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Abstract

We consider the principal-agent problem with heterogeneous
agents. Previous works assume that the principal signs inde-
pendent incentive contracts with every agent to make them
invest more efforts on the tasks. However, in many circum-
stances, these contracts need to be identical for the sake of
fairness. We investigate the optimal common contract problem.
To our knowledge, this is the first attempt to consider this nat-
ural and important generalization. We first show this problem
is NP-complete. Then we provide a dynamic programming
algorithm to compute the optimal contract in O(n2m) time,
where n,m are the number of agents and actions, under the
assumption that the agents’ cost functions obey increasing
difference property. At last, we generalize the setting such
that each agent can choose to directly produce a reward in
[0, 1]. We provide an O(log n)-approximate algorithm for this
generalization.

Introduction

Principal-agent theory is a subfield of mechanism design
theory. The principal hires an agent to accomplish a task.
The agent is able to take actions on behalf of the principal.
Agent’s different actions lead to different rewards the prin-
cipal receives. Moral hazard occurs when the agent acts in
his own interest which may be in conflict with the principal’s
interest. Therefore the principal designs an incentive contract
with the agent to maximize the principal’s utility subject to
the agent’s utility being maximized. The contract is a transfer
function from the principal to the agent which could depend
on the outcome which is affected by the agent’s action.

Many economic interactions fit in the principal-agent
model. For example, a firm (principal) hires a salesman
(agent) to sell products. The salesman invests effort on selling
products. More efforts he invests, more products will be sold.
To incentivize salesman invest more efforts, the firm can set
a bonus depending on the amount of products a salesman
has sold. A salesman wants to maximize his utility which is
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defined to be his bonus minus his efforts. The firm’s utility is
the revenue generated from selling products minus the bonus
paid to salesmen. The central question in this research field
asks: What is the principal’s optimal contract?

Due to the wide application, principal-agent model has
been extensively studied (Holmstrom and Milgrom 1991;
1987; Chen et al. 2019; Grossman and Hart 1992; Bolton,
Dewatripont, and others 2005). The agent takes a hidden
action like effort which cannot be observed by the princi-
pal directly. The principal can only observe the outcome
of this action and the contract is designed to depend on
the outcome only. Most works focus on the problem with
one principal and one agent (Armstrong and Vickers 2010;
Kleinberg and Kleinberg 2018). When the agent takes differ-
ent actions, there is a different distribution over principal’s
reward. Given the distribution information, the optimal con-
tract can be computed efficiently through linear programs.

In this paper, we consider the problem when there is one
principal and multiple heterogeneous agents. These agents
could be good at different tasks and we do not assume any
relationship between the cost for different tasks among dif-
ferent agents. For sake of the fairness, we do not allow the
principal design personal contracts for different agents. In-
stead, the principal has to design a common contract that
applies to every agents. We assume the mapping from the
action played to the outcome is deterministic. So the principal
knows every agent’s action by observing her outcome. The
difficulty in our model stems from the multiple agents. Since
the principal can only use a common contract, he needs to
balance the incentivization for every agent.

Our Contribution

Our contribution can be summarized as follows.

1. We first show that the optimal contract problem with het-
erogeneous agents is strongly NP-complete.

2. We then propose an O(n2m) dynamic programming al-
gorithm, where n is the number of agents and m is the
number of actions, to compute an optimal contract un-
der the assumption that the agents’ costs obey increasing
differences.

3. Next, we generalize the discrete-action setting such that
each agent can choose to directly produce a reward in
[0, 1]. We show that this generalization is harder than the
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original discrete-action version, and provide an O(log n)-
approximate algorithm for this generalization.

Other Related Works

Other works also consider multiple agents but in differ-
ent angles (Babaioff, Feldman, and Nisan 2006a; 2006b;
Babaioff et al. 2012; Bernstein and Winter 2012; Babaioff and
Winter 2014; Winter 2004). They assume the union of agents’
actions together determines the outcome. The contract is
personalized and specifies the payment in every possible out-
come. Therefore the payment to an agent depends on both
his action and other agents’ actions. In contrast, in our paper,
the payment to an agent only depends on his own action. In
their setting, some works consider that each agent only has
a binary action space (Babaioff, Feldman, and Nisan 2006a;
Babaioff et al. 2012; Winter 2004), and some works consider
the tradeoff between simplicity of the contract and the per-
formance of it (Babaioff and Winter 2014). Bernstein and
Winter consider a participation game where each agent has
two options representing participating or not (Bernstein and
Winter 2012). Each agent’s utility from participating is the
payment given by the principal plus a value depending on
other agents’ participation. The principal aims to incentivize
all agents to participate in the game with minimal payments.

Alon et al. study how to motivate multiple agents to take
desirable actions using a common evaluation mechanism
(Alon et al. 2020). They solve multiple problems in different
settings. The main difference between their model and ours is
the designer’s payoff. The mechanism designer in their model
cares about the number of agents who have been motivated in
admissible ways while the principal in our model is interested
in maximizing the reward generated by agents minus the
payment paid to agents.

Lavi and Shamash study the model with multiple principals
and multiple agents (Lavi and Shamash 2019). Agents do not
have cost on actions. This model focuses on the competition
between principals. McAfee and McMillan study another
totally different problem where multiple agents compete for
a principal’s contract (McAfee and McMillan 1986). A recent
work of Azizan et al. studies a model that is almost the same
as ours where each agent can choose to directly produce a real
number reward (Azizan et al. 2019). However, they assume
the designed payment function can be parameterized by a
vector in a given set A ⊆ R

d, and their algorithm explores
the whole set A, which is not that efficient.

Problem Description

In this paper, we study the Multiple Agents Contract Problem.
There is a principal, n agents and m actions. Each agent can
take an action j ∈ [m] and produces a reward ρj ≥ 0 for
the principal. The reward only depends on the action, not
on the agent. Each agent i also has a cost ci,j ≥ 0 to take
an action j. This cost depends on both the agent and the
action. Besides the m actions, there is always a zero action
with reward 0 such that the cost for each agent to take this
action is 0. This action means it is free for each agent to
choose to produce nothing. The principal specifies a payment
profile (t1, t2, . . . , tm): each agent taking action j will earn a

payment tj . The utility for agent i to take action j is tj − ci,j .
The agents are self-interested meaning each agent will take
an action that maximizes its utility. W.l.o.g., we assume the
agents tie-break in favor of the principal. The payoff of the
principal is the sum of rewards produced by the agents minus
the payments given to the agents, i.e., if agent i takes action
i∗, the payoff of the principal is

∑n
i=1(ρi∗ − ti∗). Our goal

is to design the payment profile (t1, t2, . . . , tm) to maximize
the payoff of the principal.

Example 1. Suppose there are two agents and two actions.
The rewards for the two actions are 8 and 10 respectively.
For action 1, agent 1 has a cost 5 and agent 2 has a cost 4.
For action 2, agent 1 has a cost 9 and agent 2 has a cost 2.
Without agent 2, we can set the payments for the two actions
to 5 and 0 respectively, which brings a payoff of 3 to the
principal. Without agent 1, we can set the payments for the
two actions to 0 and 2 respectively, which brings a payoff of 8
to the principal. However, when the two agents both exist, no
matter how we set the payments, the payoff of the principal
cannot achieve 3 + 8 = 11. It is optimal to the payments for
the two actions to 5 and 3 respectively, which brings a payoff
of 10 to the principal.

Hardness

The problem defined in the previous section is very hard. To
see its hardness, let us consider its decision version, i.e., the
problem of determining whether there is a payment profile
(t1, t2, . . . , tm) such that the payoff of the principal is no less
than a given number r. For convenience, we call this decision
problem MAC. We will show in the following theorem that
MAC is strongly NP-complete.

Theorem 1. MAC is strongly NP-complete.

Proof. MAC obviously belongs to NP. In the following proof,
we reduce the well-known NP-complete problem Not-All-
Equal 3-Satisfiability (NAE3SAT) to MAC to show that MAC
is strongly NP-complete.

Given an instance of NAE3SAT with n variables and m
clauses (we assume the variables in one clause are different
without loss of generality), we build an instance of MAC as
follows. For any variable x in an instance of NAE3SAT, we
define x0 as its negation and define x1 = x.

• Agents
– For each variable xi, we have an agent Ai.
– For each literal xb

i and each clause cj , we have an agent
T b
i,j .

– For each clause cj , we have 6 agents Vj,1, Vj,2, . . . , Vj,6.
• Actions

– We have a zero action zero with reward 0.
– For each literal xb

i , we have an action variableb
i with

reward ρ1.
– For each clause cj , we have 6 actions
clausej,1, . . . ,clausej,6 with reward ρ2.

• Costs
– For the zero action zero, each agent has a cost 0.
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– For action variableb
i , agent Ai has a cost δ, and T b

i,j
has a cost 0 for each j.

– For action clausej,k, agent Vj,k has a cost 0.

– For action clausej,k where cj = xb1
i1

∨ xb2
i2

∨ xb3
i3

, the
costs vary for different k’s and are summarized in Table
1. Note there are exactly 3 agents with cost 1 to take this
action. We call the three agents the associated agents of
this action.

– For each action and agent, if we do not mention the cost
above, the cost is greater than the reward of the action.

The parameters ρ1, ρ2, δ satisfy the following constraints.1

ρ1 − δ > m((2n− 3)(ρ2 − ρ1) + nδ + 4), (1)
δ > 3(ρ2 − ρ1 − 1), (2)

ρ2 − ρ1 > 2. (3)

Figure 1 shows an example instance of MAC correspond-
ing to an instance of NAE3SAT with 4 variables and 2 clauses
x1 ∨ x2 ∨ ¬x3 and x1 ∨ ¬x2 ∨ x4.

Then we ask whether we can set the payments to the agents
so that the optimal payoff of the principal is no less than

n(ρ1−δ)+m(6ρ2−1)+m(n(ρ1−δ)+(n−3)ρ1+3(ρ2−1)).
(4)

In an optimal solution, the payment for an action will not
exceed the reward, so an agent will never be incentivized
to take an action whose cost is greater than the reward. The
actions that an agent will be potentially incentivized to take
in an optimal solution is summarized as follows (since all
agents can take the zero action, we omit it in the following
list).

• Agent Ai will potentially take action variable0
i or

variable1
i .

• Agent T b
i,j will potentially take action variableb

i or, if
variable xi appears in clause cj , clausej,k for some k.

• Agent Vj,k will potentially take action clausej,k.

Suppose the instance of NAE3SAT has a valid solution,
then we set the payments in the instance of MAC as follows.

• For each action variableb
i , if the value of xb

i is True,
we set the payment to 0; otherwise we set the payment to
δ.

• For each action clausej,k with associated agents
Th1
i1,j

, Th2
i2,j

, Th3
i3,j

, we set the payment to 1 if the values of
xh1
i1
, xh2

i2
, xh3

i3
are all True; otherwise we set the payment

to 0.

Under these payments, agent Vj,k will always take ac-
tion clausej,k. If the value of xi is True, agent Ai will
take action variable1

i ; otherwise she will take action
variable0

i . For agent T b
i,j , if the value of xb

i is True
and variable xi appears in clause cj , she will take action
clausej,k for some k; otherwise she will take action

1For example, we can set δ = 7, ρ1 = 13mn + 8 and ρ2 =
13mn+ 11.

variableb
i . Hence the total payoff of the principal is ex-

actly (4).
Now suppose there exists a payment setting such that the

optimal payoff of the principal is no less than (4). We first
show that agent Ai will take one of the actions variable0

i

and variable1
i . Otherwise, the payoff of the principal can-

not exceed (n− 1)(ρ1 − δ) + 6mρ2 +2mnρ2, which is less
than (4) by (1).

We define bi such that Ai takes action variablebi
i , then

the payment for action variablebi
i must be no less than

δ—the cost for agent Ai to take this action. If the payment
is greater than δ, we can adjust it to δ. After this adjustment,
some agent T bi

i,j that takes action variablebi
i before the ad-

justment may turn out to take action clausej,k for some k.
This is the only possible cause of payoff loss of the principal.
Suppose the payments for variablebi

i (before the adjust-
ment) and clausej,k are t1, t2 respectively, since agent T bi

i,j

chooses to take action variablebi
i before the adjustment,

we have t1 ≥ t2 − 1, so ρ2 − t2 ≥ ρ2 − t1 − 1 > ρ1 − t1 by
(3). This means the adjustment does not reduce the payoff of
the principal, hence we can assume the payment for action
variablebi

i is exactly δ. By an analogous argument, we
can also assume the payment for action variable1−bi

i is
exactly 0.

If there exist some i, j such that agent T bi
i,j does not take ac-

tion variablebi
i , it must take action clausej,k for some

k, and the payment t for action clausej,k must incentivize
agent T bi

i,j to take action clausej,k, i.e., it must satisfy

t− 1 ≥ δ. (5)

Then we adjust the payment for action clausej,k to 1 so
that agent T bi

i,j is incentivized to take action variablebi
i .

After this adjustment, at most three agents that take action
clausej,k before the adjustment deviate to take actions of
the form variablek′

· . Each of these agent brings a payoff
of ρ2 − t to the principal before the adjustment, and brings a
payoff of at least ρ1−δ after the adjustment, so the adjustment
reduces the payoff of the principal by at most 3(ρ2− t−ρ1+
δ). On the other hand, the payoff of the principal increases by
t− 1 due to the contribution of agent Vj,k. As a result, since
t−1 ≥ 3(ρ2− t−ρ1+ δ) due to (2) and (5), this adjustment
does not reduce the payoff of the principal. Hence, we can
assume for any i, j, agent T bi

i,j takes action variablebi
i .

Suppose there exists some j such that the payment for ac-
tion clausej,k is less than 1 for each k. Suppose clause cj
contains three variables xi1 , xi2 , xi3 , and action clausej,k0

is an action that the cost for agent T 1−bi1
i1,j

to take is 1 (there
may exist multiple such k0’s, and we arbitrarily choose one).
We then adjust the payment for clausej,k0 to 1. This ad-
justment attracts T 1−bi1

i1,j
to take action clausej,k0

, which
increases the payoff of the principal by ρ2 − 1− ρ1. On the
other hand, the payoff of the principal contributed by Vj,k0

is
decreased by at most 1, which is the only cause that reduces
the payoff of the principal. As a result, since ρ2−1−ρ1 > 1,
the payoff of the principal increases. Hence, we can assume
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Table 1: Cost Table
T b1
i1

T b2
i2

T b3
i3

T 1−b1
i1

T 1−b2
i2

T 1−b3
i3

clausej,1 1 1 - - - 1
clausej,2 1 - 1 - 1 -
clausej,3 - 1 1 1 - -
clausej,4 - - 1 1 1 -
clausej,5 - 1 - 1 - 1
clausej,6 1 - - - 1 1

ρ1

δ

0
variable0

1

A1

T 0
1,1, T

0
1,2

ρ1

δ

0

variable1
1

A1

T 1
1,1, T

1
1,2

ρ1

δ

0
variable0

2

A2

T 0
2,1, T

0
2,2

ρ1

δ

0

variable1
2

A2

T 1
2,1, T

1
2,2

ρ1

δ

0

variable0
3

A3

T 0
3,1, T

0
3,2

ρ1

δ

0
variable1

3

A3

T 1
3,1, T

1
3,2

ρ1

δ

0

variable0
4

A4

T 0
4,1, T

0
4,2

ρ1

δ

0
variable1

4

A4

T 1
4,1, T

1
4,2

ρ2

1
0
clause1,1

ρ2

1
0
clause1,2

ρ2

1
0
clause1,3

ρ2

1
0
clause1,4

ρ2

1
0
clause1,5

ρ2

1
0
clause1,6

ρ2

1
0
clause2,1

ρ2

1
0
clause2,2

ρ2

1
0
clause2,3

ρ2

1
0
clause2,4

ρ2

1
0
clause2,5

ρ2

1
0
clause2,6

T 1
1,1, T

1
2,1, T

1
3,1

V1,1

T 1
1,1, T

0
2,1, T

0
3,1

V1,2

T 0
1,1, T

1
2,1, T

0
3,1

V1,3

T 0
1,1, T

0
2,1, T

0
3,1

V1,4

T 0
1,1, T

1
2,1, T

1
3,1

V1,5

T 1
1,1, T

0
2,1, T

1
3,1

V1,6

T 1
1,2, T

0
2,2, T

0
4,2

V2,1

T 1
1,2, T

1
2,2, T

1
4,2

V2,2

T 0
1,2, T

0
2,2, T

1
4,2

V2,3

T 0
1,2, T

1
2,2, T

1
4,2

V2,4

T 0
1,2, T

0
2,2, T

0
4,2

V2,5

T 1
1,2, T

1
2,2, T

0
4,2

V2,6

Figure 1: An example instance of MAC corresponding to an instance of NAE3SAT with 4 variables and 2 clauses x1 ∨ x2 ∨ ¬x3

and x1 ∨ ¬x2 ∨ x4: each rectangular represents an action; each line (including the bottom line) in a rectangular represents one or
multiple agents, whose names are recorded to the right of the line; the number to the left of a line represents the cost for the
agents to take this action; in particular, the number to the left of the top line of a rectangular represents the reward for the action.
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for any j, there exists at least one k such that the payment for
action clausej,k is no less than 1.

Under the assumptions above, the maximum payoff of the
principal is exactly (4). To achieve this optimal payoff, for any
j, say cj = xh1

i1
∨ xh2

i2
∨ xh3

i3
, there exists exactly one k such

that the payment for clausej,k is 1, and its three associated
agents T 1−bi1

i1,j
, T

1−bi2
i2,j

, T
1−bi3
i3,j

take this action. According to
Table 1, (1− bi1)⊕h1, (1− bi2)⊕h2, (1− bi3)⊕h3 do not
have the same value. So we can set variable xi to the value
1 − bi (0 represents False and 1 represents True), then all
clauses are satisfied.

Increasing Differences

In this section, we consider the case where agents have dif-
ferent abilities. Roughly speaking, the agents can be ordered
from weak to strong, i1, i2, . . . , in, in the sense that it takes
less cost for a stronger agent to produce a certain amount
reward. We have for each j ∈ [m],

ci1,j > ci2,j > · · · > cin,j , (6)

Additionally, we assume the costs obey increasing differ-
ences.
Definition 1. Given an instance of the Multiple Agents Con-
tract Problem, we call the costs obey increasing differences
if there exists a permutation j1, j2, . . . , jm of 1, 2, . . . ,m
and a permutation i1, i2, . . . , in of 1, 2, . . . , n such that for
any pair of (k, k′) such that k < k′, 0 < cik,j1 − cik′ ,j1 <
cik,j2 − cik′ ,j2 < · · · < cik,jm − cik′ ,jm .

Though MAC is proved to be hard, we give a dynamic pro-
gramming algorithm to solve the Multiple Agents Contract
Problem under the assumption that the costs obey increasing
differences.

The permutation i1, i2, . . . , in can be found in O(n log n)
time by sorting c1,j , c2,j , . . . , cn,j for an arbitrary j, then the
permutation j1, j2, . . . , jm can be found in O(m logm) time
by sorting ci2,1 − ci1,1, ci2,2 − ci1,2, . . . , ci2,m − ci1,m. For
convenience, we assume the actions and agents are already
ordered without loss of generality, i.e., ik = jk = k for each
k. The zero action is also considered action 0.

Before describing the algorithm, we first show the follow-
ing lemmas.
Lemma 1. If the costs obey increasing differences, then for
any payment profile (t1, t2, . . . , tm), if agent i and i′ take
actions j and j′ respectively, then i < i′ ⇒ j ≤ j′.

Proof. Suppose i < i′ but j > j′. Since agent i prefers
action j to j′, we have

tj − ci,j ≥ tj′ − ci,j′ . (7)

Similarly, since agent i′ prefers action j′ to j, we have

tj′ − ci′,j′ ≥ tj − ci′,j . (8)

By combining (7) and (8), we have

ci,j − ci′,j ≤ ci,j′ − ci′,j′ . (9)

However, since i < i′ and j > j′, by increasing differences
we have ci,j − ci′,j > ci,j′ − ci′,j′ , which contradicts to (9).
Therefore, we must have i < i′ ⇒ j ≤ j′.

Lemma 2. Given any 0 ≤ j1 ≤ · · · ≤ jm ≤ m, we have

1. Under the constraint that agent i is incentivized to take
action ji, the optimal payoff of the principal cannot exceed

n−1∑
i=1

(ρji − ci,ji − (n− i) (ci,ji − ci+1,ji))+ρjn −cn,jn .

(10)

2. If the costs obey increasing differences, and we set the
payment profile (t1, t2, . . . , tm) such that

tj =

⎧⎪⎪⎨
⎪⎪⎩
∑i−1

i′=1

(
ci′,ji′ − ci′+1,ji′

)
+ ci,ji , if there exists

i such that
j = ji

2,
0, otherwise,

(11)
then the payoff of the principal is no less than (10).

Proof. Since agent i′ prefers action ji′ to ji′−1, we have

tji′ − ci′,ji′ ≥ tji′−1
− ci′,ji′−1

, (12)

and for i′ = 1 we have tj1 − ci,j1 ≥ 0 since agent 1 prefers
action j1 to the zero action. By summing up (12) for i′ =
1, 2, . . . , i, we have

tji ≥
i−1∑
i′=1

(
ci′,ji′ − ci′+1,ji′

)
+ ci,ji .

Hence,

n∑
i=1

tji ≥
n∑

i=1

(
i−1∑
i′=1

(
ci′,ji′ − ci′+1,ji′

)
+ ci,ji

)

=

n−1∑
i=1

(ci,ji + (n− i) (ci,ji − ci+1,ji)) + cn,jn ,

so the payoff of the principal cannot exceed (10).
On the other hand, suppose the costs obey increasing dif-

ferences and we set tj according to (11). For any agent i and
any action j, there are three cases.

1. If there does not exist some k such that j = jk, then

tj − ci,j ≤ 0

≤
i−1∑
i′=1

(
ci′,ji′ − ci′+1,ji′

)
(13)

= tji − ci,ji ,

where the inequality (13) holds due to (6).

2If there exist multiple such i’s, we arbitrarily choose one, be-
cause if, for example, j = jk′ = jk′+1 = · · · = jk, then
the value of

∑i−1
i′=1

(
ci′,ji′ − ci′+1,ji′

)
+ ci,ji is the same for

i = k′, k′ + 1, . . . , k.
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2. If there exists some k ≤ i such that j = jk, we have

tj − ci,j

=

k−1∑
i′=1

(
ci′,ji′ − ci′+1,ji′

)
+ ck,jk − ci,jk

=

k−1∑
i′=1

(
ci′,ji′ − ci′+1,ji′

)
+

i−1∑
i′=k

(ci′,jk − ci′+1,jk)

≤
k−1∑
i′=1

(
ci′,ji′ − ci′+1,ji′

)
+

i−1∑
i′=k

(
ci′,ji′ − ci′+1,ji′

)
(14)

=

i−1∑
i′=1

(
ci′,ji′ − ci′+1,ji′

)
= tji − ci,ji ,

where the inequality (14) holds due to increasing differ-
ences: for any i′ ≥ k, ci′,jk − ci′+1,jk ≤ ci′,ji′ − ci′+1,ji′ .

3. If there exists some k > i such that j = jk, we have

tj − ci,j

=

k−1∑
i′=1

(
ci′,ji′ − ci′+1,ji′

)− (ci,jk − ck,jk)

=
i−1∑
i′=1

(
ci′,ji′ − ci′+1,ji′

)

+
k−1∑
i′=i

(
ci′,ji′ − ci′+1,ji′

)− k−1∑
i′=i

(ci′,jk − ci′+1,jk)

≤
i−1∑
i′=1

(
ci′,ji′ − ci′+1,ji′

)
(15)

= tji − ci,ji ,

where the inequality (15) holds due to increasing differ-
ences: for any i′ < k, ci′,ji′ − ci′+1,ji′ ≤ ci′,jk − ci′+1,jk .

Anyway, we have tj − ci,j ≤ tji − ci,ji , which means taking
action ji maximizes agent i’s utility. Note if agent i takes
action ji for each i, the payoff of the principal is exactly (10).
Recall that the agents tie-break in favor of the principal, so
the payoff of the principal is no less than (10).

Lemma 1 and 2 show that we can find 0 ≤ j1 ≤
j2 ≤ · · · ≤ jm ≤ m that maximizes (10), then an op-
timal payment profile is given by (11). To find the opti-
mal j1, j2, . . . , jm, we use a dynamic programming algo-
rithm. For convenience, we define φ(i, j) = ρj − ci,j −
(n − i) (ci,j − ci+1,j) for i = 1, 2, . . . , n − 1, and define
φ(n, j) = ρj − cn,j . We define the subproblem OPT(i, j) =

max0≤j1≤j2≤···≤ji≤j

∑i
i′=1 φ(i

′, ji′). We can see the opti-
mal value of (10) is OPT(n,m), and we have the recursion

formula

OPT(i, j + 1) =

max
0≤k≤i

(
OPT(k, j) +

i∑
i′=k+1

φ(i′, j + 1)

)

with OPT(i, 0) = 0 for each i. Hence, the optimal value
of (10), as well as the optimal j1, j2, . . . , jm, can be com-
puted in O(n2m) time. We conclude the result above as the
following theorem.

Theorem 2. If the costs obey increasing differences, there is
an O(n2m) algorithm solving the Multiple Agents Contract
Problem.

Real Number Actions

In previous sections, we considered the Multiple Agents Con-
tract Problem with discrete actions (DA). A natural gener-
alization is to consider the problem where each agent can
choose to produce an arbitrary reward in [0, 1]. We call this
generalization Multiple Agents Contract Problem with Real
Number Actions (RNA), and formalize it as follows.

There is a principal and n agents. Each agent chooses
to produce a reward x ∈ [0, 1] for the principal. To take
such an action, each agent has a cost which may differ from
each other. We define ci(x) ≥ 0 as the cost for agent i to
produce a reward x. We assume without loss of generality
that ci(0) = 0 for all i, which means it is free for each agent
to choose to produce nothing. To incentivize these agents to
produce rewards, the principal specifies a payment function
t(x): each agent taking this action will earn a payment t(x).
The utility for agent i to produce x is t(x) − ci(x). Agents
are self-interested, meaning each agent will produce a reward
that maximizes her utility. We assume agents tie-break in
favor of the principal. The payoff of the principal is the sum
of the rewards produced by these agents minus the payments
given to the agents, i.e., if agent i produces a reward xi, the
payoff of the principal is

∑n
i=1(xi − t(xi)). Our goal is to

design the payment function to maximize the payoff of the
principal.

Note in this paper, the functions t and ci’s are not neces-
sarily continuous. To guarantee every agent has an optimal
action we only concern the payment function t where for all
i, t(x)− ci(x) and x− t(x) (in case of tie-breaking) are able
to attain their maximums on [0, 1].

Hardness

We first show that this generalization is harder than our orig-
inal problem by a reduction from DA to RNA. Given an
instance of DA, we can construct an instance of RNA by
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letting

ci(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x = 0,
ci,1+M
ρm+mM , if 0 < x ≤ ρ1+M

ρm+mM ,
...
ci,j+jM
ρm+mM , if ρj−1+(j−1)M

ρm+mM < x ≤ ρj+jM
ρm+mM ,

...
ci,m+mM
ρm+mM , if ρm−1+(m−1)M

ρm+mM < x ≤ 1,

(16)
for each i, where M is a large enough number3. We will
show how to construct an optimal payment profile of the
DA instance from an optimal payment function of the RNA
instance. For convenience, we define zj = (ρj + jM)/(ρm+
mM) and z0 = 0.

Given an optimal payment function t(x) of the RNA in-
stance, suppose agent i chooses to produce xi and define ji
such that zji−1 < xi ≤ zji (if xi = 0, then ji = 0). Now
consider a fixed i. If xi < zji , we adjust the value of t(x) at
x = zji to t(xi). Before this adjustment, agent i produces xi,
and after this adjustment, agent i has the same utility to pro-
duce zji as to produce xi, so agent i will produce zji after the
adjustment (recall the agent tie-breaks in favor of the princi-
pal), which increases the payoff of the principal. On the other
hand, for any other agent i′, t(xi)−ci′(zji) ≤ t(xi)−ci′(xi)
(since the cost function is weakly increasing), which means
the utility of producing zji after the adjustment does not
exceed that of producing xi. Hence, for any agent except
i, changing her produced value to zji due to the adjust-
ment does not decrease the payoff of the principal (recall
again that the agents tie-break in favor of the principal). As
a result, the payoff of the principal is increased by this ad-
justment, which contradicts to the fact that t(x) is optimal.
Therefore, we can assume xi = zji . The payoff of the princi-
pal under the payment function t(x) in the RNA instance is
pRNA =

∑n
i=1(zji − t(zji)).

Now we construct a payment profile (t1, t2, . . . , tm) of the
DA instance where

tj = t(zj)(ρm +mM)− jM. (17)

Under this payment profile, for each agent i and each j, the
utility of agent i to take action j is tj − ci,j , which is ex-
actly (ρm + mM) times the utility of agent i to produce
zj under the payment function t(x) in the RNA instance.
Also, agent i brings a payoff of ρj − tj to the principal
by taking action j, which is exactly (ρm +mM) times the
payoff of the principal brought by agent i by producing zj
under the payment function t(x) in the RNA instance. Since
agent i produces zji under payment function t(x) in the
RNA instance, she will take action ji under payment profile
(t1, t2, . . . , tm) in the DA instance. The payoff of the prin-
cipal under the payment profile (t1, t2, . . . , tm) in the DA
instance is pDA =

∑n
i=1(ρji − tji) = (ρm +mM)pRNA.

To show the payment profile (t1, t2, . . . , tm) is opti-
mal, we compare it to another arbitrary payment profile
(t′1, t

′
2, . . . , t

′
m). Suppose agent i takes action j′i under the

3It is sufficient to choose M = maxi,j{ci,j , ρj}+ 1.

payment profile (t′1, t
′
2, . . . , t

′
m), then the payoff of the prin-

cipal under the payment profile (t′1, t
′
2, . . . , t

′
m) in the DA

instance is p′DA =
∑n

i=1(ρji − t′ji).
Let

t′(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x = 0,
t′1+M

ρm+mM , if 0 < x ≤ z1,
...
t′j+jM

ρm+mM , if zj−1 < x ≤ zj ,
...
t′m+mM
ρm+mM , if zm−1 < x ≤ zm = 1.

We can see for all i, x− t′(x) and t′(x)− ci(x) are able to
attain their maximum on [0, 1], so t′(x) is a valid payment
function. Under this payment function, agent i has the same
utility for producing a reward on (zj , zj+1], thus she will
produce zj for some j in favor of the principal. Observe,
again, that under the payment profile (t′1, t

′
2, . . . , t

′
m), for

each agent i and each j, the utility of agent i to take action
j is t′j − ci,j , which is exactly (ρm +mM) times the utility
of agent i to produce zj under the payment function t′(x) in
the RNA instance. Also, agent i brings a payoff of ρj − t′j
to the principal by taking action j, which is exactly (ρm +
mM) times the payoff of the principal brought by agent
i by producing zj under the payment function t′(x) in the
RNA instance. Hence, agent i will produce zj′i under the
payment function t′(x) in the RNA instance. The payoff of
the principal under the payment function t′(x) in the RNA
instance is p′RNA =

∑n
i=1(zji − t′(zji)) = p′DA/(ρm +

mM).
Hence, p′DA = (ρm+mM)p′RNA ≤ (ρm+mM)pRNA =

pDA, which means (t1, t2, . . . , tm) is indeed an optimal pay-
off profile of the DA instance.

An Approximate Contract

Knowing the RNA problem is hard, we are going to design an
approximate contract. We assume for all i, x− ci(x) is able
to attain its maximum on [0, 1]. Let xi ∈ argmaxx∈[0,1](x−
ci(x)) (if there are multiple x′

is achieving the maximum
value, we arbitrarily choose one), yi = maxx∈[0,1](x −
ci(x)), we have immediately

yi = xi − ci(xi) ≤ xi. (18)

Let

ti(x) =

{
0, if 0 ≤ x ≤ yi,

x− yi, if yi < x ≤ 1.

We assume without loss of generality that y1 ≤ y2 ≤ · · · ≤
yn. We first show that ti(x) is a valid payment function, i.e.
for all i′, x− ti(x) and ti(x)− ci′(x) are able to attain their
maximum on [0, 1]. The former is trivial. For ti(x)− ci′(x),
if 0 ≤ x ≤ yi, then ti(x) − ci′(x) = −ci′(x) ≤ 0; if
yi < x ≤ 1, then ti(x)−ci′(x) = x−yi−ci′(x) ≤ yi′ −yi,
so ti(x) − ci′(x) ≤ max{0, yi′ − yi}. In addition, ti(0) −
ci′(0) = 0 and ti(xi′) − ci′(xi′) ≥ xi′ − yi − ci′(xi′) =
yi′ − yi. This means the maximum value of ti(x) − ci′(x)
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is max{0, yi′ − yi}, and is achievable at x = 0 or x = xi′ .
Hence, ti(x) is indeed a valid payment function.

Note the argument above also shows that for any i′ ≥ i,
ti(x)− ci′(x) attains its maximum at x = xi′ . By (18), we
have xi′ ≥ yi′ ≥ yi, so if agent i′ chooses to produce xi′ ,
she brings a payoff of xi′ − ti(xi′) = xi′ − (xi′ − yi) = yi
to the principal. Recall that the agents tie-break in favor
of the principal, agent i′ brings a payoff of at least yi to
the principal. Hence, under the payment function ti(x), the
payoff of the principal is at least (n − i + 1)yi. Let i∗ ∈
argmaxi(n− i+ 1)yi, then we have for all i,

yi ≤ (n− i∗ + 1)yi∗

n− i+ 1
.

On the other hand, let OPT denote the optimal payoff
of the principal. Since agent i brings a payoff of at most
maxx∈[0,1](x−ci(x)) = yi to the principal, we have OPT ≤∑n

i=1 yi. Hence,

OPT ≤
n∑

i=1

yi ≤ (n− i∗ + 1)yi∗
n∑

i=1

1

n− i+ 1
.

This means the payment function ti∗(x) is an
∑n

i=1(1/(n−
i+ 1))-approximate solution, i.e. an O(log n)-approximate
solution.

In conclusion, we have the following algorithm.

1. For any i, find yi = maxx∈[0,1](x−ci(x)) and sort them
such that y1 ≥ y2 ≥ · · · ≥ yn.

2. Let i∗ ∈ argmax1≤i≤n(n− i∗ + 1)yi∗ .
3. Output the payment function

t(x) =

{
0, if 0 ≤ x ≤ yi∗ ,

x− yi∗ , if yi∗ < x ≤ 1.

Note this algorithm can also be applied to our Multiple
Agents Contract Problem with discrete actions. We first con-
struct an instance of the problem with real number actions
using (16), obtain a payment function using the algorithm
above, then we can get a payment profile of the problem with
discrete actions using (17). This payment profile is still an
O(log n)-approximate solution.
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