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Abstract

This paper studies the end-to-end construction of an argu-
mentation knowledge graph that is intended to support ar-
gument synthesis, argumentative question answering, or fake
news detection, among others. The study is motivated by the
proven effectiveness of knowledge graphs for interpretable
and controllable text generation and exploratory search. Orig-
inal in our work is that we propose a model of the knowledge
encapsulated in arguments. Based on this model, we build a
new corpus that comprises about 16k manual annotations of
4740 claims with instances of the model’s elements, and we
develop an end-to-end framework that automatically identi-
fies all modeled types of instances. The results of experiments
show the potential of the framework for building a web-based
argumentation graph that is of high quality and large scale.

Introduction

People’s lives are packed with situations where they need
to form opinions, to shape beliefs, or to make decisions on
certain topics. To do so, they typically rely on one of the
fundamental types of communication: argumentation (Wal-
ton 2010). Lately, developing computational models for ar-
gumentation has attracted considerable attention (Stede and
Schneider 2018). While existing studies propose approaches
for the computational mining (Stab and Gurevych 2014),
the assessment (Wachsmuth et al. 2017), and the genera-
tion (Hua and Wang 2018) of argumentation, argumentation
knowledge-based approaches are still scarcely touched —
presumably, due to their complexity.

Constructing and employing knowledge graphs has been
proven to be effective for many computational tasks related
to linguistics and social science. For instance, structured
knowledge was utilized as a seed for generating interpretable
and controllable texts (Lebret, Grangier, and Auli 2016).
Also, knowledge graphs were applied with remarkable suc-
cess to the identification of fake news (Pan et al. 2018) and
to the answering of natural language questions (Huang et
al. 2019). Moreover, various studies harvested new knowl-
edge (e.g., common sense) through knowledge graph con-
struction, reasoning, and completion(Sap et al. 2019).
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The goal of this paper is to study how to construct and
employ an argumentation knowledge graph that is adequate
to support computational argumentation tasks such as argu-
ment synthesis and argumentative question answering 1. The
underlying process that we propose consists of three high-
level steps: (1) modeling the graph and identifying its basic
elements, (2) building the graph from texts in accordance
with the model in an end-to-end manner, and (3) exploiting
the graph for computational argumentation tasks. The paper
at hand focuses on the first two steps, while showcasing the
potential of the third one.

Inspired by the theory of argumentation schemes (Walton,
Reed, and Macagno 2008) as well as by causality research
(Guo et al. 2018), we model a graph that captures knowledge
about effects between concepts encapsulated in many argu-
ments. A node in the graph represents a concept instance,
and an edge represents one of two types of relation, either
positive effect or negative effect. We ground each node in a
concept from a knowledge base (Wikipedia) and represent
its good or bad consequence as an attribute. Figure 1 exem-
plifies the introduced model elements.

To demonstrate the benefit of the proposed argumentation
knowledge graph, consider the following statements:
(a) Nuclear energy leads to emission decline.
(b) Nuclear energy undermines renewable solutions.
(c) Renewable solutions tackle climate change and help to

decline emission.
When modeling the knowledge encoded within these

statements in our graph, “nuclear energy” has a positive ef-
fect on “emission decline” through (a), and a negative effect
on “renewable solutions” through (b). The latter in turn has
a positive effect on “emission decline” through (c). Now, for
a claim such as “nuclear energy is good for emission de-
cline”, one could hence derive evidence from the graph to
support the claim through (a), but also one could counter-
attack it through (b) and (c). Note that this counter-attack is
unlikely to be discovered without modeling the underlying
knowledge explicitly as proposed.

1Argumentative questions are those which implicitly or explic-
itly elicit pro/con arguments toward an issue, such as ”Why Python
is powerful for text mining?”
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Figure 1: Exemplary instance of the proposed argumentation knowledge graph. Nodes represent concept instances that may
have a good or bad consequence, given as an attribute. A directed edge between two nodes indicates a relation in terms of a
positive or negative effect of the source on the target concept. Concept instances are grounded in Wikipedia concepts wherever
available. The examples a, b, and c in the introduction are marked in the respective edges.

In accordance with our model, we created a new cor-
pus containing 16,429 manual annotations of 4740 selected
claims. The annotations include positive and negative effect
relations found in the claims, along with their associated
concept instances. In addition, we ground the concept in-
stances using Wikipedia, and we explore whether they have
a good or a bad consequence in general.

Based on the acquired annotations, we generate two
outputs: (1) A new argumentation knowledge graph that
consists of 2743 concept instances, 1670 relations, 1705
grounding attributes, and 1513 consequence attributes. (2) A
new argumentation corpus for studying the tasks of effect
relation detection, relation type classification, and relation
concept identification (along with their grounding and con-
sequences). Then, we use this corpus to build a framework
for tackling all three tasks end-to-end, i.e., given a set of sen-
tences, we recognize effect-relations along with their types
and concepts.

Our approach achieves a macro F1-score of 0.79 in detect-
ing relations and 0.77 in classifying their types. We apply
the framework to a set of sentences belonging to five se-
lected topics from Wikipedia and Annotated English Giga-
word (Napoles, Gormley, and Durme 2012). Our inspection
of samples of the acquired knowledge shows an average pre-
cision of around 0.7. Such results expose the potential of our
framework to generate a large-scale web-based argumenta-
tion graph.

Overall, the contribution of our paper is three-fold:

• We introduce a new graph model that represents the
knowledge encapsulated in arguments.

• We develop a new argumentation corpus, which com-
prises 16,429 manual labels of 4740 claims.

• We develop a new framework for constructing an argu-
mentation knowledge graph in an end-to-end manner.

The developed resources are freely available on webis.de.

Modeling Argumentation Knowledge

Traditional knowledge graphs, such as ConceptNet and
Freebase, usually contain known facts and assertions about
entities. By contrast, here we are interested in the knowl-
edge specifically needed to support computational argumen-
tation tasks, such as argument generation and reasoning, as
sketched in the introductory example above. In particular,
we propose to model this knowledge as a directed argumen-
tation knowledge graph with unweighted edges that consists
of the following elements:

• Concept instances ∼ nodes. A concept instance is a
phrase expressing an entity (“Donald Trump”), event
(“smoking in streets”), or an abstract principle or idea
(“society”). If available, concept instances are grounded
in concepts from a knowledge base (see below).

• Effect relations ∼ directed edges. An effect relation is
given if some source concept instance affects some target
concept, either positively or negatively. The effect rela-
tion type (i.e., positive or negative) is often indicated by
cue words in natural text. For instance, “A increases B”
indicates that A has a positive effect on B, while “A pre-
vents B” indicates that A has a negative effect on B.

• Concept consequences ∼ attributes of nodes. A concept
instance may be considered, in general, as a good or bad
consequence. Although this is subjective, we expect that
there are many concepts for which most people agree on
their consequence (i.e., being either good or bad).

• Concept groundings ∼ attributes of nodes. A concept in-
stance is grounded by mapping it to one or more concepts
in a knowledge base. By doing so, concept instances rep-
resenting the same concept can be identified. For exam-
ple, the concept instances “capital punishment”, “death
penalty”, and “the death as a penalty of a crime” will all
have the grounding of “capital punishment” here.2

Figure 1 illustrates all modeled elements of the graph.

2https://en.wikipedia.org/wiki/Capital punishment
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Related Work

Several argumentation models have been proposed. One of
the well-known theories is argumentation schemes. Argu-
mentation schemes are patterns of reasoning that serve as
templates for analyzing and creating arguments. The most
known scheme set was proposed by Walton, Reed, and
Macagno (2008), consisting of 65 different schemes. Our
graph model is motivated by two of the five most frequently
used schemes (Feng and Hirst 2011), argument from cause
to effect and argument from consequences. While these
schemes constitute a solid conceptual foundation for mod-
eling an argumentation graph, their sophisticated structure
tends to be hard to match with real-world arguments (Haber-
nal et al. 2018). Instead, our unifying and more straight-
forward graph representation of positive/negative effects be-
tween concepts aims to overcome this shortcoming, in order
to achieve broader coverage. For instance, “A has positive
effects on B” may imply both causes and consequences, but
it can be said without stating a full argument with explicit
premises and conclusions. Recently, Lawrence, Visser, and
Reed (2019) developed an online annotation assistant to fa-
cilitate the annotation of argument schemes. We plan to use
this assistant in future work.

For argumentation knowledge graphs, Bex et al. (2013)
proposed the argument web, which is a large-scale structure
of connected arguments. The structure was implemented us-
ing the Argument Interchange Format (AIF), with several
integrated tools that form the infrastructure to support ar-
gument analysis, exploration, and assessment. In contrast to
our work, the AIF tools do not tackle the retrieval of argu-
ments from unstructured sources such as the web.

Toledo-Ronen, Bar-Haim, and Slonim (2016) created a
knowledge base of expert opinions on debatable topics. This
resource, however, connects individuals to debate topics
only and cannot be used for relating debate topics or other
entities. Saint-Dizier (2016) also argued for using more
structured knowledge in argumentation. In his corpus, 78%
of the arguments need additional knowledge to link them to
the issue discussed. The author states that his generative lex-
icon qualia structure adequately models this knowledge for
argument mining. However, defining qualias is complex and
time consuming, so this approach does not scale to the num-
ber of arguments we target. Recently, Gemechu and Reed
(2019) proposed a new argumentation graph for detecting ar-
gument structure that is based on the decomposition of four
functional components. In contrast to our graph, the knowl-
edge there concern the premises and conclusions in an argu-
mentative discourse, and the goal is to identify the links be-
tween them. Botschen, Sorokin, and Gurevych (2018) used
Wikidata as a knowledge base for argument reasoning com-
prehension, but conclude that world knowledge might not
be sufficient and that a more logical analysis is needed.
The knowledge graph we propose goes beyond simple world
knowledge and has the potential to make reasoning easier.

Outside argument mining, several studies have explored
the detection of causality relations (Dunietz, Levin, and Car-
bonell 2017; Hashimoto et al. 2014; Mirza and Tonelli 2014;
Zhao et al. 2017; Dasgupta et al. 2018). Among these,
Hashimoto et al. (2014) proposed a method for extracting

event causalities from the web using semantic relations.
Dunietz, Levin, and Carbonell (2017) tagged causal rela-
tions using a hybrid pattern matching and a statistical ap-
proach, and Zhao et al. (2017) built a hierarchical causal-
ity network to discover high-level abstract causality rules.
They embedded the network in a vector space for prediction.
Compared to this line of work, besides our concentration on
the argumentative context, the effect relations we focus on
are more general than the causal relations they target.

The most similar research to our work was done by Reis-
ert et al. (2018) who aim to find simple correspondents of
argumentation schemes, specifically arguments from conse-
quences. However, our contribution differs in multiple ways:
(1) Our work additionally covers the idea of arguments from
cause to effect, (2) our annotation is based on individual sen-
tences while Reisert et al. (2018) focus on pairs of sentences,
and (3) only we propose the development of a knowledge
graph for computational argumentation tasks.

Manual Knowledge Acquisition

Based on the model presented above, we conducted an anno-
tation study to acquire knowledge for two purposes: (1) con-
structing an argumentation knowledge graph that is adequate
for further completion and extension (Nguyen et al. 2018),
and (2) creating a new corpus for the training and evaluation
of approaches to the automatic construction of such graphs.

Data Preprocessing and Sampling

In the following, we describe the selected sources and the
sampling strategy of the texts in our annotation study.

Data Source We used the complete dataset of Hou and
Jochim (2017). The dataset was crawled from the debate
portal Debatepedia and comprises 25,000 claims along with
their (sub)topics, stances, and supporting evidence. De-
batepedia organizes debate topics hierarchically. For each
topic, it contains background information and a number of
subtopics, with pro and con arguments for or against each
subtopic. An argument typically includes a boldfaced claim
and a few instances of supporting evidence. Our inspection
of possible sources in the argumentation space revealed that
a large proportion of the claims encode the kind of knowl-
edge we aim to acquire.3 Each claim forms a self-contained
unit, which simplifies the knowledge acquisition process
(e.g., it avoids the need for coreference resolution).

Data Sampling To increase the portion of claims that have
an effect relation, we compiled a set of potential lexical indi-
cators from the following sources: +/-EffectWordNet (Choi
and Wiebe 2014), ConnotationWordNet (Kang et al. 2014),
and Connotation Frames (Rashkin, Singh, and Choi 2016).
The first two sources provide lists of words and phrases at
the sense level and were manually labeled as positive, neg-
ative, and no effect. We consider a word as an indicator, if

3Note that some claims from Debatepedia are more like asser-
tions (e.g., smoking causes cancer). We did not filter them out as
long as they contain valid positive or negative effect relations.
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Figure 2: The interface used in the annotation study, along with an example of a worker’s annotations.

it has at least one sense that indicates a positive or negative
effect. The third source provides a list of words and phrases
that are labeled with a set of scores regarding their semantic
characteristics. One of these characteristics is the effect of
the word. We followed the resource developers in mapping
the scores to effect labels. Each word that is mapped to a
positive or negative effect is included in our indicator list.

We extracted all claims with at least one indicator. Then,
we excluded those with negated verbs, such as ‘don’t cause’,
in order to avoid to mistakenly consider ‘no positive effect’
as equal to ‘negative effect’, ending up with 4740 claims.
The negation detection was performed using the dependency
parser of Dozat, Qi, and D. Manning (2017). To annotate
the concepts’ grounding, we extracted a candidate list of
grounded entities for each selected claim. To this end, we
used two wikification tools, TagME (Ferragina and Scaiella
2010) with confidence threshold 0.2 and Babelfy (Moro, Ra-
ganato, and Navigli 2014). All entities found by Babelfy
were included, as it does not provide confidence scores.

Data Annotation

Using the selected set of claims, we started with a small ex-
pert annotation study, followed by several pilot studies. The
insights gained from these studies were used to optimize the
main annotation study. The annotation task and the different
studies are detailed in the following.

Annotation Task The task was to identify the knowledge
encapsulated in a given claim, consisting of three core ele-
ments: (1) the presence of an effect relation, (2) the concept
instances involved in the relation, and (3) the relation type.
A concept instance is a phrase that represents an entity (e.g.,
‘Donald Trump’), an event (e.g., ‘smoking in streets’), or an
abstract principle or idea (e.g., ‘society’). Types of relation
between concepts are: (a) positive effect, where a concept
instance in the claim promotes/causes/leads to/etc. another
concept instance, and (b) negative effect, where a concept in-
stance suppresses/stops/prevents/decreases/etc. another con-
cept instance. To address the grounding of the identified con-
cept instances, we also included to analyze whether the sec-
ond concept instance in a relation is considered as a ‘good’

or ‘bad’ consequence in general. Every annotator was asked
to read each given claim thoughtfully and to decide whether
it has an effect relation. If a relation was found, the annotator
had to mark the two related concept instances in the claim.
Then, he/she should select the type of relation.

We provided a set of Wikipedia concepts related to the
claim. Each annotator had to examine the concepts either by
reading their shown summary or by opening the provided
links. A concept should be selected only, if it represented
the marked concept instance. If such a concept did not exist,
the annotator should select all concepts that, if combined,
nearly represent the concept instance. The annotator could
decide to not choose any of the concepts, if none of them or
their combinations represent the marked concept instance.
Next, the annotator had to decide whether the second con-
cept instance is predominantly good, bad, or neutral. In case
of good or bad, the annotator should write down some con-
cept instances that the second concept is good/bad for.

The annotators were instructed to pick the primary rela-
tion if multiple ones were observed, and to mark the relation
if it is manifested explicitly in the claim. For instance, ‘gov-
ernments should prevent crimes’ doesn’t explicitly manifest
a negative effect of ‘government’ on ‘crime’. Figure 2 shows
the interface of the annotation task with exemplary annota-
tions. The annotators were provided with examples and were
encouraged to leave a comment if they had remarks. To help
the workers understand the task, we named the concept in-
stances as Concept 1 and Concept 2 in the interface.

Expert Annotation study We asked three argumentation
experts to annotate 100 randomly selected claims. After
completing the study, the experts confirmed that the task
was clear and the interface intuitive. We followed the com-
ments they gave to refine the guideline and to improve the
interface. To assess annotation reliability, we computed the
inter-annotator agreement in terms of Fleiss’ κ and percent-
age agreement for relation presence and relation type, and in
terms of F1-score for the full and partial overlap (50% of to-
kens) of the concept instances and their grounded concepts.
The obtained agreement ranges from moderate to substan-
tial.
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Relation Relation Type Consequence

κ 0.51 0.49 0.45
% Agreement 0.77 0.73 0.69

Con1 Con2 Entity.Con1 Entity.Con2

Full Overlap 0.58 0.42 0.52 0.46
Par. Overlap 0.67 0.54 0.57 0.52

Table 1: The inter-annotator agreement of the main annota-
tion studies for the annotation labels.

Pilot Crowdsourcing Studies We conducted multiple pi-
lot annotation studies on Amazon Mechanical Turk (AMT).
The studies should reveal whether our task suits the crowd-
sourcing approach, and help to find the best settings for the
worker qualifications, the number of annotators per claim,
and effective quality control methods. The annotation was
done using the same set of claims used in the expert annota-
tion study. We examined various worker requirements, such
as acceptance rate, location, and the number of previously
accepted hits. Also, we tried different ways to encode check
instances. Each claim was annotated by 10 annotators. Be-
sides manually inspecting the annotation quality, we looked
at inter-annotator agreement again. In particular, we first ag-
gregated the crowd annotations using majority vote. Then,
we computed the agreement between the aggregated crowd
annotations and the annotations obtained from the three ex-
perts. The obtained agreement here is slightly less than the
agreement between experts, but still considered as moderate
agreement. The settings with the highest overall agreement
were chosen to be used in the main study. For the number
of annotators per claim, we considered several subsets of
the ten annotations and checked the drop of their agreement
compared to the complete set of the ten annotations, if any.

Main Crowdsourcing Study We published five batches
of claims for annotation on AMT. Each included about 1000
claims, and every claim was annotated by five workers. Fol-
lowing the observations in the pilot studies, the workers’
qualification was set to at least 98% acceptance rate, a min-
imum of 1000 accepted HITs, and a location in one of the
English-speaking countries.

Table 1 shows the inter-annotator agreement of the main
study. The agreement is moderate but in line with values re-
ported in comparable tasks (Rashkin et al. 2018). We aggre-
gated relations, their types, as well as the concept instances’
consequences using majority vote. Concept instances and
grounding concepts were aggregated based on the longest
sequence of overlapping words in the annotations.

Annotation Output

The results of the annotation study are a new argumentation
knowledge graph and a corpus. We expect both to be valu-
able resources for the computational argumentation area.
The two resources will be made publicly available.

1. Argumentation Knowledge Graph: The entire knowledge
acquired was used to construct the graph. The obtained

Label Frequency Percent

Claim
Overall 4740 100
Relation 1736 37
No-Relation 3004 63

Relation
Overall 1736 100
Positive 1287 74
Negative 390 23
No-Agreement 59 03

Consequence
Overall 1736 100
Good 645 37
Bad 748 43
Neutral 218 13
No-Agreement 125 07

Concept Instance
Overall 3451 100
Concept 1 1729 50
Concept 2 1722 50

Wikipedia Concept
Overall 4766 100
Selected Babelfy&Tagme for Con. 1 2229 47
Selected Babelfy&Tagme for Con. 2 2537 53

Labels
Overall 16429 100

Table 2: Statistics for the argumentation corpus.

graph includes 2743 nodes and 1670 edges; the construc-
tion allows for knowledge completion and expansion.

2. Argumentation Knowledge Corpus: Table 2 shows statis-
tics of the created corpus. About 37% of the claims have
an effect relation. The majority of relations is positive,
around 74%, and the distribution of good and bad labels
similar. The corpus can be used for detecting the sen-
tences with effect relations, as well as for extracting pos-
itive and negative effect relations from sentences.

Automatic Knowledge Acquisition

This section describes our framework for acquiring the mod-
eled argumentation knowledge automatically. The frame-
work targets the tasks of effect-relation detection, relation
type classification, consequence classification, and relation
concept identification. Using the created corpus, we propose
a supervised approach to the tasks of effect-relation detec-
tion, relation type classification, and consequence classifica-
tion. For the task of relation concept4 identification, we rely
on a set of syntactic patterns. In the following, we detail the
set of features that we utilize for the tasks at hand.

Relation Detection, Relation Type Classification, and
Consequence Classification In essence, effect relations
are very related to causality relations. The task of causality

4For brevity, we simply speak of ‘concept’ instead of ‘concept
instance’ in this section.
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detection has been shown to be challenging, because such a
relation can be encoded in diverse text constructions (Duni-
etz, Levin, and Carbonell 2017). Nonetheless, various types
of features proved to be effective there. In our approach, we
employ a broad set of features including those which have
been applied successfully in causality detection:

1. Lexical Features: Word and character n-grams are pow-
erful features for relation detection and classification as
they usually can capture the lexical indicators of relations
and their types. In particular, we expect these features to
disclose particular verb indicators along with their con-
text. Here, we use bag of words, 1–3 word n-grams, 1–5
char n-grams, and tf-idf of word and character n-grams.

2. Syntax Features: Also, syntax may be important to iden-
tify relations. We use the frequencies of part-of-speech
tag 1–3 grams as well as of verbs, nouns, adjective, and
adverbs. To obtain part-of-speech tags, we use NLTK.

3. Sentiment Features: We use the subjectivity of the text
and the subjectivity of the main verb. For the first, we
use ‘Textblob’ sentiment analysis. For the second, we use
‘SentiWordNet 3.0’ (Baccianella, Esuli, and Sebastiani
2010). The hypothesis behind is that the presence of ei-
ther positive or negative sentiment may be an indicator of
the presence of a relation in a claim.

4. Semantic Features: We employ three lexicons that seem
useful for the given task: ‘+/-EffectWordNet’ (Choi and
Wiebe 2014), ‘Connotation Frames’ (Rashkin, Singh,
and Choi 2016), and ‘ConnotationWordNet’ (Kang et al.
2014). The lexicons were built manually and extended
automatically. Each lexicon comprises words and phrases
along with their likely effect (i.e., positive, negative, and
null). Recall that these lexicons were used to sample in-
stances in our annotation study. However, they are likely
not sufficient for relation identification, as most lexicon
entries are verbs, which often have several senses; some
may indicate a relation, some not. Nonetheless, two of
the lexicons come with effect labels at the sense level.
Accounting for that, we employ the following features.
Verb-sense effect considers the verbs in a text, detects
the sense of each verb, and then checks its effect la-
bel from the lexicons. Since Word Sense Disambiguation
(WSD) is challenging, specifically for verbs (Raganato,
Camacho-Collados, and Navigli 2017), we also get the
sense distribution of each verb for their effect labels. For
example, ‘operate’ has four senses; three indicate a ‘pos-
itive’ effect, and one a ‘null’ effect. Based on this distri-
bution, we calculate the probability of each verb to have
a specific effect label. Also, we compute the most prob-
able effect of a verb. The sense of a verb is obtained
with multiple WSD methods: the most frequent sense,
the knowledge-based WSD ‘Lesk’ (Banerjee and Peder-
sen 2002), and the supervised WSD ‘IMS’ (Zhong and
Ng 2010).

Concept Identification For this task, two types of patterns
have been used in prior studies: those that are obtained by
Open Information Extraction (OpenIE), and those that are

Relation Type Consequence

Feature Micr Macr Micr Macr Micr Macr

Lexical 0.81 0.78 0.86 0.73 0.62 0.45
Syntax 0.73 0.70 0.71 0.57 0.48 0.39
Sentiment 0.66 0.40 0.79 0.44 0.50 0.31
Semantic 0.67 0.56 0.79 0.44 0.60 0.44

All 0.81 0.79 0.86 0.77 0.67 0.49

Baseline 0.66 0.40 0.78 0.44 0.46 0.21

Table 3: The micro and macro F1-score of our approach
in relation detection, relation type classification, and conse-
quence identification, compared to a majority-class baseline.

Relation Type Consequence

Feature Micr Macr Micr Macr Micr Macr

Lexical -0.09 -0.09 -0.11 -0.12 -0.06 -0.07
Syntax 0.00 0.00 0.01 0.01 0.01 0.00
Sentiment 0.00 0.00 -0.01 0.00 0.00 -0.01
Semantic 0.01 0.00 0.00 -0.03 -0.02 -0.01

Table 4: Micro and macro F1-score changes resulting from
feature ablation. The results show the impact of removing a
feature category compared to using all the features.

Topic #Relations Sample-size Precision

Abortion 5407 60 0.58
Advertising 9213 60 0.73
Global Warming 4927 60 0.67
Social Security 3856 60 0.75
Smoking 4381 60 0.73

All Topics 27784 300 0.69

Table 5: Statistics of the new acquired knowledge.

derived from Semantic Role Labeling (SRL). In particular,
we compose various patterns using the arguments and pred-
icates of OpenIE outputs of Stanovsky et al. (2018) and the
SRL outputs of He et al. (2017). For example, one pattern
represents the [arg0] of the main verb as the first concept
and the concatenation of [arg1] and [arg2] as the second.

Experiments and Results

This section presents experiments regarding our framework,
along with their results. As for the experimental set-up, we
use our argumentation knowledge corpus for training and
evaluating the framework. For relation, relation type, and
consequence classification, we split the corpus into training
(80%) and test (20%) sets where the claims that belong to
the same topic exist in either of the two sets. We apply one
support vector machine with a linear kernel, which performs
the best among others we tried, for each task (Pedregosa et
al. 2011). The C value is optimized using grid search on the
training dataset.

7372



Sentence Knowledge

General anesthesia increases abortion morbidity and mortality for women. General anesthesia positive→ abortion morbidity
The U.N. treaty requires restrictions on tobacco advertising and sponsorship. U.N. treaty positive→ restrictions on tobacco advertising
Overall, global warming will result in increased world rainfall. global warming positive→ increased world rainfall
Stopping smoking decreases the risk of death by 18%. Stopping smoking negative→ risk of death
For workers, privatization would mean smaller Social Security checks. privatization positive→ smaller Social Security checks

Table 6: Examples of the automatically acquired knowledge.

Relation Detection, Relation Type Classification, and
Consequence Classification Table 3 shows the results of
using the framework for detecting the relation in terms of
macro and micro F1-score. The best performance is reached
by applying the full set of features, which achieves 0.81
(micro) and 0.79 (macro) respectively. Lexical features per-
form by far best in distinguishing relations. According to
the macro and micro F1-scores, the results of classifying re-
lation type seem similar to relation detection in the sense
that the full set achieves the best scores (0.86 and 0.77 for
micro and macro F1-score respectively). Again, the lexical
feature is the most effective. Interestingly, the syntax fea-
tures outperform the baseline only according to the macro
score. Evaluating the pipeline of the relation detection along
with the relation type classification in our framework, we
achieve the following: a micro F1-score of 0.77 and a macro
F1-score of 0.64. Regarding the classification of the conse-
quence of a concept, as expected, the results of this task are
low. However, the classifier still manages to outperform the
baseline achieving 0.67 micro and 0.49 macro F1-scores.

Table 4 shows the results of an ablation study regarding
the features. Clearly, the lexical features shown to be, by a
great deal, the most importnat for tackling the three tasks.

Concept Identification Based on the evaluation of the
outputs of our OpenIE and SRL features, we found that the
best feature is the OpenIE pattern of the main verb with
[arg0] as the first concept and [arg1] as the second concept.
The feature achieves an accuracy of 0.69 for identifying the
first concept and 0.28 for the second concept.

Knowledge Acquisition for New Topics The framework
achieves a reasonable effectiveness for knowledge acquisi-
tion when we apply it on our developed corpus. Yet, it is
necessary to inspect its effectiveness at web scale.

To analyze whether the framework is effective enough to
deal with new topics, we selected five topics that are not con-
sidered in our argumentation corpus from two high-quality
resources: Wikipedia (the dump from April 23, 2019) and
Annotated English Gigaword (a big corpus of newspaper ar-
ticles). We downloaded both, extracted their articles and seg-
mented the articles into sentences. Then, we identified all
sentences that include one of the selected topics and applied
our framework on them.

To examine the new extracted knowledge, we hire a pro-
fessional editor (with Ph.D. degree, native English speaker)
and asked him to check samples of the extracted knowl-
edge. The samples were derived randomly after excluding

knowledge that does not exceed certain thresholds, such as
the classifier’s confidence scores for the relation type and
the confidence score of the concept grounding. The editor
was provided with the two identified concepts and the re-
lation between them, as well as with the sentence that the
concepts and relation were extracted from. The editor had
to read each sentence and check if the knowledge that we
acquired is sound.

Table 6 shows statistics of the obtained knowledge with
the evaluation results. Besides, we inspected the extracted
knowledge manually. We found some cases that reveal the
stance of a specific person on a certain topic. Also, we found
knowledge that can be seen as historical information, espe-
cially extracted from Wikipedia, and knowledge which in-
volves statistics from scientific studies. We found the knowl-
edge identified in several sentences to be of a high quality.

Table 5 shows examples of the obtained knowledge. Such
knowledge can be integrated into general knowledge-bases
like ConceptNet (Speer, Chin, and Havasi 2017).

Conclusion

This paper studies what knowledge is needed for construct-
ing argumentation knowledge graphs, how to represent that
knowledge, and how to effectively acquire it. In particu-
lar, we have proposed a model for the positive and nega-
tive effect between concepts encapsulated in arguments and
a methodology for identifying the modeled knowledge. To
this end, we conducted a massive crowdsourcing annotation
effort to annotate 4740 claims. We have then used the anno-
tations to generate a new argumentation corpus and an argu-
mentation knowledge graph. Also, we have developed a new
framework with supervised learning and pattern-based ap-
proaches that automatically identifies the model’s elements.

The proposed graph may serve as the heart of several
computational argumentation applications, such as an ex-
ploratory search of arguments, an evaluation of the quality of
arguments, and perhaps the detection of fake news. Also, it
can be used for argumentative question answering systems,
for example, to answer questions such as “What are the risks
of nuclear energy?”. In the future, we plan to build a large-
scale web-based argumentation graph and investigate how
we can exploit it for different computational argumentation
tasks such as argument synthesis and argument search.
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