
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Beyond Trees: Analysis and Convergence of
Belief Propagation in Graphs with Multiple Cycles

Roie Zivan, Omer Lev, Rotem Galiki
Ben-Gurion University of the Negev

Beer-Sheva, Israel
{zivanr, omerlev, rosha}@bgu.ac.il

Abstract

Belief propagation, an algorithm for solving problems rep-
resented by graphical models, has long been known to con-
verge to the optimal solution when the graph is a tree. When
the graph representing the problem includes a single cycle,
the algorithm either converges to the optimal solution or per-
forms periodic oscillations. While the conditions that trigger
these two behaviors have been established, the question re-
garding the convergence and divergence of the algorithm on
graphs that include more than one cycle is still open.
Focusing on Max-sum, the version of belief propagation
for solving distributed constraint optimization problems
(DCOPs), we extend the theory on the behavior of belief
propagation in general – and Max-sum specifically – when
solving problems represented by graphs with multiple cycles.
This includes: 1) Generalizing the results obtained for graphs
with a single cycle to graphs with multiple cycles, by using
backtrack cost trees (BCT). 2) Proving that when the algo-
rithm is applied to adjacent symmetric cycles, the use of a
large enough damping factor guarantees convergence to the
optimal solution.

Introduction

The belief propagation algorithm (Pearl 1988; Yanover,
Meltzer, and Weiss 2006) is an incomplete inference (GDL-
based) algorithm for solving problems that can be repre-
sented by graphical models. For example, constraint opti-
mization (Dechter 2003), which is a general model for cen-
tralized and distributed problem solving, has a wide range
of applications in artificial intelligence and multi agent sys-
tems (Ramchurn et al. 2010; Farinelli, Rogers, and Jennings
2014). In belief propagation, each node in the graph acts as
an agent within a distributed algorithm, i.e., in each itera-
tion of the algorithm it receives messages from its neighbor-
ing nodes, performs computation and sends messages to its
neighbors. The agents maintain and propagate their beliefs
regarding the differences in the cost (or utility)1, which they

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In the rest of the paper we will assume, without loss of gener-
ality, that the problem is a minimization problem and therefore that
violating a constraint incurs a finite cost.

will incur for assigning each of their possible value assign-
ments to their variable.

Max-sum is a version of belief propagation that is used
for solving distributed constraint optimization problems
(DCOPs). It has drawn considerable attention in recent
years, including being proposed for multi-agent applications
such as sensor systems (Teacy et al. 2008; Stranders et al.
2009) and task allocation for rescue teams in disaster areas
(Ramchurn et al. 2010). For convenience of presentation, we
will focus on this version of belief propagation. However, all
results that we present here apply in general to other versions
of belief propagation as well.

Belief propagation is known to converge to the optimal
solution when solving problems, which are represented by
an acyclic graph. On problems represented by graphs that
include cycles, the beliefs may fail to converge, and the re-
sulting assignments that are considered optimal under those
beliefs may be of low quality (Yanover, Meltzer, and Weiss
2006; Farinelli et al. 2008b; Zivan et al. 2017). This occurs
because cyclic information propagation leads to inaccurate
and inconsistent information being computed by the agents
(Pearl 1988).

To decrease the effect of cyclic information propagation
in belief propagation, the method of damping has been sug-
gested, which balances the weight of the new calculation
performed in each iteration and the weight of calculations
performed in previous iterations. As a result, it increases the
probability for convergence (Lazic, Frey, and Aarabi 2010;
Som and Chockalingam 2010; Tarlow et al. 2011; Pretti
2005). Recently, splitting nodes in the factor graph on which
belief propagation operates has been shown to be an ef-
fective method for triggering convergence of the algorithm,
when combined with damping (Ruozzi and Tatikonda 2013;
Cohen and Zivan 2018).

On graphs with a single cycle, it is known that belief
propagation is not guaranteed to converge. However, when
it does converge, the result is the optimal solution (Weiss
2000; Forney et al. 2001). Moreover, the conditions for con-
vergence of belief propagation on a single cycle, are known:
Forney et al. (2001) show the resemblance between the op-
eration of the algorithm on a single cyclic graph and a chain
of assignments (a route), which incurs costs with respect to

7333

the constraints along the chain. Every propagated belief is a
result of a sum of costs, which are the result of the selection
of value assignments in this route. Given enough iterations
the route converges to a periodic traversal of the lowest cost
sequence of assignments. The algorithm converges to the op-
timal solution if and only if this periodic route is consistent,
i.e., the same variable is not assigned different values. If it
does include different value assignments to the same vari-
able, the algorithm will oscillate.

On graphs with multiple cycles, the costs (beliefs) prop-
agated by agents are no longer the sum of constraints be-
tween assignments of a single route in the graph as in the sin-
gle cycle case. Rather, they are costs accumulated through a
tree, which illustrates the transfer of messages among agents
(Weiss and Freeman 2001), in which each layer of nodes in
the tree represents the nodes of the graph and the messages
received and sent in some iteration. The layer below it in-
cludes the messages sent in the previous iteration and the
layer above it the messages in the following iteration. Each
layer grows with every split of routes in the graph, and thus,
the weight of the costs incurred early on the beliefs may
grow exponentially. Weiss and Freeman (2001) specifically
announce that due to the exponential growth of costs at the
bottom layers of the unwrapped tree (UT), they were not
able to analyze the conditions for convergence of the algo-
rithm as done for single cycle graphs.

In this paper we extend the theory on belief propagation
in general, and particularly on Max-sum, by making the fol-
lowing contributions:

1. We generalize the conditions for convergence of belief
propagation, presented in Forney et al. (2001) for single
cycle graphs, to the general case where graphs include
multiple cycles. To best of our knowledge, we are the first
to offer an answer to this question that was left open by
Weiss and Freeman almost two decades ago (Weiss and
Freeman 2001). Inspired by the unwrapped tree of Weiss
and Freeman (2001), we define a backtrack cost tree
(BCT), which reveals the components that were summed
in order to generate the propagated beliefs. We show that
in graphs with multiple cycles, this tree implies a route
of value assignments to variables. We further prove that
following enough iterations, the bottom layers of all the
BCTs of a variable’s beliefs propagated by the algorithm
are identical.

2. We prove that with a large enough damping factor, on
graphs with multiple cycles, the algorithm is guaranteed
to converge to the minimal value assignment route (as
proven for single cycle graphs without damping by For-
ney et al., 2001). Thus, on graphs where the minimal
route is the optimal solution, damping can be used to
trigger the convergence of the algorithm to the optimal
solution. We further show that in a chain (or a tree) of
cycles with symmetric constraints, the minimal route is
always the optimal solution. Thus, there exists a damping
parameter that guarantees convergence of the algorithm
to the optimal solution. This explains the high quality em-
pirical results and fast convergence shown in Cohen and
Zivan (2018) for the combination of symmetric splitting

and damping.

Background

In this section we present background on the graphical mod-
els to which our results apply: the distributed constraint op-
timization problems (DCOPs) and the DCOP version of be-
lief propagation – the Max-sum algorithm. The algorithm
we will be discussing is actually solving a min-sum prob-
lem (as in Ruozzi and Tatikonda, 2013), but we will still
refer to it as “Max-sum”, since this name is commonly used
(Farinelli et al. 2008a; Farinelli, Rogers, and Jennings 2014;
Yedidsion, Zivan, and Farinelli 2014; Zivan et al. 2017). We
will also discuss the conditions for convergence on single
cycle graphs, as presented in Forney et al. (2001).

Graphical Models

Graphical models such as Bayesian networks or constraint
networks are a widely used representation framework for
reasoning and solving optimization problems. The graph
structure is used to capture dependencies between variables
(Marinescu and Dechter 2009). Our work extends the the-
ory established in Weiss (2000), which considered the most
a priori Maximum a posteriori (MAP) assignment, which
is solved using the Max-product version of belief prop-
agation. The relation between MAP and constraint opti-
mization is well established (Marinescu and Dechter 2009;
Farinelli et al. 2008a), and thus, results that consider Max-
product for MAP apply to Max/Min-sum for solving con-
straint optimization problems, as well as the other way round
(Ruozzi and Tatikonda 2013). Without loss of generality, we
will focus on constraint optimization, since it is more com-
mon in AI literature. Moreover, we will consider the dis-
tributed version of the problem, since it is a natural repre-
sentation for message passing algorithms. Nevertheless, our
results apply to any version of problem represented by a
graphical model and solved by belief propagation, as do the
results of Weiss (2000).

Distributed Constraint Optimization

Without loss of generality, in the rest of this paper we will
assume that all problems are minimization problems (as in
many DCOP papers, e.g., Modi et al., 2005). Thus, we as-
sume that all constraints define costs and not utilities.

A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set
of agents {A1, A2, . . . , An}. X is a finite set of variables
{X1, X2, . . . , Xm}. Each variable is held by a single agent,
and an agent may hold more than one variable. D is a set
of domains {D1, D2, . . . , Dm}. Each domain Di contains
the finite set of values that can be assigned to variable Xi.
We denote an assignment of value x ∈ Di to Xi by an
ordered pair 〈Xi, x〉. R is a set of relations (constraints).
Each constraint Rj ∈ R defines a non-negative cost for ev-
ery possible value combination of a set of variables, and is
of the form Rj : Dj1 × Dj2 × . . . × Djk → R+ ∪ {0}.
A binary constraint refers to exactly two variables and is
of the form Rij : Di × Dj → R+ ∪ {0}.2 For each bi-

2We say that a variable is involved in a constraint if it is one of
the variables the constraint refers to.

7334

nary constraint Rij there is a corresponding cost table Tij

with dimensions |Di| and |Dj | in which the cost in every
entry ex,y is the cost incurred when Xi is assigned x and
Xj is assigned y. A binary DCOP is a DCOP in which
all constraints are binary. A partial assignment (PA) is a
set of value assignments to variables, in which each vari-
able appears at most once. vars(PA) is the set of all vari-
ables that appear in PA, i.e., vars(PA) = {Xi | ∃x ∈
Di ∧ 〈Xi, x〉 ∈ PA}. A constraint Rj ∈ R of the form
Rj : Dj1 × Dj2 × . . . × Djk → R+ ∪ {0} is applicable
to PA if each of the variables Xj1 , Xj2 , . . . , Xjk is included
in vars(PA). The cost of a partial assignment PA is the
sum of all applicable constraints to PA over the value as-
signments in PA. A complete assignment (or a solution) is
a partial assignment that includes all the DCOP’s variables
(vars(PA) = X). An optimal solution is a complete assign-
ment with minimal cost.

For simplicity, we make the common assumption that
each agent holds exactly one variable, i.e., n = m, and we
concentrate on binary DCOPs, in which all constraints are
binary. These assumptions are customary in DCOP literature
(e.g., Petcu and Faltings, 2005; Yeoh, Felner, and Koenig,
2010).

The Max-Sum algorithm3

Max-sum operates on a factor-graph, which is a bipartite
graph in which the nodes represent variables and constraints
(Kschischang, Frey, and Loeliger 2001). Each variable-node
representing a variable of the original DCOP is connected
to all function-nodes that represent constraints, which it is
involved in. Similarly, a function-node is connected to all
variable-nodes that represent variables in the original DCOP
that are involved in the constraint it represents. Variable-
nodes and function-nodes are considered “agents” in Max-
sum, i.e., they can send and receive messages, and can per-
form computation.

A message sent to or from variable-node X (for simplic-
ity, we use the same notation for a variable and the variable-
node representing it) is a vector of size |DX | including a cost
for each value in DX . Before the first iteration, all nodes as-
sume that all messages they previously received (in iteration
0) include vectors of zeros. A message sent from a variable-
node X to a function-node F in iteration i ≥ 1 is formalized
as follows:

Qi
X→F =

∑
F ′∈FX ,F ′ �=F

Ri−1
F ′→X − α

where Qi
X→F is the message variable-node X intends to

send to function-node F in iteration i, FX is the set of
function-node neighbors of variable-node X and Ri−1

F ′→X is
the message sent to variable-node X by function-node F ′
in iteration i − 1. α is a constant that is reduced from all
costs included in the message (i.e., for each x ∈ DX) in or-
der to prevent the costs carried by messages throughout the
algorithm run from growing arbitrarily large.

3For lack of space we describe the algorithm briefly and refer
the reader to more detailed descriptions in Farinelli et al. (2008b);
Rogers et al. (2011); Zivan et al. (2017).

A message Ri
F→X sent from a function-node F to a

variable-node X in iteration i, includes for each value x ∈
DX :

minPA−X
cost(〈X,x〉, PA−X)

where PA−X is a possible combination of value assign-
ments to variables involved in F not including X . The term
cost(〈X,x〉, PA−X) represents the cost of a partial assign-
ment a = {〈X,x〉, PA−X}, which is:

f(a) +
∑

X′∈XF ,X′ �=X,〈X′,x′〉∈a

(Qi−1
X′→F)x′

where f(a) is the original cost in the constraint represented
by F for the partial assignment a, XF is the set of variable-
node neighbors of F , and (Qi−1

X′→F)x′ is the cost that was
received in the message sent from variable-node X ′ in iter-
ation i − 1, for the value x′ that is assigned to X ′ in a. X
selects its value assignment x̂ ∈ DX following iteration k
as follows:

x̂ = argmin
x∈DX

∑
F∈FX

(Rk
F→X)x

In order to add damping to Max-sum a parameter λ ∈
[0, 1) is used. Before sending a message in iteration k an
agent performs calculations as in standard Max-sum. Denote

by m̂k
i→j the result of the calculation made by agent Ai of

the content of a message intended to be sent from Ai to agent
Aj in iteration k. Denote by mk−1

i→j the message sent by Ai

to Aj at iteration k − 1. The message sent from Ai to Aj in
iteration k is calculated as follows:

mk
i→j = λmk−1

i→j + (1− λ)m̂k
i→j

Thus, λ expresses the weight given to previously performed
calculations with respect to the most recent calculation per-
formed. Moreover, when λ = 0 the resulting algorithm is
standard Max-sum.

Split Constraint Factor Graphs

When Max-sum is applied to an asymmetric problem, the
representing factor graph has each (binary) constraint repre-
sented by two function-nodes, one for each part of the con-
straint held by one of the involved agents. Each function-
node is connected to both variable-nodes representing the
variables involved in the constraint (Zivan, Parash, and
Naveh 2015).

In Ruozzi and Tatikonda (2013); Cohen and Zivan (2018)
such Split Constraint Factor Graphs (SCFGs) are used as
an enhancement method for Max-sum. This is achieved by
having each constraint that was represented by a single
function-node in the original factor graph, represented by
two function-nodes. The SCFG is equivalent to the original
factor graph, if the sum of the cost tables of the two function-
nodes representing each constraint in the SCFG is equal to
the cost table of the single function-node representing the
same constraint in the original factor graph. By tuning the
similarity between the two function-nodes representing the
same constraint one can determine the level of asymmetry
in the SCFG (Cohen and Zivan 2018).

7335

Single Cycle Factor Graphs

For a single cycle factor graph, we know that if belief prop-
agation converges, it is to the optimal solution (Forney et
al. 2001; Weiss 2000). Moreover, when the algorithm does
not converge – it periodically changes its set of assignments.
In order to explain this behavior, Forney et al. (2001) show
the similarity of the performance of the algorithm on a cy-
cle to its performance on a chain, whose nodes are similar
to the nodes in the cycle, but whose length is equal to the
number of iterations performed by the algorithm. One can
consider a sequence of messages starting at the first node of
the chain and heading towards its other end. Each message
carries beliefs accumulated from costs added by function-
nodes. Each function-node adds a cost to each belief, which
is the constraint value of a pair of value assignments to its
neighboring variable-nodes. Each such sequence of cost ac-
cumulation (route) must at some point become periodic, and
the minimal belief would be generated by the minimal peri-
odic route. If this periodic route is consistent, i.e., the set of
assignments implied by the costs in it contain a single value
assignment for each variable, the algorithm converges; oth-
erwise, it does not (Forney et al. 2001). Our results general-
ize these insights such that similar statements can be made
for any structure of the factor graph.

Preliminaries

Our analysis will include insights regarding the construc-
tions of beliefs from costs incurred by constraints. Thus,
for every pair of constrained variables, Xi and Xj , for
each x ∈ Di, x′ ∈ Dj , we will denote the cost incurred
by the constraint for assigning x to Xi and x′ to Xj as
R(Xi = x,Xj = x′)4.

We will be discussing the messages and assignment se-
lections over time as iterations progress, so we shall mark
the state of the algorithm at time t (that is, after t itera-
tions) as �st. This state includes the value assignments se-
lected by all variable-nodes in the graph at time t. The value
assignments are selected according to the messages sent to
the variable-nodes by their function-node neighbors (as de-
scribed below).

We denote by dXi the degree of each variable node (the
number of variables it is constrained with). When handling a
single cycle, the degree of each node is 2, and therefore there
is no need to sum anything in the message sent from the vari-
able. However, in graphs including connected cycles, as in
our running example of a lemniscate (an “8”, or ∞, shape,
as in Figure 1), there is at least one variable for which the de-
gree is larger (in the case of the lemniscate, there is a node
with a degree of 4). This means that messages are “ampli-
fied”: As can be seen in Figure 2, a message that started as
A from F13, becomes 3A in the penultimate stage, and con-
tinuing it, it will then become 9A, and on and on – after i
such rounds it will become 3iA.

Moreover, while in the case of a single cycle, one could
draw a message sent from a variable node and see how

4This is a shorthand for the ex,y element of the Tij table repre-
senting the constraint R.

F12X1

X2F13

F23
X3

F45

X4
F24

F25
X5

Figure 1: A lemniscate with 5 variable nodes and 6 function
nodes.

it “rolls” down a path – from X1 (through a function-
node) to X2, from there, through another function-node, to
X3, X4, X5 and so on, until finishing back in X1, this is not
the case with connected cycles. Here, because of the nodes
with a degree over 2, the path from a variable splits and di-
vides, resulting in a tree-like shape, with multiple routes. For
example, in the lemniscate of Figure 1, a message from X1

can pass through a function-node to X2, from where it splits
into 3 (instead of 1, in the case of a single cycle) – and from
which it will continue on to the other nodes (as is detailed
in Figure 2). Indeed, from each node we can draw a similar
route-tree (also called an unwrapped tree (UT) by Weiss and
Freeman, 2001), rooted at that node, showing how messages
pass, with each level in the route-tree being one step (time
wise) ahead of the level above it. Thus, at time t, we could
build for any possible value assignment xt

i ∈ Di to variable
Xi, a route-tree that leads to this assignment. That is, a set of
messages (each message is a vector, of course), whose val-
ues lead up to the choice of the possibility and availability
of this particular assignment to variable Xi.

Similar to the way the route-tree is drawn from a starting
point and advances with time, one can draw a mirror image
of that tree. Starting from the end point – the belief for the
cost of assigning to Xi some x ∈ Di, as sent to a different
node – the values from which that cost was calculated can be
backtracked to the messages and costs added by constraints,
which sum up to this belief. For example, variable X1 got a
message from constraint R13 (node F13), which was a vec-
tor of beliefs, each of them a particular combination of a
specific cost of the constraint, e.g., R13(X1 = x,X3 = x′)
– combined with an additional cost from the message passed
to the function-node itself from X3. That message included
the costs X3 received through F23, which were themselves
composed of some R23(X2 = x̄, X3 = x̃), along with costs
received from X2. Such backtracking can be continued un-
til the whole expression of the value received by X1 can be
deciphered and it is known from which specific constraint
cost did each component come from: every belief received
by a variable can be ultimately traced to a combination of
particular R(Xi = x,Xj = x′) costs, some of which have
been multiplied and changed in the message process (see
Figure 3). This backtracking creates a tree: in our example,
the message passed from X2 to F23 included costs X2 re-
ceived from three different nodes – F13, F24 and F25. This

7336

F13

X1

F12

X2

F23 F25 F24

X3 X4

A

A

A+…

A+…A+…
A+…

F45F13 F45

X4

A+…

A+…

A+…A+…

A+…

A+…

A+…

A+…

A+…

X5

X1 X5

F23 F24 F25

X1 X4

2A+…3A+… 2A+…
F12

2A+…

2A+…2A+…3A+…2A+…

F24F12 F25

X2

A+…

A+…A+…

A+…

A+…

A+…

X3 X5

F13 F45 F45F13

2A+…2A+…3A+…2A+…

3A+…

Figure 2: An example of passing messages in the lemniscate
of Figure 1. Assuming a message with a value A in one of
the indices was sent to X1 from the constraint F13, and that
constraint values which included the A were sent in follow-
ing messages (adding the A to values of those constraints),
the A can be seen to grow by the time it is sent again from
X2 to F23, when it is 3A+. . . . This is further sent to X3 and
from there to F13, returning us to the beginning of the tree
with a message of 3A+. . . . Naturally, repeating the route-
tree at that point will result in the message of value 9A to be
sent, and so on and on.

backtracking cost tree (BCT), that can be created for all be-
liefs of any variable at time t, is to be a critical element in
our analysis.
Definition 1. A Backtracking Cost Tree (BCT) is defined for
a belief that appears in a message sent from variable Xi at
time t, to a function node connecting it to a variable Xj . The
belief is regarding the cost of assigning some x ∈ Di to Xi.
We shall denote it as BCT t

i=x→j .
The belief, as constructed by the Max-sum algorithm, is a

sum of various components, and the tree is composed from
them. At the root is the belief, i.e., a cost for assigning some
x ∈ Di to Xi, and it is connected to all nodes it received
a message from at time t − 1, with the edges containing the
beliefs it was passed that ended up in the calculation of the

0

R(X1=a;X3=b)

0

R(X4=c;X5=d)

R(X1=a;X3=b) R(X4=c;X5=d)

F13

X1=x

F12

X2

F23 F25 F24

X3 X4

F45F13 F45

X4

0

X5

X1 X5

X3

R(X4=c;X5=d)

R(X4=c;X5=d)

R(X3=b;X2=e) +
R(X1=a;X3=b)

R(X5=d;X2=f) +
R(X4=c;X5=d)

R(X4=c;X2=e) +
R(X4=c;X5=d)

R(X3=b;X2=e) + R(X1=a;X3=b) +
R(X4=c;X2=e) + R(X4=c;X5=d) +
R(X5=d;X2=f) + R(X4=c;X5=d)

R(X1=x;X2=f) +
R(X3=b;X2=e) + R(X1=a;X3=b) +
R(X4=c;X2=e) + R(X4=c;X5=d) +
R(X5=d;X2=f) + R(X4=c;X5=d)

Figure 3: An example of BCT 6
1=x→3 in the lemniscate of

Figure 1.

belief it sent. Each of those nodes is connected itself to the
nodes that send it messages at time t − 2, with the edges
containing the beliefs that passed to it that ended up in its
message. The tree leaves are all at time 0 (see Figure 3).

For each BCT t
i=x→j there is an implied assignment tree,

which includes the value assignments that the variables at
each point of the tree would have to assign to incur the cost
included in the BCT. The value assignment selected by a
variable at time t is the one with the minimal sum of beliefs
sent to this variable-node in iteration t−1. We shall mark the
tree for this minimal sum of beliefs as BCT t

i , as it doesn’t
depend on any specific belief which appears in a message to
a different variable.

Max-sum and BCT

We begin by illuminating some of the properties of Max-
sum on any graph. Some of these properties will be used in
the proofs of our main results in the following section:

Observation 1. For any factor graph G, at any time t ∈ N,
in any message sent, there exists a belief which is minimal.5

When evaluating the cost of a sequence of states, we wish
to evaluate its average cost, not its absolute value. So a se-
quence of 5 states which add a cost of 10 is not as costly as
a sequence of 2 states which add a cost of 5. The costs are
normalized by their length.

Lemma 1. For any factor graph G, there is a time t0 ∈
N and a positive integer k such that for any t ≥ t0, the

5For simplicity we assume there are no ties. Ties can be avoided
using methods as suggested in Farinelli et al. (2008a).

7337

state �st = �st+k. That is, the variable assignments and the
costs added to the BCTs are periodic. We call this periodic
sequence, which is the endstate of the Max-sum process, the
final periodical6. This final periodical is one for which the
assignment BCT tree for every variable Xi generated by this
process – BCT t

i – is minimal.

Proof. The number of possible assignments is finite. There-
fore a state �s appears infinitely many times, and there are
sequences of states between two different appearances of �s,
which appear infinitely many times. Let us assume for con-
tradiction there are two different such infinitely occurring se-
quences. One of these sequences has to be the one for which
the (average) cost is not minimal, and we shall denote it as
A. That means there is a different sequence (possibly of dif-
ferent length) – which we shall denote as B – with a smaller
cost. Since the non-minimal sequence repeats endlessly, that
means that in A there is at least one variable Xi for which
the beliefs for a particular assignment (say, Xi = y) are
smaller than they are for the assignment of the minimal se-
quence (which is Xi = x). Suppose the difference between
these two values is c.

Since the costs are cumulative in Max-sum, this means
that after enough steps (at least |A| · |B|

⌈
c

A−B

⌉
occurrences

of the A sequence), the cost for Xi for x is now smaller
than for assigning y, and now y will never be chosen in the
future, contradicting A’s infinite occurrence. Thus there is
only one such infinitely occurring sequence, it is minimal,
and the time when it starts to occur endlessly is denoted t0.

Lemma 2. Let Xi be a variable located on a cycle (i.e.,
there is a route from Xi to itself). There is a time t1 ∈ N

(t1 ≥ t0) and q ∈ N, such that the BCTs of all beliefs in
a message from Xi have the same q bottom layers (that is,
furthest away from the root, which is the current belief).

Proof. Denote by BCT t
i=x→j the BCT for the minimal be-

lief in the message sent by Xi at time t during the endstate
periodic sequence (i.e., t > t0) to Xj , and let BCT t

i=y→j
be the BCT for some other belief in that same message. Let
us denote the route from Xi back to itself through Xj with
the minimal assignment Xi = x as route A, and the route
through assigning y to Xi as B. Let c be the difference in
cost between these two routes.

Every time |A| · |B| steps through all states are com-
pleted, the difference between BCTi=x→j and BCTi=y→j

only grows, since the cost for the routes accumulate, and we
know BCTi=x→j is the minimal belief for Xi at time t. Let
us denote this difference at time t by u. Given enough steps,
there is a number t′ ∈ N, such that t′ · c > u. Thus, after
t′ steps, it would no longer be beneficial to chose the be-
lief based on Xi = y, but rather the one based on Xi = x.
Hence, for t1 > t0 + t′, the lemma holds for that part of the
final periodical (a similar process can be done for any mes-
sage in the periodic sequence, as it has a finite length).

6Note that when Max-sum reaches convergence, k = 1, as its
values do not change.

Corollary 1. For any pair of variable-nodes Xi and Xk

which reside on the same cycle in the factor graph, then
there is a time t1 ∈ N (t1 ≥ t0) and q ∈ N, such that
the q bottom layers (that is, furthest away from the root)
of BCT t

i=x→j are contained in (for any x ∈ Di) those of
BCT t

k=y→l (for any y ∈ Dk and Xl which Xk is connected
to through a function-node) at any time t > t1.

Proof. Since all beliefs in the message from Xi have the
same q bottom layers (from Lemma 2), any BCT t

k=y→l,
since it is building itself based on a message received from
Xi, is basing its own BCT on at least one of those beliefs,
and since all have the same bottom q layers, BCT t

k=y→l in-
cludes them.

Damping and Convergence

Thanks to Lemma 1, we know there is an appropriate t0 from
which the final sequence begins, and the assignments are pe-
riodical. We use this to also define, BCT

t

i=x→j , which is
like BCT t

i=x→j , but instead of culminating in time 0 (that
is, all leaves are at time t = 0), culminates at time t0. In a
similar way, BCT

t

i is the equivalent of BCT t
i which starts

at t0. When using a damping factor λ we shall denote the
BCT as λ-BCT .

Theorem 1. When damping is used, for a large enough
damping factor λ, the endstate will be determined by λ-
BCT

t

i=x→j (for each x ∈ Di).

Proof. Once choosing to use the Max-sum algorithm with
damping, costs and message values change compared to the
no damping case. However, for the same reasoning as in
Lemma 1, the algorithm will still reach, an endstate at some
time t0 when using damping as well (note that this time does
not have to be the same time a Max-sum algorithm without
damping would reach the endstate, and the BCT itself is
different for different λ values as well).

Let ε be the smallest possible difference between two con-
straint values possible in G, and d be the maximal degree in
G. We shall denote the cost of the beliefs in BCT t0

i=x→j , if
we summed them up without damping, as c. The maximal
possible value that can appear in a cost of a belief for Max-
sum in BCT t

i=x→j without damping is (d− 1)t−t0c.
Please recall that λ is the damping factor, and that (1−λ)

is the multiplicative coefficient applied to the non-damped
message. Let us now take 1 − λ < 1

2d . There is a k′ ∈
N such that 1

2

k′
c < ε

2 . Thus, looking at λ-BCT at time
t = t0 + k for k > k′, any influence by c is going to be
≤ (1− λ)t−t0(d− 1)t−t0c ≤ 1

2

t−t0c ≤ ε
2 .

Thus, any decision on which belief to choose will not be
affected by any value that occurred in λ-BCT t0

i=x, since no
value of size ε

2 can have any influence on the choice of be-
lief that nodes make. Since the endstate started at t0, and is
still ongoing in time t0 + k, this means the endstate is not
influenced by anything that went on in the initial t0 stages,
and only has to do with λ-BCT

t

i=x→j .

7338

Before stating the corollary of our main theorem, note
again that every BCT t

i=x→j (including λ-BCT t
i=x→j for

any λ ∈ [0, 1)) induces an equivalent assignment tree – what
would be the assignment of a variable at each point given the
messages it sent. These assignments may be consistent, i.e.,
they stay the same (the same values are assigned to the same
variables at different times) and are not contradictory, and
sometimes they are not.

Corollary 2. For a large enough damping factor λ, if the as-
signment tree induced by λ-BCT

t

i is consistent, then Max-
sum with a λ damping factor will converge to the optimal
solution.

Proof. Thanks to Theorem 1, we know we do not need to
care regarding λ-BCT t

i , but only regarding λ-BCT
t

i. If that
is consistent, then we know we have converged. Thanks to
Lemma 1, we know that we have converged to a minimal
value state (and minimal in average cost is minimal in abso-
lute cost in this case, since the sequence length is 1).

It is important to notice that Corollary 2 does not imply
that whenever Max-sum converges it is to the optimal solu-
tion. There is plenty of empirical evidence that when Max-
sum is combined with damping it converges to sub-optimal
solutions. That is because the damping factor may not be
large enough, and hence it does not eliminate the effect of
the costs accumulated before t0, but only reduces their influ-
ence on BCT t

i . And thus, a periodical may include a con-
sistent assignment, which is not the optimal.

Theorem 1 and Corollary 2 can help us explain recent em-
pirical results obtained when including both damping and
splitting in Max-sum: The results presented by Cohen and
Zivan (2018) indicate that damped Max-sum on symmetric
SCFGs, converges very fast to high quality solutions. For
specific graph structures we can even reach a more specific
result:

Proposition 1. In any SCFG with a linear division7 of func-
tion nodes, if its original graph was a tree, then for a high
enough damping factor λ, the assignment induced by λ-
BCT

t

i is consistent and optimal.

Proof. Following Corollary 2, we know that for large
enough λ, it is enough to show that λ-BCT

t

i is consistent.
Since in an SCFG, each constraint is represented by two
function-nodes, and since the original graph was a tree, there
is no other cycle in the factor-graph besides the cycles gen-
erated by split. The only possible inconsistent route must in-
clude for some pair of constrained variables Xi and Xj , two
different pairs of value assignments, which one of them in-
curs a smaller cost in Fij and the other incurs a smaller cost
in Fji. This contradicts the linear division of the SCFG.

Example 1. The example depicted in Figure 4 demonstrates
the effect of damping when applying Max-sum to the type

7A linear division of an SCFG is one where for every function
node Fij , there is a constant q ∈ (0, 1) such that for each entry
z ∈ Fij the ratio between the corresponding entries in the split
function-nodes is q.

F12

X1 X2 X3

F21 F32

F23

Figure 4: Two adjacent constraint SCFG Example

of graphs, which Proposition 1 addresses (here, the split is
symmetric).

The optimal solution is X1 = b, X2 = a, X3 = a,
with cost 130. The pair of the partial assignments X1 = a,
X2 = a incurs a cost of 50, and the lowest cost complete as-
signment that includes it is X1 = a, X2 = a, X3 = a with
cost 190. However, in the first iteration the messages sent to
X1 includes costs of 50 for a. This cost is included in the
bottom layers of the BCTs of beliefs propagated by the algo-
rithm exponentially many times. Thus, the algorithm fails to
converge. However, when using damping with λ = 0.7 the
algorithm converges to the optimal solution after 23 itera-
tions. On the other hand, if we use a smaller damping factor
(λ = 0.3), the algorithm will converge to the suboptimal so-
lution X1 = a, X2 = b, X3 = b with cost 132 after 19
iterations.

Conclusion

Belief propagation is a well known and widely used algo-
rithm for solving combinatorial optimization problems that
can be represented by a graphical model. Until now, the abil-
ity to analyze and characterize the convergence of the algo-
rithm to stable states (and optimal ones), was known only for
graphs which are either trees or have a single cycle. In this
paper, we extend our knowledge to more graph shapes, and
introduce a new analytical tool. Focusing on Max-sum, the
version of belief propagation solving a distributed constraint
optimization problem, we generalize the results obtained al-
most two decades ago for single cycle graphs to binary con-
straint graphs with any structure. Our analysis makes use of
BCTs, a tree structured component we defined, which cap-
tures the components of the belief costs propagated by the
nodes in the graph.

Our main result sheds light on how using damping in com-
bination with the Max-sum algorithm can help trigger con-
vergence. Moreover, our analysis illuminates recent empir-
ical results, which used Max-sum with damping and split
function-nodes, and obtained very fast convergence to high
quality solutions.

We believe that using BCTs – in particular, in combina-
tion with damping – can help open the doors to further anal-
ysis of convergence and optimality in more complex graph
structures. Moreover, it can trigger the design of heuristics

7339

that will exploit these properties and produce high quality
solutions in short time.
Acknowledgment: This research was partially supported by
the Israeli Ministry of Science and Technology.

References

Cohen, L., and Zivan, R. 2018. Balancing asymmetry in
max-sum using split constraint factor graphs. In Princi-
ples and Practice of Constraint Programming - 24th Inter-
national Conference, CP 2018, Lille, France, August 27-31,
2018, Proceedings, 669–687.
Dechter, R. 2003. Constraint Processing. Morgan Kaufman.
Farinelli, A.; Rogers, A.; Petcu, A.; and Jennings, N. 2008a.
Decentralised coordination of low-power embedded devices
using the max-sum algorithm. In Proceedings of the 7th
International Joint Conference on Autonomous Agents and
Multiagent Systems - Volume 2, 639–646. International
Foundation for Autonomous Agents and Multiagent Sys-
tems.
Farinelli, A.; Rogers, A.; Petcu, A.; and Jennings, N. R.
2008b. Decentralized coordination of low-power embedded
devices using the max-sum algorithm. In AAMAS, 639–646.
Farinelli, A.; Rogers, A.; and Jennings, N. R. 2014. Agent-
based decentralised coordination for sensor networks using
the max-sum algorithm. Autonomous Agents and Multi-
Agent Systems 28(3):337–380.
Forney, G. D.; Kschischang, F. R.; Marcus, B.; and Tun-
cel, S. 2001. Iterative decoding of tail-biting trellises and
connections with symbolic dynamics. In Marcus, B., and
Rosenthal, J., eds., Codes, Systems, and Graphical Models.
Springer. 239–264.
Kschischang, F. R.; Frey, B. J.; and Loeliger, H. A. 2001.
Factor graphs and the sum-product algorithm. IEEE Trans-
actions on Information Theory 47:2:181–208.
Lazic, N.; Frey, B.; and Aarabi, P. 2010. Solving the un-
capacitated facility location problem using message passing
algorithms. In International Conference on Artificial Intel-
ligence and Statistics, 429–436.
Marinescu, R., and Dechter, R. 2009. AND/OR branch-
and-bound search for combinatorial optimization in graphi-
cal models. Artif. Intell. 173(16-17):1457–1491.
Modi, P. J.; Shen, W.; Tambe, M.; and Yokoo, M. 2005.
Adopt: asynchronous distributed constraints optimization-
with quality guarantees. Artificial Intelligence 161:1-2:149–
180.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Francisco, Cali-
fornia: Morgan Kaufmann.
Petcu, A., and Faltings, B. 2005. A scalable method for
multiagent constraint optimization. In IJCAI, 266–271.
Pretti, M. 2005. A message-passing algorithm with damp-
ing. Journal of Statistical Mechanics: Theory and Experi-
ment 11:P11008.
Ramchurn, S. D.; Farinelli, A.; Macarthur, K. S.; and Jen-
nings, N. R. 2010. Decentralized coordination in robocup
rescue. Computer J. 53(9):1447–1461.

Rogers, A.; Farinelli, A.; Stranders, R.; and Jennings, N. R.
2011. Bounded approximate decentralized coordination via
the max-sum algorithm. Artificial Intelligence 175(2):730–
759.
Ruozzi, N., and Tatikonda, S. 2013. Message-passing al-
gorithms: Reparameterizations and splittings. IEEE Trans.
Information Theory 59(9):5860–5881.
Som, P., and Chockalingam, A. 2010. Damped belief prop-
agation based near-optimal equalization of severely delay-
spread uwb mimo-isi channels. In Communications (ICC),
2010 IEEE International Conference on, 1–5. IEEE.
Stranders, R.; Farinelli, A.; Rogers, A.; and Jennings, N. R.
2009. Decentralised coordination of mobile sensors using
the max-sum algorithm. In IJCAI 2009, Proceedings of
the 21st International Joint Conference on Artificial Intel-
ligence, Pasadena, California, USA, July 11-17, 2009, 299–
304.
Tarlow, D.; Givoni, I.; Zemel, R.; and Frey, B. 2011. Graph
cuts is a max-product algorithm. In Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence.
Teacy, W. T. L.; Farinelli, A.; Grabham, N. J.; Padhy, P.;
Rogers, A.; and Jennings, N. R. 2008. Max-sum decen-
tralized coordination for sensor systems. In AAMAS, 1697–
1698.
Weiss, Y., and Freeman, W. T. 2001. On the optimal-
ity of solutions of the max-product belief-propagation algo-
rithm in arbitrary graphs. IEEE Trans. Information Theory
47(2):736–744.
Weiss, Y. 2000. Correctness of local probability propaga-
tion in graphical models with loops. Neural Computation
12(1):1–41.
Yanover, C.; Meltzer, T.; and Weiss, Y. 2006. Linear pro-
gramming relaxations and belief propagation - an empirical
study. Journal of Machine Learning Research 7:1887–1907.
Yedidsion, H.; Zivan, R.; and Farinelli, A. 2014. Explorative
max-sum for teams of mobile sensing agents. In Interna-
tional conference on Autonomous Agents and Multi-Agent
Systems, AAMAS ’14, Paris, France, May 5-9, 2014, 549–
556.
Yeoh, W.; Felner, A.; and Koenig, S. 2010. Bnb-adopt: An
asynchronous branch-and-bound dcop algorithm. Artificial
Intelligence Research (JAIR) 38:85–133.
Zivan, R.; Parash, T.; Cohen, L.; Peled, H.; and Okamoto,
S. 2017. Balancing exploration and exploitation in incom-
plete min/max-sum inference for distributed constraint op-
timization. Autonomous Agents and Multi-Agent Systems
31(5):1165–1207.
Zivan, R.; Parash, T.; and Naveh, Y. 2015. Applying max-
sum to asymmetric distributed constraint optimization. In
Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, 432–439.

7340

