
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Modelling Sentence Pairs via Reinforcement Learning:
An Actor-Critic Approach to Learn the Irrelevant Words

Mahtab Ahmed, Robert E. Mercer
Department of Computer Science, University of Western Ontario

London, ON, Canada
mahme255@uwo.ca, mercer@csd.uwo.ca

Abstract

Learning sentence representation is a fundamental task in
Natural Language Processing. Most of the existing sentence
pair modelling architectures focus only on extracting and us-
ing the rich sentence pair features. The drawback of utiliz-
ing all of these features makes the learning process much
harder. In this study, we propose a reinforcement learning
(RL) method to learn a sentence pair representation when
performing tasks like semantic similarity, paraphrase identi-
fication, and question-answer pair modelling. We formulate
this learning problem as a sequential decision making task
where the decision made in the current state will have a strong
impact on the following decisions. We address this decision
making with a policy gradient RL method which chooses the
irrelevant words to delete by looking at the sub-optimal rep-
resentation of the sentences being compared. With this pol-
icy, extensive experiments show that our model achieves on
par performance when learning task-specific representations
of sentence pairs without needing any further knowledge like
parse trees. We suggest that the simplicity of each task infer-
ence provided by our RL model makes it easier to explain.

Introduction

In natural language processing (NLP), most of the tasks re-
quire a transformation from an input space to some high
dimensional vector space where each dimension captures
some aspect of the underlying structure about the data.
Learning this kind of representation is a fundamental chal-
lenge in NLP and is extensively explored by many re-
cent works (Bengio, Courville, and Vincent 2013), (Le and
Mikolov 2014). In order to make correct decisions, the well-
studied mainstream tasks, such as comparing a pair of sen-
tences in terms of semantics or paraphrasing, depend heavily
on the quality of the learned representation of each sentence
since the comparison is made in this representation space
(Conneau et al. 2017), (Cer et al. 2018), (Mueller and Thya-
garajan 2016) and (Tai, Socher, and Manning 2015).

Mainstream sentence pair comparing models look only at
the sentences being compared individually while overlook-
ing the information they share between them (Conneau et

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

al. 2017), (Cer et al. 2018). This is contrary to what hu-
mans do, we usually look at the key words of both sentences
while comparing them and ignore most of the irrelevant in-
formation. For example, while comparing the sentence “A
boy is lying in the snow and is making snow angels” with the
sentence “Two people wearing snowsuits are on the ground
making snow angels” for the natural language inference task,
we can just consider that whether the actors in both of these
sentences are “making snow angels” or not and take a deci-
sion based on that.

Almost all the sentence pair modelling architectures fol-
low a uniform framework: represent the sentences to com-
pare in some high dimensional space using an encoder and
compare these representations using a matching module.
The encoding section of these models can be classified into
four types: Bag of words based models which ignore the
ordering of the words, Recurrent and Convolutional neu-
ral network based models which take into consideration the
contexts surrounding each word, Transformer based models
where the complex attention module does the summarizing
and finally, the models that work on predefined structures
like parse trees.

(Iyyer et al. 2015) and (Joulin et al. 2016) propose bag
of words type models where they ignore the word ordering
and instead rely on taking the average of word vectors fol-
lowed by some linear projection layers. (Liu et al. 2015) also
ignore the structure as well as context but relies on an auto-
encoder to generate the representation by adapting domain
and sentiment supervision.

(Mueller and Thyagarajan 2016) use just one copy of an
LSTM to encode the entailment task sentences followed by
a Manhattan distance based similarity function for the infer-
ence. (Yang et al. 2016), (Conneau et al. 2017), and (Liu et
al. 2016) follow the same framework utilizing LSTM fol-
lowed by a pooling block to summarize the representation
even more. (Tai, Socher, and Manning 2015) and (Socher
et al. 2013) utilize predefined dependency as well as con-
stituency tree structures and use tree based recurrent net-
works as the composition function to extract the represen-
tation. Furthermore, to get more powerful representations,
(Yao Zhou and Pan 2016) encode attention inside the depen-
dency tree variant of tree LSTM whereas (Chen et al. 2017)

7358

extract local and global inference composition by jointly uti-
lizing both standard LSTM as well as tree LSTM.

Recently, Transformer (Vaswani et al. 2017) is getting the
spotlight for doing machine translation where the recurrence
is mimicked by positional encoding and a series of multi-
head attention blocks (Parikh et al. 2016). (Cer et al. 2018)
utilize the encoder portion of the Transformer to project the
input into a representation space and then use a matching
block as the inference layer. (Devlin et al. 2019) create a
generalized language representation model using a multi-
layer bidirectional Transformer encoder which also provides
very good sentence representation.

Unlike most of the existing works which looks at the pre-
defined structures, there are some works which uses auto-
matically optimized structures for learning a representation.
(Yogatama et al. 2017) propose a very complex and overly
deep model to compose binary tree structures from the su-
pervised downstream task which sometimes gives tree struc-
tures that are very different from the standard English syn-
tactic trees. (Chung, Ahn, and Bengio 2017) propose a hier-
archical multi-scale recurrent neural network which can cap-
ture the latent hierarchical structure in the sequence by en-
coding the temporal dependencies with different timescales.
(Tran and Bisk 2018) propose a model to compose the En-
glish syntactic tree structures without even looking at the
gold standard label utilizing Kirchhof’s matrix tree theorem
(Buekenhout and Parker 1998).

In this work, we propose a sentence representation build-
ing model using reinforcement learning (RL) for doing the
sentence pair modelling task. We devise a training strat-
egy incorporating a policy based actor which takes decision
based on the previous context, current input and structure of
the counterpart sentence. We use a delayed reward to guide
the structure discovery and the reward is computed based on
the performance of a sub-optimal critic. (Thrun 1992). We
use Monte Carlo sampling for exploring the decision space
and the final representation is available when all the sequen-
tial decisions are made (Hastings 1970). We fuse the rep-
resentation module with a policy and critic network where
the policy network performs structure discovery based on
the response of a sub-optimal critic and the critic gets fur-
ther tuned on this structured pair representation to adapt it-
self more on the response of the actor. Even without any
explicit structure annotation, our policy based actor builds
pretty good sentence representations by filtering out some
irrelevant words allowing the critic to get on par or even bet-
ter performance on these possibly optimal structures.

Model
In this section, we describe our model in detail. We first
explain how the critic is trained in a delayed manner with
and without the actor response. Following this, we explain
how we train the actor using the response of a trained critic.
We conclude this section by giving a high level view of the
workflow of our model.

Training the Critic: As the critic, we have chosen to use
InferSent (Conneau et al. 2017), an LSTM based model, to
compute the representations of a pair of sentences and then
compare them for an underlying task. It first traverses each

sentence as a sequence of T words {xt}t=1,...,T from left to
right and generates a hidden representation at each time step−→
ht , ∀t ∈ [1, . . . , T] .

−→
ht =

−−−−→
LSTMt(x1, . . . , xT) (1)

Following this, it employs a max (or mean) pooling block to
summarize the hidden states in one dense representation.

−→
h = maxpool(

−→
h1, . . . ,

−→
hT) (2)

The next steps are to infer the similarity between the two
representations (

−→
ha,

−→
hb) using standard matching methods

and to project the resultant vector into the space of classes,
y, through a series of fully connected layers as follows

x = (
−→
ha,

−→
hb, |−→ha −−→

hb|,−→ha ∗ −→hb) (3)

P (y|X) = σ(W1σ(W2x+ b2) + b1) (4)

Finally, it is trained by optimizing a task specific loss func-
tion as follows

H(p, q) = −
n∑

i=1

Q(yi) log(P (yi)) (5)

However, in order to have a sub-optimal critic, we do not
train it in the standard fashion. Instead, we initialize two
copies: final and active. We perform all of the steps above
using the final version of the critic, compute the gradients
with respect to its parameters (θf = {θf1 , . . . , θfk}) and
store them.

∂H

∂θf
= [

∂H

∂θf1
, . . . ,

∂H

∂θfk
] (6)

Generally, in batch-wise training, an average loss is calcu-
lated for all of the samples in the batch and the network is
updated based on that loss. To mimic this behavior, first the
final version of critic computes loss for each sample in the
batch and stores gradients with respect to its parameters for
that loss. Next, all of these gradients are accumulated 1 and
we update the active version (θa = {θa1

, . . . , θak
}) of critic

as follows.

θaj
= θaj

+
∑

i∈batch

∂Hi

∂θfj
(7)

This kind of updating allows us to get a sub-optimal critic
and we can utilize it later when we train an optimal critic in
a weighted fashion based on the actor response. This type
of training paradigm is different from training with batch
size 1, since here, for each sample in a batch, the loss gets
calculated with respect to a fixed set of parameters and the
corresponding gradients are applied once the traversal over
the entire batch is done, whereas in training with batch size
1, for each batch, a loss is calculated with respect to a new
set of parameters because of the continual updating. Finally,
after going over an entire batch, the parameters of the final
version of the critic gets updated by its active version pa-
rameters as θf = θa.

1We also tried averaging the gradients but the addition works
better.

7359

Apart from this, we adopt another way for training the
critic as mentioned before which we use during the fine tun-
ing phase based on the actor response. Instead of doing a
straight assignment as above (θf = θa), the final version
gets updated in a weighted fashion as follows

θf = θa × α+ θf × (1− α),

where θa ∈ {θa1 , . . . , θak
}, θf ∈ {θf1 , . . . , θfk}

(8)

Here, the hyperparameter α is set to 0.1 for all experiments.
Training the Actor: We adopt the policy gradient method

(Sutton et al. 2000) to update the actor. The policy net-
work guides the policy learning using a stochastic policy
πθ(at|st;θ) along with a delayed reward. At each time step
t, an action at is sampled from the policy following a prob-
ability distribution as follows

πθ(at|st;θ) = σ(stW + b) (9)

where πθ(at|st;θ) denotes the probability of choosing at
and {W,b} is the set of parameters of the actor policy net-
work. Since, we want our policy network to consider the rep-
resentation of the counterpart sentence, we include it along
with the current input and previous context as state. For-
mally, the state is defined as

st = [ct−1;ht−1;xt; h̃T] (10)

Here, ct−1, ht−1 denotes the cell state and hidden sate of
critic LSTM at time step t − 1, xt denotes the input at time
step t and h̃T is the summary vector of the counterpart sen-
tence generated by the critic LSTM. We use the same policy
network to sample actions for both the sentences to be com-
pared. Using this state and policy, we perform action sam-
pling for the whole sequence to obtain the delayed reward
(Zhang, Huang, and Zhao 2018) as follows

action =

⎧⎪⎪⎨
⎪⎪⎩

1,if P (Y) > ε and P (Z) > πθ

0,if P (Y) > ε and P (Z) < πθ

1,if P (Y) < ε and P (Z) < πθ

0,if P (Y) < ε and P (Z) > πθ

(11)

where Y and Z are uniform random variables, the hyperpa-
rameter ε is set to 0.05 and πθ is the policy from Eqn. 9. Our
action space is limited to produce binary actions which in a
sense can be used as a representation selection model. Once
all of the actions are sampled for both the sentences, we get
a new representation for both of them which is further used
by the critic to compute P (y|X) and estimate the reward
to guide the policy learning. Formally, for a given sentence
X = x1, x2, . . . , xL, there is a corresponding sampled ac-
tion sequence A = a1, a2, . . . , aL obtained from the policy
where ai = 1 means to keep the word and ai = 0 means
to discard it as it has no contribution in the final represen-
tation when compared with its counterpart sentence. Using
this hypothesis, the critic states are updated as follows

ct, ht =

{
ct−1, ht−1, action = 0
f(ct−1, ht−1, xt) action = 1

(12)

where f denotes all the gate and update functions from the
critic, and ct, ht and xt denote the cell state, hidden state and

input at time step t, respectively. In summary, if a word gets
deleted at time step t, the cell state and hidden state are just
copied from time step t − 1, otherwise it is generated using
the standard LSTM gates of critic.

The parameters of our policy net are optimized using the
REINFORCE algorithm (Williams 1992) with an objective
being maximizing the expected delayed reward as follows

J(θ) = E(st,at)∼Pθ(st,at)r(s1a1 . . . sTaT)

=
∑

s1a1...sTaT

Pθ(s1a1 . . . sTaT)RT

=
∑

s1a1...sTaT

Pθ(s1)
∏
t

πθ(at|st)Pθ(st+1|st, at)RT

(13)

The delayed reward RT is computed using the logarithm of
the output probability distribution of the critic logP (y|X)
over just one sample. Since our state at time step t + 1 is
fully determined by the state and action at time step t, we
can make Pθ(s1) = Pθ(st+1|st, at) = 1 in Eqn. 13. Also
as we perform the action sampling for both sentences to be
compared, we change the objective function as follows

J(θ) =
∑

s1a1...sTaT

∏
t∈l

πθ(at|st)RT +

∑
s1a1...sTaT

∏
t∈r

πθ(at|st)RT

(14)

where l denotes the left sentence and r denotes the right sen-
tence. By applying the likelihood ratio trick, we update the
policy network with the following gradient

∂J(θ)

∂θ
=

∑
t∈l

RT
∂

∂θ
log πθ(at|st,θt) +

∑
t∈r

RT
∂

∂θ
log πθ(at|st,θt)

(15)

The policy network controls the number of deleted words by
using a unimodal function f(x) = x+ β/x with the reward
and maximize them jointly. The reward RT is defined as

RT = logP (y|X)− γZ

2

(
abs(

Ll
′

Ll
+

βLl

Ll
′)

+ abs(
Lr

′

Lr
+

βLr

Lr
′)
) (16)

where L′
l and L′

r are the number of words with correspond-
ing action value 1, and Ll and Lr are the actual lengths
for the left and right sentences respectively. γ is a hyper-
parameter, Z is the number of classes and β is the proportion
of words we want deleted.

Like the critic, we initialize two versions of the actor: final
and active. For each sample in a batch, the active version of
the actor policy network is updated by the gradient of the
final version of the actor policy network parameters

θaj
= θaj

+
∑

i∈batch

∂J(θ)i
∂θfj

(17)

Once a batch is finished, the final version of the actor policy
is updated in a similar way as the critic using Eqn. 8.

7360

Algorithm 1 Overall Training
Initialize two copies of Critic network Cf and Ca

Denote the LSTMs of Critic network as Lf and La

Set of Critic Parameters {θf1 . . . θfk} ∪ {θa1 . . . θak}
Discount factor α ∈ [0, 1] and Learning rate λ ∈ [0, 1]
for batch ∈ Batches do

for sample ∈ batch do
x, y ← sample
∇θf ← ∇Pθf (out

∗|x, y, θf), ∀θf ∈ {θf1 . . . θfk}
θaj = θaj + λ×∇θfj , j ∈ {1 . . . k}

end for
θfj = θaj , j ∈ {1 . . . k}

end for
Train Actor on Critic (Cf) response using Algorithm 2
Initialize {θa1 . . . θak} by {θf1 . . . θfk}
for batch ∈ Batches do

for sample ∈ batch do
x, y ← sample, x̃← ∅, ỹ ← ∅
h̃Tx ← Lf (y), h̃Ty ← Lf (x)
Calculate stx using word vector xt, sentence vector
h̃Tx , cell and hidden states of Lf at previous time step
with Eqn. 10
Calculate sty using word vector yt, sentence vector
h̃Ty , cell and hidden states of Lf at previous time step
with Eqn. 10
Calculate πθx using stx and πθy using sty with Eqn. 9
Sample actions ax using policy πθx and ay using
policy πθy with Eqn. 11
for action in ax do

if action = 1 at index t then
keep the word at index t and add it to x̃

end if
end for
for action in ay do

if action = 1 at index t then
keep the word at index t and add it to ỹ

end if
end for
∇θf ← ∇Pθf (out

∗|x̃, ỹ, θf), ∀θf ∈ {θf1 . . . θfk}

θaj = θaj + λ×∇θfj , j ∈ {1 . . . k}
end for
θfj = θfj × (1− α) + θaj × α, j ∈ {1 . . . k}
Initialize {θa1 . . . θak} by {θf1 . . . θfk}

end for

Algorithm 2 Actor Training
Start with a pre-trained Critic C having an LSTM cell L
Number of random sampling N ∈ [1, n]
Initialize two copies of Actor policy networks πθf , πθa

Set of Actor Parameters {θf1 . . . θfk} ∪ {θa1 . . . θak}
Discount factor α ∈ [0, 1], Learning rate λ ∈ [0, 1]
Function to calculate the length F (.)
No. of classes Z ∈ [1, n]
Proportion of the words to be deleted β ∈ [1, n]

Workflow: We now give a high level view of the work flow
of our entire model. An algorithmic presentation detailing
these steps is provided on this page.

Algorithm 2 Actor Training (continued)
for batch ∈ Batches do

for sample ∈ batch do
x, y ← sample
Left Summary x′ ← L(x), Right Summary y′ ← L(y)
States sX ← ∅ , sY ← ∅
Actions aX ← ∅ , aY ← ∅
Loss l← ∅, j ← 0
while j < N do

x̃← ∅, ỹ ← ∅
Calculate stx using word vector xt, sentence vector
h̃Tx , cell and hidden states of L at previous time step
with Eqn. 10
Calculate sty using word vector yt, sentence vector
h̃Ty , cell and hidden states of L at previous time step
with Eqn. 10
Calculate πθx using stx , πθy using sty with Eqn. 9
Sample actions ax using policy πθx and ay using
policy πθy with Eqn. 11
aXj ← aXj + atx , aYj ← aYj + aty

sXj ← sXj + stx , sYj ← sYj + sty
for action in ax do

if action = 1 at index t then
keep the word at index t and add it to x̃

end if
end for
for action in ay do

if action = 1 at index t then
keep the word at index t and add it to ỹ

end if
end for
l← l + C(x̃, ỹ) + γZ

2

(∣∣ F (x̃)
F (x)

+ β∗F (x)
F (x̃)

∣
∣ +

∣
∣ F (ỹ)

F (y)
+ β∗F (y)

F (ỹ)

∣
∣)

j ← j + 1
end while
la ← (

∑N
i=1 li)/N

Initialize the gradients∇θf ∈ {∇θf1 . . .∇θfk} by 0
j ← 0
while j < N do

i← 0
while i < F (aX) do

RL ← (lj,i − la) ×α
∇θf ← ∇θf +RL∇ log πθf (a

∗
Xj,i
|sXj,i , θf)

∀θf ∈ {θf1 . . . θfk}
i← i+ 1

end while
i← 0
while i < F (aY) do

RL ← (lj,i − la) ×α
∇θf ← ∇θf +RL∇ log πθf (a

∗
Yj,i
|sYj,i , θf)

∀θf ∈ {θf1 . . . θfk}
i← i+ 1

end while
j ← j + 1

end while
θaj = θaj + λ×∇θfj , j ∈ {1 . . . k}

end for
θfj = θfj × (1− α) + θaj × α, j ∈ {1 . . . k}
Initialize {θa1 . . . θak} by {θf1 . . . θfk}

end for

7361

We start by training a sub-optimal critic in a delayed man-
ner by first initializing two versions of it (final and active).
For each sample in a batch, we update the active version us-
ing the gradients of the final version. While doing this, we
keep the parameters of the final version fixed. Once the en-
tire batch is looked at, the active version is used to update
the final version through a straightforward assignment.

After training this sub-optimal critic, we use its response
to train an actor with a policy gradient method. To accom-
plish this, we again start by having two versions of actor
(final and active). With each sample in the batch, Eqn. 10
gets an st for each word in the two sentences in the sample.
Next, we use these two sets of st’s in Eqn. 9 to calculate the
policies (πθ’s) for each word in the two sentences. We then
use each policy with the sampling strategy as defined in Eqn.
11 to get the corresponding action (at) associated with each
word in the two sentences. Each action represents whether
to delete or keep a word. Next, we modify both of the sen-
tences according to these sampled actions. These modified
sentences are used with the trained critic to calculate a re-
ward. This reward is modified with a term that reflects the
ratio of the number of words that we delete from both of
the sentences (the subtrahend in Eqn. 16). We store all of
the st’s, at’s as well as the associated reward and repeat this
strategy N times. We then calculate an average reward. The
objective function in Eqn. 14 and the gradients in Eqn. 15
are calculated N times using the N sets of the logarithm of
policies and the N differences between the N rewards and
the average reward. We again adopt the delaying strategy in
updating the actor parameters.

For each sample in the batch, the just calculated gradients
of the parameters of the final version of the actor are used to
update the active version. We keep the final version parame-
ters constant until all the samples in the batch are looked at.
Eqn. 8 is used to update the parameters of the final version
of actor by its active version in a weighted fashion. The ac-
tive version is then set to this new final version. We continue
this updating of actor until all the batches are looked at.

After the actor is trained, the previously trained sub-
optimal critic is further tuned using the response of this
trained actor. Rather than looking at the real sentence pairs,
now the critic looks at the actor-modified sentences. A loss
is calculated based on the critic response and the active ver-
sion is updated through the gradients of the parameters of
the final version. Eqn. 8 updates the final version of the critic
once an entire batch is looked at.

Ensemble Method: In order to verify the contribution and
structure selection ability of actor, we also perform an en-
semble decision check by combining the responses of two
critics (i.e., InferSent), one trained just on the raw words
without any actor and one trained on the response of an ac-
tor. We hypothesize that the raw InferSent model should get
more importance than the one which needs an actor. Both
model weights are initialized to 0.5 weight. The weight of
the one without any actor goes from 0.5 to 1.0 and the one
with an actor goes from 0.5 to 0. The final decision Fd is
taken by doing a weighted average on the response of both
of the participating entities: Cd (critic decision) and ACd

(actor-critic decision).

Fd = Cd × w +ACd × (1− w) (18)

Here, w and (1− w) are the weights on the critic and actor-
critic decisions and they are selected through a grid search
over the validation set.

Datasets, Experimental Setup, Results and

Analysis

In this section, we explain the experimental setup along with
the results obtained and a thorough analysis. We first de-
scribe our training corpora as well as all of the benchmarks
used in other standard sentence pair modelling studies. Fol-
lowing this, we explain the technical details of our proposed
architecture along with its hyper-parameter settings. We also
present the detailed results obtained with our RL model and
compare with some of the top performing models on their
selected datasets. Additionally, we give a qualitative analy-
sis by showing the predictions of our models on some ran-
dom test samples for all of the tasks. Finally, we conclude
this section by giving some insight into the performance of
our model by analyzing the generated structures.
Datasets: Model evaluation uses three datasets: paraphrase
identification, natural language inference, and question-
answer pair modelling.

• MSRP: Given a pair of sentences, the task is to identify
whether or not they are paraphrases of each other (Dolan,
Quirk, and Brockett 2004).

• SICK: The dataset contains sentences derived from video
and image annotations and the task is to classify a given
sentence pair into three classes: Entailment, Neutral and
Contradiction (Marelli and others 2014).

• AI2-8grade: The task is to do a true-false question selec-
tion where each data sample consists of a pair of sentences
with one being the question and the other being the evi-
dence formed by replacing the wh in the question by the
answer (Baudiš, Stanko, and Šedivý 2016).

Experimental Setup: The LSTM hidden state dimension is
set to 1024. Word vectors are initialized with the 300 dimen-
sion GloVe embeddings (Pennington, Socher, and Manning
2014) and are not updated during training. To smooth the
update during critic training, the gradients are divided by
B2 where B is the batch size which is 5. The learning rate

is reduced by a factor of 2 if
√∑k

i=1 ‖∇θ2i ‖ is more than
a threshold, which is 5 for our experiments. To smooth the
policy gradient update, we add a γ, β, and Z scaled regular-
ized reward as shown in Eqn. 16. The values of γ and β are
0.1 and 0.15, respectively, and Z is the number of classes.

During training, the critic parameters are updated using
stochastic gradient descent (Bottou 2010) with an initial
learning rate of 0.1, whereas for training actor, we use Adam
(Kingma and Ba 2014) to update the parameters with a fixed
learning rate of 0.01.

Results and Analysis: Table 1 compares the performance
of our two models on the three tasks to some top perform-
ing generalized sentence encoders and some designed for

7362

Model
MSRP AI2-8grade SICK
Acc. Acc. Acc.

InferSent (Conneau et al. 2017) † 74.46 74.71 84.07
LSTM (Conneau et al. 2017) † 70.74 74.93 76.80
BiGRU Last Encoder (Conneau et al. 2017) † 70.46 74.61 81.47
Inner Attention (Lin et al. 2017) † 69.74 74.73 72.01
ConvNet Encoder (Zhao, Lu, and Poupart 2015) † 73.96 75.26 83.82
InferSent + RL 74.74 73.84 84.57
InferSent + RL (Ensemble) 76.12 74.91 86.12

Seq-LSTMs (Yao Zhou and Pan 2016) 71.70 63.30 -
Seq-GRUs (Yao Zhou and Pan 2016) 71.80 62.40 -
Tree LSTM (Yao Zhou and Pan 2016) 73.50 69.10 -
Tree LSTM + Attn. (Yao Zhou and Pan 2016) 75.80 72.50 -
Tree GRU (Yao Zhou and Pan 2016) 73.96 70.60 -
Tree GRU + Attn. (Yao Zhou and Pan 2016) 74.80 72.10 -
RNN (Baudiš, Stanko, and Šedivý 2016) - 36.10 -
CNN (Baudiš, Stanko, and Šedivý 2016) - 38.40 -
RNN-CNN (Baudiš, Stanko, and Šedivý 2016) - 37.60 -
Attn1511 (Baudiš, Stanko, and Šedivý 2016) - 35.80 -
Ubu.RNN (Baudiš, Stanko, and Šedivý 2016) - 44.10 -
Illinois-LH (Lai and others 2014) - - 84.60
UNAL NLP (Jimenez and others 2014) - - 83.10
SNLI-Transfer 3-class LSTM (Bowman et al. 2015) - - 80.80
MaLSTM features + LSTM (Mueller and Thyagarajan 2016) - - 84.20
ECNU (Zhao and others 2014) - - 83.60

Table 1: Performance comparison of our model on different tasks against some existing top performing models. We mark
models that we implemented as †.

a specific task using accuracy as the evaluation metric. To
do a fair comparison, we used the official implementation
of InferSent, LSTM, BiGRU Last encoder, Inner attention,
ConvNet encoder with the same settings as ours2. On the
MSRP task, our ensemble model achieves 76.12% accuracy
which is better than all of the sequential and tree based sen-
tence encoders. It is noteworthy that these tree based models
have access to parse trees which are expensive to compute.
We get better performance without this information. On the
AI2-8grade dataset, performance (73.84% for InferSent +
RL and 74.91% for InferSent + RL (Ensemble)) is below the
existing models; however, it is still on par. Later, we show
that our model (InferSent + RL) is removing around 90%
of the content from this dataset yet is still able to achieve
this comparable performance. Finally, state of the art per-
formance (86.12% accuracy) is achieved on the natural lan-
guage inference task on the SICK dataset. Even though our
critic model is much simpler having just a unidirectional
LSTM, it is doing much better than (Bowman et al. 2015)
with 80.80% accuracy who use transfer learning and (Lin et
al. 2017) with 72.01% accuracy who use an attention block
on top of a bidirectional LSTM. Lastly, our version of In-
ferSent with an actor is better than the standard InferSent
suggesting that our actor has been able to correctly remove
the irrelevant words.

Table 2 gives the ensemble method’s final w values and
final results. Adding RL alone improves InferSent slightly

2Available at https://github.com/facebookresearch/InferSent.

Dataset w 1−w Acc.

MSRP 0.53 0.47 76.12
AI2-8grade 0.76 0.24 74.91

SICK 0.65 0.35 86.12

Table 2: The w values that give the best results when com-
bining the critic (w) with the trained actor-critic (1− w).

on two of the three datasets. Carefully re-introducing the ef-
fect of an actor-free InferSent with an ensemble technique
further improves the InferSent + RL to being state of the art
on the MSRP and SICK datasets. On the AI2-8grade dataset,
only one model is doing better than our ensemble model.

Table 3 shows the performance of our InferSent + RL
model on some examples from the test sets of the three cor-
pora. For the SICK dataset, our RL model removes prepo-
sitions, articles, and adjectives like colours, which seem not
to have any impact on the semantics. It also removes the
common phrases like “a piece of”, “There is” and “of the”.
On the MSRP dataset, our model again removes articles and
prepositions which seem not to be of concern when check-
ing for paraphrasing. We notice that our model tries to keep
the same subset of words from both sentences in most of
the cases and removes the words interspersed among those
shared words. For example, in the first example in this group,
our model deletes the phrase “to the section that” from the
left sentence and some smaller phrases like “in a” and “to
the” from both of the sentences. This reduction makes the

7363

Dataset Sentence 1 Sentence 2 GT Pr

SICK
A brown dog is attacking another animal in
front of the man in pants

There is no dog wrestling and hugging N N

A cat is crawling under a piece of furniture An animal is crawling under a piece of furni-
ture

E E

A blonde boy in green is sitting on a swing A blonde boy in green is standing on a swing C E

MSRP
They did not read footnotes in a document
said the official referring to the section that
contained the State Departments dissent

They did not read footnotes in a document he
said referring to the annex

1 1

The company didn’t detail the costs of the
replacement and repairs

But company officials expect the costs of the
replacement work to run into the millions of
dollars

0 0

We are piloting it there to see whether we
roll it out to other products

Macromedia is piloting this product activation
system in Contribute to test whether
to roll it out to other products

1 0

AI cell wall structure is found in a plant cell but
not in an animal cell

The cell wall provides structural support and
protection

1 1

2-8grade Pores in the cell wall
allow water and nutrients to
move into and out of the cell

1 1

The cell wall also prevents the plant cell from
bursting when water enters the cell

1 1

positive effect of recycling aluminum cans to
manufacture new beverage containers is
warming

also maintains the ozone layer that helps
protect life from damaging UV

0 0

The layered mixture of gases surrounding Earth
is called the atmosphere

Without it Earth would be a harsh barren world 1 0

Table 3: Example predictions from the test set. GT: ground truth, Pr: predicted.

sentences quite similar and eventually the predicted decision
is 1. On the other hand, our model makes a wrong prediction
on the third example. It tries to do the same thing by remov-
ing phrases, but as it does not have any world knowledge
about “Macromedia Contribute” being a product, it fails to
map it to the word “product” in the left sentence. Finally,
on the AI2-8grade dataset, our model removes most of the
words from the answer sentence and ends up keeping just the
key words to match with the corresponding question. In the
first example, our model keeps the word “wall” in all of the
answer sentences making the mapping easier with the ques-
tion. In the second example, our model keeps the key words
like “protect”, “damaging” and “UV” in the answer sentence
making it clear that the question and the answer topics are
completely different and as a result the prediction is 0. Fi-
nally, in the third example, our model incorrectly removes
the word “Earth” from the answer sentence which makes it
difficult for the critic to correctly map it to the question.

Table 4 exhibits how much information is removed and
how much is kept for each task by our InferSent + RL
model. For the paraphrase identification task, about 33% of
the original content is removed giving better results than the
sequence based models. For the question-answer selection
task on the AI2-8grade dataset, our model removes around
90% of the original content and still achieves on par perfor-
mance. In this dataset, the question-answer pairs are selected
from 2nd to 8th grade books. To increase their readability
(Leskovec, Milic-Frayling, and Grobelnik 2005), some easy

Dataset
Left Right

Before After Before After

MSRP 18.55 12.11 18.51 12.10
AI2-8grade 21.52 2.37 15.34 2.02

SICK 9.68 5.02 9.52 4.93

Table 4: The original average length and the average length
after filtering through RL.

to read words are added around the key words of those sen-
tences. Our model suggests that the easy to read words are
not important for the inference. Finally, to do natural lan-
guage inference (NLI) on the SICK dataset, our model re-
moves about 45% of the content and gets better performance
than all of the existing models. These results indicate that the
three tasks can be done with more condensed and purified
information without losing too much generalizability.

We also analyze the type of words deleted from each cor-
pus with the InferSent + RL model and report the results in
Table 53. We use the harmonic mean of the ratio of the num-
ber of times a word is deleted to its frequency in the corpus
(as a percentage) and the number of occurrences of that word
to sort the list. It is clear that in two corpora, non-content
words (i.e., prepositions, articles) are deleted most of the

3A more complete table is available at https://github.com/
navid5792/SS actor critic/blob/master/Words\%20Deleted.pdf.

7364

MSRP AI2-8grade SICK

Word HM Word HM Word HM

a 184.39 a 197.31 a 197.14
and 181.79 the 196.93 is 194.76
the 179.23 of 196.13 the 194.07
in 162.63 to 195.07 of 184.80
for 160.64 that 194.90 white 167.68
to 160.31 in 193.43 black 167.38
is 156.13 are 193.00 in 159.06
with 151.28 by 192.48 and 153.53
on 147.50 most 191.75 blue 147.53
it 138.55 for 191.58 red 146.92

Table 5: Top 10 deleted words from the test set of all three
corpora. HM: harmonic mean

Figure 1: Effect of RL sample counts on Validation accuracy.

time. However, in the SICK dataset, there are words like
“black”, “white”, “blue” and “red” which are deleted most
often because for doing the NLI task, these words contribute
very little and can be ignored. For the other two corpora, our
model also deletes words like “this”, “have”, “likely”, “has”,
“than” and “they” quite often but the rate of deleting them is
not as high as the ones reported in Table 5.

Table 5 might suggest that stop words be removed in a
preprocessing step. For tasks like semantic relatedness our
research suggests not. Stop words with semantic polarity,
like “no” and “not”, are very important as they control the
overall sentiment of the sentence (Ahmed and Mercer 2019).
We have trained InferSent on the SICK dataset with stop
words removed. The evaluation indicates a poorer perfor-
mance (79.95%) than InferSent with stop words (84.07%).
Similar results are obtained for the other two datasets.

In RL, the search space is huge making it hard to find the
best action with the maximum reward. To explore a larger
region of this space, we choose to experiment with changing
the number of sample counts and storing the average reward
based on each possible action. Figure 1 depicts the effect of
different sample counts on validation accuracy. We choose
the range of sample counts to be from 1 to 20, train the actor
based on the number of samples and record the validation
accuracies. We further train as many critics as the number of
actors and also record the validation performances. Finally,
sample count 5 was selected, as our model was obtaining the
best validation performance with this number.

In this study, we adopt a delayed update mechanism in

Figure 2: Change in gradient norm with training iterations
while training with and without delay.

training both actor and critic. This framework allows us to
fine tune critic partially without relying on all that actor sug-
gests. To check the effectiveness of this type of training com-
pared to the standard batch gradient descent, we have plot-
ted the gradient norm changes at each epoch in Figure 2.
As evidenced, change is initially quite drastic but eventually
becomes much smoother with the number of iterations and
convergence is much quicker compared to standard training.

Conclusion

We have proposed a reinforcement learning method to train
a sentence pair modelling architecture using an actor-critic
framework. With the help of an actor, our critic model learns
to compare two sentences by looking more at content words
rather than all words in the sentence, similar to how humans
do it. To take an action, our actor model looks not only at
the content of just one sentence, it also considers the mutual
information shared between the two sentences. Results show
that our model gets on par or better performance compared
to the existing models by overlooking the irrelevant content.

References
Ahmed, M., and Mercer, R. E. 2019. Efficient transformer-based
sentence encoding for sentence pair modelling. In Meurs, M.-J.,
and Rudzicz, F., eds., Advances in Artificial Intelligence, 146–159.
Springer International Publishing.

Baudiš, P.; Stanko, S.; and Šedivý, J. 2016. Joint learning of sen-
tence embeddings for relevance and entailment. In Proc. of the 1st
Wksp. on Representation Learning for NLP, 8–17.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Representation
learning: A review and new perspectives. IEEE Trans. on Pattern
Anal. and Mach. Intell. 35(8):1798–1828.
Bottou, L. 2010. Large-scale machine learning with stochastic gra-
dient descent. In Proc. of Computational Statistics 2010, (COMP-
STAT’2010), 177–186.
Bowman, S. R.; Angeli, G.; Potts, C.; and Manning, C. D. 2015. A
large annotated corpus for learning natural language inference. In
Proc. of the 2015 Conf. on Empirical Methods in Natural Language
Processing, 632–642.
Buekenhout, F., and Parker, M. 1998. The number of nets of the
regular convex polytopes in dimension ≤ 4. Discrete Mathematics
186(1-3):69–94.
Cer, D.; Yang, Y.; Kong, S.-y.; Hua, N.; Limtiaco, N.; John, R. S.;
Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; Sung, Y.-
H.; Strope, B.; and Kurzweil, R. 2018. Universal sentence encoder.
arXiv preprint arXiv:1803.11175.

7365

Chen, Q.; Zhu, X.; Ling, Z.; Wei, S.; Jiang, H.; and Inkpen, D.
2017. Enhanced LSTM for natural language inference. In Proc.
of the 55th Annual Meeting of the Association for Computational
Linguistics, 1657 – 1668.
Chung, J.; Ahn, S.; and Bengio, Y. 2017. Hierarchical multiscale
recurrent neural networks. In International Conference on Learn-
ing Representations.
Conneau, A.; Kiela, D.; Schwenk, H.; Barrault, L.; and Bordes, A.
2017. Supervised learning of universal sentence representations
from natural language inference data. In Proc. of the Conference
on Empirical Methods in Natural Language Processing, 670–680.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. BERT:
Pre-training of deep bidirectional transformers for language under-
standing. In Proc. of the 2019 Conf. of the North American Chap-
ter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Vol. 1 (Long and Short Papers), 4171–4186.
Dolan, B.; Quirk, C.; and Brockett, C. 2004. Unsupervised con-
struction of large paraphrase corpora: Exploiting massively parallel
news sources. In Proc. of the 20th Int. Conf. on Computational Lin-
guistics, 350.
Hastings, W. K. 1970. Monte Carlo Sampling Methods using
Markov Chains and Their Applications. Oxford University Press.
Iyyer, M.; Manjunatha, V.; Boyd-Graber, J.; and Daumé III, H.
2015. Deep unordered composition rivals syntactic methods for
text classification. In Proc. of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th Int. Joint Conf.
on Natural Language Processing (Volume 1: Long Papers), 1681–
1691.
Jimenez, S., et al. 2014. UNAL-NLP: Combining soft cardinality
features for semantic textual similarity, relatedness and entailment.
In Proc. of the 8th Int. Workshop on Semantic Evaluation (SemEval
2014), 732–742.
Joulin, A.; Grave, E.; Bojanowski, P.; and Mikolov, T. 2016. Bag
of tricks for efficient text classification. In Proc. of the 15th Conf.
of the European Chapter of the Association for Computational Lin-
guistics, Vol. 2 Short Papers, 427–431.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. CoRR abs/1412.6980.
Lai, A., et al. 2014. Illinois-LH: A denotational and distributional
approach to semantics. In Proc. of the 8th Int. Workshop on Se-
mantic Evaluation, 329–334.
Le, Q., and Mikolov, T. 2014. Distributed representations of sen-
tences and documents. In Int. Conf. on Machine Learning, 1188–
1196.
Leskovec, J.; Milic-Frayling, N.; and Grobelnik, M. 2005. Extract-
ing summary sentences based on the document semantic graph.
manuscript.
Lin, Z.; Feng, M.; Santos, C. N. d.; Yu, M.; Xiang, B.; Zhou, B.;
and Bengio, Y. 2017. A structured self-attentive sentence embed-
ding. In Int. Conf. on Learning Representations.
Liu, B.; Huang, M.; Sun, J.; and Zhu, X. 2015. Incorporating
domain and sentiment supervision in representation learning for
domain adaptation. In Proc. of the Twenty-Fourth Int. Joint Conf.
on Artificial Intelligence, 1277–1283.
Liu, Y.; Sun, C.; Lin, L.; and Wang, X. 2016. Learning natu-
ral language inference using bidirectional LSTM model and inner-
attention. arXiv preprint arXiv:1605.09090.
Marelli, M., et al. 2014. SemEval-2014 Task 1: Evaluation of com-
positional distributional semantic models on full sentences through
semantic relatedness and textual entailment. In Proc. of the 8th Int.
Wkshp. on Semantic Evaluation, 1–8.

Mueller, J., and Thyagarajan, A. 2016. Siamese recurrent archi-
tectures for learning sentence similarity. In Proc. of the Thirtieth
AAAI Conf. on Artificial Intelligence, 2786–2792.
Parikh, A.; Täckström, O.; Das, D.; and Uszkoreit, J. 2016. A
decomposable attention model for natural language inference. In
Proc. of the 2016 Conf. on Empirical Methods in Natural Language
Processing, 2249–2255.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove: Global
vectors for word representation. In Proc. of the 2014 Conf. on Em-
pirical Methods in Natural Language Processing (EMNLP), 1532–
1543.
Socher, R.; Perelygin, A.; Wu, J.; Chuang, J. m.-s. p. n. s.; Man-
ning, C. D.; Ng, A.; and Potts, C. 2013. Recursive deep models
for semantic compositionality over a sentiment treebank. In Proc.
of the 2013 Conf. on Empirical Methods in Natural Language Pro-
cessing, 1631–1642.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning with
function approximation. In Advances in Neural Information Pro-
cessing Systems, 1057–1063.
Tai, K. S.; Socher, R.; and Manning, C. D. 2015. Improved se-
mantic representations from tree-structured long short-term mem-
ory networks. In Proc. of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th Int. Joint Conf.
on Natural Language Processing (Volume 1: Long Papers), 1556–
1566.
Thrun, S. B. 1992. Efficient exploration in reinforcement learning.
Technical report, Carnegie Mellon University.
Tran, K., and Bisk, Y. 2018. Inducing grammars with and for
neural machine translation. In Proc. of the 2nd Workshop on Neural
Machine Translation and Generation, 25–35.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention is
all you need. In Advances in Neural Information Processing Sys-
tems, 5998–6008.
Williams, R. J. 1992. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine Learning
8(3-4):229–256.
Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; and Hovy, E.
2016. Hierarchical attention networks for document classification.
In Proc. of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, 1480–1489.
Yao Zhou, C. L., and Pan, Y. 2016. Modelling sentence pairs with
tree-structured attentive encoder. In The Int. Conf. on Computa-
tional Linguistics (COLING).
Yogatama, D.; Blunsom, P.; Dyer, C.; Grefenstette, E.; and Ling,
W. 2017. Learning to compose words into sentences with rein-
forcement learning. In International Conference on Learning Rep-
resentations.
Zhang, T.; Huang, M.; and Zhao, L. 2018. Learning structured
representation for text classification via reinforcement learning. In
Proc. of the Thirty-Second AAAI Conf. on Artificial Intelligence,
6053–6060.
Zhao, J., et al. 2014. ECNU: One stone two birds: Ensemble of
heterogenous measures for semantic relatedness and textual entail-
ment. In Proc. of the 8th Int. Workshop on Semantic Evaluation
(SemEval 2014), 271–277.
Zhao, H.; Lu, Z.; and Poupart, P. 2015. Self-adaptive hierarchical
sentence model. In Proc. of the Twenty-Fourth Int. Joint Conf. on
Artificial Intelligence, 4069–4076.

7366

