is
fundamental to human social interaction which requires the
recognition of other sensory perspectives, the understanding
of other mental states, and the recognition of complex non-
verbal signals of emotional state (Lemaignan and Dillen-
bourg 2015). In collaboration problems without an explicit
communication channel, humans can effectively establish an
understanding of each other’s mental state and subsequently
select appropriate actions. For example, a teacher will re-
iterate a difficult concept to students if she infers from the
students’ facial expressions that they have not understood.
The effort of one agent to model the mental state of another
is characterized as Mutual Modeling (Dillenbourg 1999).

In our work, we also investigate whether the proposed
communication reward can be generalized to a distributed
setting which resembles a human application of theory of
mind. Under this setting, we train a separate belief model for
each agent so that Φi(x−i|hi

t) and Φ−i(xi|h−i
t ) do not share

parameters (φi 	= φ−i). Without centralization, an agent can
only measure how informative its action is to others with its
own belief model. Assuming agents can perfectly recall their
past actions and observations, agent i computes its commu-
nication reward as:3

ric,t = KL(xi||b̃i,∗t )− KL(xi||b̃it+1),

where b̃i,∗t = Φi(xi|h−i
t,∗) and b̃it+1 = Φi(xi|h−i

t+1). In this
way, an agent essentially establishes a mental state of oth-
ers with its own belief model and acts upon it. We humbly
believe this could be a step towards machine theory of mind
where algorithmic agents learn to attribute mental states to
others and adjust their behavior accordingly.

The ability to mentalize relieves the restriction of collab-
orators having the same reasoning process. However, the
success of collaboration still relies on the correctness of
one’s belief about the mental states of others. For instance,
correctly inferring other drivers’ mental states and conven-
tions can reduce the likelihood of traffic accidents. Therefore
road safety education is important as it reduces variability
among drivers reasoning processes. In our work, this align-
ment amounts to the similarity between two agents’ trained
belief models which is affected by training data, initializa-
tion of weights, training algorithms and so on. We leave in-
vestigation of the robustness of collaboration to variability
in collaborators’ belief models to future work.

Experiments & Results

We test our algorithms in three experiments. In the first, we
validate the correctness of the PBL framework which inte-
grates our communication reward with iterative belief and
policy module training in a simple matrix game. In this rel-
atively simple experiment, PBL achieves near optimal per-
formance. Equipped with this knowledge, we further apply
PBL to the non-competitive bridge bidding problem to ver-
ify its scalability to more complex problems. Lastly, we in-
vestigate the efficacy of the proposed communication reward
in a distributed training setting.

3Note the difference of super/sub-scripts of the belief model
and its parameters when compared to Equation 3.
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(a) Learning curves for non-competitive bridge bidding
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(No-Rules)
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(Single-Network)
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(b) Comparison of PBL and PQL

Figure 2: a) Learning curves for non-competitive bridge bidding with a warm start from a model trained to predict the score
distribution (average reward at warm start: 0.038). Details of warm start provided in our supplementary material. b) Bar graph
comparing PBL to variants of PQL, with the full version of PQL results as reported in (Yeh and Lin 2016).

Matrix Game

We test our PBL algorithm on a matrix card game where an
implicit communication strategy is required to achieve the
global optimum. This game is first proposed in (Foerster et
al. 2018). There are two players and each player receives
a card drawn from {card 1, card 2} independently at the be-
ginning of the game. Player 1 acts first and Player 2 responds
after observing Player 1’s action. Neither player can see the
other’s hand. By the design of the payoff table (shown in
Figure. 1a), Player 1 has to use actions C and A to signify
that it holds Cards 1 and 2 respectively so that Player 2 can
choose its actions optimally with the given information. We
compare PBL with algorithms proposed in (Foerster et al.
2018) and vanilla policy gradient. As can be seen from Fig-
ure 1b, PBL performs similarly to BAD and BAD-CF on this
simple game and outperforms vanilla policy gradient signif-
icantly. This demonstrates a proof of principle for PBL in a
multi-agent imperfect information coordination game.

Contract Bridge Case-Study

Non-competitive contract bridge bidding is an imperfect in-
formation game that requires information exchange between
agents to agree high-quality contracts. Hence, such a game
serves as an ideal test-bed for PBL. In bridge, two teams of
two (North-South vs East-West) are situated in opposing po-
sitions and play a trick-taking game using a standard 52-card
deck. Following a deal, bidding and playing phases can be
effectively separated. During the bidding phase, players se-
quentially bid for a contract until a final contract is reached.
A PASS bid retains previously proposed contracts and a con-
tract is considered final if it is followed by three consec-
utive PASS bids. A non-PASS bid proposes a new contract
of the form 〈integer,suit〉, where integer takes in-
teger values between one and seven, and suit belongs to
{♣,♦,♥,♠,NT}. The number of tricks needed to achieve
a contract are 6+ integer, and an NT suit corresponds to
bidding to win tricks without trumps. A contract-declaring
team achieves points if it fulfills the contract, and if not,
the points for the contract go to the opposing team. Bid-
ding must be non-decreasing, meaning integer is non-

decreasing and must increase if the newly proposed trump
suit precedes or equals the currently bid suit in the ordering
♣ < ♦ < ♥ < ♠ < NT .

In this work, we focus on non-competitive bidding in
bridge, where we consider North (N) and South (S) bidding
in the game, while East (E) and West (W) always bid PASS.
Hence, the declaring team never changes. Thus, each deal
can be viewed as an independent episode of the game. The
private information of player i ∈ {N,S}, xi, is its hand.
xi is a 52-dimensional binary vector encoding player i’s 13
cards. An agent’s observation at time step t consists of its
hand and the bidding history: oit = {xi

t, h
i
t}. In each episode,

Players N and S are dealt hands xN , xS respectively. Their
hands, together, describe the full state of the environment
s = {xN , xS}, which is not fully observed by either of the
two players. Since rolling out via self-play for every contract
is computationally expensive, we resort to double dummy
analysis (DDA) (Haglund 2010) for score estimation. Inter-
ested readers are referred to (Haglund 2010) and the sup-
plementary material for further details. In our work, we use
standard Duplicate bridge scoring rules (League 2017) to
score games and normalize scores by dividing them by the
maximum absolute score.
Benchmarking & Ablation Studies: PBL introduces sev-
eral building blocks, each affecting performance in its own
right. We conduct an ablation study to better understand the
importance of these elements and compare against a state-
of-the-art method in PQL (Yeh and Lin 2016). We introduce
the following baselines:

1. Independent Player (IP): A player bids independently
without consideration of the existence of the other player.

2. No communication reward (NCR): One important
question to ask is how beneficial the additional commu-
nication auxiliary reward rc is in terms of learning a good
bidding strategy. To answer this question, we implement
a baseline using the same architecture and training sched-
ule as PBL but setting the communication reward weight-
ing to zero, α = 0.

3. No PBL style iteration (NPBI): To demonstrate that
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… …

Player one makes 
Four Hearts bid

1.41.41.4 1.4

Pass  
belief update

3.3
4.5

6.6

3.9

Heart belief  
update

Player one makes 
One Clubs bid

Player two makes 
Pass bid

Player two makes 
One Hearts bid

Time

3.1 3.0

5.9

3.3

Club belief  
update

1.2
2.8

0.81.1

Heart belief 
update

〈1, H〉〈PASS〉 〈1, C〉 〈4, H〉H〉〉 〈4

Figure 3: An example of a belief update trace showing how PBL agents use actions for effective communication. Upon observ-
ing 〈PASS〉 from East, West decreases its HCP belief in all suits. When West bids 〈1,C〉, East improves belief in clubs. Next,
East bids 〈1,H〉. West recalculates its belief from last time step and increases its HCP belief in hearts.

multiple iterations between policy and belief training are
beneficial, we compare our model to a baseline policy
trained with the same number of weight updates as our
model but no further PBL iterations after training a belief
network Φ0 at PBL iteration k = 0.

4. Penetrative Q-Learning (PQL): PQL as proposed by
Yeh and Lin (2016) as the first bidding policy for
non-competitive bridge bidding without human domain
knowledge.
Figure 2a shows the average learning curves of our model

and three baselines for our ablation study. We obtain these
curves by testing trained algorithms periodically on a pre-
generated test data set which contains 30,000 games. Each
point on the curve is an average score computed by Dupli-
cate bridge scoring rules (League 2017) over 30,000 games
and 6 training runs. As can been seen, IP and NCR both ini-
tially learn faster than our model. This is reasonable as PBL
spends more time learning a communication protocol at first.
However, IP converges to a local optimum very quickly and
is surpassed by PBL after approximately 400 learning iter-
ations. NCR learns a better bidding strategy than IP with a
belief module. However, NCR learns more slowly than PBL
in the later stage of training because it has no guidance on
how to convey information to its partner. PBL outperform-
ing NPBI demonstrates the importance of iterative training
between policy and belief modules.
Restrictions of PQL: PQL (Yeh and Lin 2016) is the first
algorithm trained to bid in bridge without human engineered
features. However, its strong bidding performance relies on
heavy adaption and heuristics for non-competitive Bridge
bidding. First, PQL requires a predefined maximum number
of allowed bids in each deal, while using different bidding
networks at different times. Our results show that it will fail
when we train a single NN for the whole game, which can
been seen as a minimum requirement for most DRL algo-
rithms. Second, PQL relies on a rule-based function for se-
lecting the best contracts at test time. In fact, removing this
second heuristic significantly reduces PQL’s performance as

reported in Figure 2b. In addition, without pre-processing
the training data as in (Yeh and Lin 2016), we could not re-
produce the original results. To achieve state-of-the-art per-
formance, we could use these (or other) heuristics for our
bidding algorithm. However, this deviates from the focus
of our work which is to demonstrate that PBL is a general
framework for learning to communicate by actions.
Belief Update Visualization: To understand how agents up-
date their beliefs after observing a new bid, we visualize the
belief update process (Figure 3). An agent’s belief about its
opponent’s hand is represented as a 52-dimensional vector
with real values which is not amenable to human interpreta-
tion. Therefore, we use high card points (HCPs) to summa-
rize each agent’s belief. For each suit, each card is given a
point score according to the mapping: A=4, K=3, Q=2, J=1,
else=0. Note that while agents’ beliefs are updated based on
the entire history of its opponent’s bids, the difference be-
tween that agent’s belief from one round to the next is pre-
dominantly driven by the most recent bid of its opponent, as
shown in Figure 3.
Learned Bidding Convention: Whilst our model’s bidding
decisions are based entirely on raw card data, we can use
high card points as a simple way to observe and summarize
the decisions which are being made. For example, we ob-
serve our policy opens the bid with 1♠ if it has HCPs of
spade 4.5 or higher but lower HCPs of any other suits. We
run the model on the unseen test set of 30,000 deals and sum-
marize the learned bidding convention in the supplementary
material.
Imperfect Recall of History: the length of the action his-
tory players can recall affects the accuracy of the belief mod-
els. The extent of the impact depends on the nature of the
game. In bridge, the order of bidding encodes important in-
formation. We ran an ablation study where players can only
recall the most recent bid. In this setting, players do worse
(average score 0.065) than players with perfect recall. We
conjecture that this is because players can extract less infor-
mation and therefore the accuracy of belief models drops.
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(a) Learning curves for Silent Guide
(b) CR (c) NCR

Figure 4: a) Learning curves for Silent Guide. Guide agent trained with communication reward (CR) significantly outperforms
the one trained with no communication reward (NCR). b) A trajectory of Listener (gray circle) and Guide (blue circle) with CR.
Landmarks are positioned randomly and the Goal landmark (blue square) is randomly chosen at the start of each episode. c) A
trajectory of Listener and Guide with NCR. Trajectories are presented with agents becoming progressively darker over time.

Silent Guide

We modify a multi-agent particle environment (Lowe et al.
2017) to test the effectiveness of our novel auxiliary reward
in a distributed setting. This environment also allows us to
explore the potential for implicit communication to arise
through machine theory of mind. In the environment there
are two agents and three landmarks. We name the agents
Guide and Listener respectively. Guide can observe Lis-
tener’s goal landmark which is distinguished by its color.
Listener does not observe its goal. However, Listener is able
to infer the meaning behind Guide’s actions. The two agents
receive the same reward which is the negative distance be-
tween Listener and its goal. Therefore, to maximize the cu-
mulative reward, Guide needs to tell Listener the goal land-
mark color. However, as the “Silent Guide” name suggests,
Guide has no explicit communication channel and can only
communicate to Listener through its actions.

In the distributed setting, we train separate belief modules
for Guide and Listener respectively. The two belief mod-
ules are both trained to predict a naive agent’s goal landmark
color given its history within the current episode but using
different data sets. We train both Guide and Listener policies
from scratch. Listener’s policy takes Listener’s velocity, rel-
ative distance to three landmarks and the prediction of the
belief module as input. It is trained to maximize the envi-
ronment reward it receives. Guide’s policy takes its veloc-
ity, relative distance to landmarks and Listener’s goal as in-
put. To encourage communication by actions, we train Guide
policy with the auxiliary reward proposed in our work. We
compare our method against a naive Guide policy which is
trained without the communication reward. The results are
shown in Figure 4. Guide when trained with communica-
tion reward (CR) learns to inform Listener of its goal by ap-
proaching to the goal it observes. Listener learns to follow.
However, in NCR setting, Listener learns to ignore Guide’s
uninformative actions and moves to the center of three land-
marks. While Guide and Listener are equipped with belief
models trained from different data sets, Guide manages to

use its own belief model to establish the mental state of Lis-
tener and learns to communicate through actions judged by
this constructed mental state of Listener. We also observe
that a trained Guide agent can work with a naive RL listener
(best reward -0.252) which has no belief model but can ob-
serve PBL guide agent’s action. The success of Guide with
CR shows the potential for machine theory of mind. We ob-
tain the learning curves by repeating the training process five
times and take the shared average environment reward.

Conclusions & Future Work
In this paper, we focus on implicit communication through
actions. This draws a distinction of our work from previ-
ous works which either focus on explicit communication or
unilateral communication. We propose an algorithm com-
bining agent modeling and communication for collaborative
imperfect information games. Our PBL algorithm iterates
between training a policy and a belief module. We propose a
novel auxiliary reward for encouraging implicit communica-
tion between agents which effectively measures how much
closer the opponent’s belief about a player’s private infor-
mation becomes after observing the player’s action. We em-
pirically demonstrate that our methods can achieve near op-
timal performance in a matrix problem and scale to complex
problems such as contract bridge bidding. We conduct an
initial investigation of the further development of machine
theory of mind. Specifically, we enable an agent to use its
own belief model to attribute mental states to others and act
accordingly. We test this framework and achieve some ini-
tial success in a multi-agent particle environment under dis-
tributed training. There are a lot of interesting avenues for
future work such as exploration of the robustness of collab-
oration to differences in agents’ belief models.
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