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Abstract

Fine-Grained Named Entity Typing (FG-NET) is a key com-
ponent in Natural Language Processing (NLP). It aims at
classifying an entity mention into a wide range of entity types.
Due to a large number of entity types, distant supervision is
used to collect training data for this task, which noisily as-
signs type labels to entity mentions irrespective of the con-
text. In order to alleviate the noisy labels, existing approaches
on FG-NET analyze the entity mentions entirely independent
of each other and assign type labels solely based on men-
tion’s sentence-specific context. This is inadequate for highly
overlapping and/or noisy type labels as it hinders informa-
tion passing across sentence boundaries. For this, we pro-
pose an edge-weighted attentive graph convolution network
that refines the noisy mention representations by attending
over corpus-level contextual clues prior to the end classifica-
tion. Experimental evaluation shows that the proposed model
outperforms the existing research by a relative score of upto
10.2% and 8.3% for macro-f1 and micro-f1 respectively.

1 Introduction

Named Entity Typing (NET) aims at classifying an entity
mention to a set of entity types (e.g., person, location and
organization) based on its context. It is one of the crucial
components in NLP, as it helps in numerous down stream-
ing applications, e.g., information retrieval (Carlson et al.
2010), Knowledge Base Construction (KBC) (Dong et al.
2014), question answering (Lee et al. 2006), machine trans-
lation (Britz et al. 2017), etc. Fine-Grained Named En-
tity Typing (FG-NET) is an extension of traditional NET
to a much wide range of entity types (Corro et al. 2015;
Ren et al. 2016a), typically over hundred types arranged in
a hierarchical structure. It has shown promising results in
different applications including KBC (Dong et al. 2014), re-
lation extraction (Mitchell et al. 2018), etc.

In FG-NET, an entity mention is labeled with multiple
overlapping entity types based on the context. For instance,
in the sentence: “After having recorded his role, Trump
spent the whole day directing the movie.” Trump can be an-
notated as both actor and director at the same time. Ow-
ing to a broad range of highly correlated entity types with
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small contextual differences (Section 4.6), manual labeling
is error-prone and time-consuming, thus distant supervision
is widely used to automatically acquire the training data.
Distant supervision follows a two-step approach, i.e., detect-
ing the entity mentions followed by assigning type labels
to the mentions using existing knowledge bases. However,
it assigns type labels irrespective of the mention’s context,
which results in high label noise (Ren et al. 2016b). This
phenomenon is illustrated in Figure 1, where, for the sen-
tences denoted as: S1:S4, the entity mention “Imran Khan”
is labeled with all possible labels in the knowledge-base
{person, author, athlete, coach, politician}. Whereas, from
the contextual perspective, in S1 the mention should be la-
beled as {person, athlete}; in S2 it should be assigned labels
{person, author}, etc. This label noise propagates in model
learning, which hinders the improvement in performance.

In an attempt to deal with the noisy training data, ex-
isting research on FG-NET relies on the following differ-
ent approaches: (i) assume all labels to be correct (Ling
and Weld 2012; Yogatama, Gillick, and Lazic 2015), which
severely affects the model performance; (ii) apply differ-
ent pruning heuristics to prune the noisy labels (Gillick et
al. 2014), however, these heuristics drastically reduce the
size of training data; (iii) bifurcate the training data into
two categories: clean and noisy, if the type labels corre-
spond to the same type path or otherwise (Ren et al. 2016a;
Abhishek, Anand, and Awekar 2017), they ignore the fact
that the labels, even corresponding to the same type path,
may be noisy. For these approaches, it is hard to guarantee
that underlying modeling assumptions will have a substan-
tial impact on alleviating the label noise. In addition, these
approaches model the entity mentions entirely independent
of each other, which hinders effective propagation of label-
specific contextual information across noisy entity mentions.

In order to address the challenges associated with the
noisy training data, we introduce a novel approach that
puts an equal emphasis on analyzing the entity mentions
w.r.t label-specific corpus-level context in addition to the
sentence-specific context. Specifically, we propose Fine-
Grained named Entity Typing with Refined Representations
(FGET-RR), shown in Figure 2. FGET-RR initially uses
mention’s sentence-specific context to generate the noisy
mention representation (Phase-I). Later, it uses corpus-level
contextual clues to form a sparse graph that surrounds a sub-
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Entity Mention: Imran Khan

Candidate types via Distant Supervision:
{person, author, athlete, coach, politician}

Entity Type Hierarchy (Yψ)

S1: The former cricket great Imran khan is amongst the best all-
rounders of his time{person, athlete, author, coach, politician}

S2: In his book "Pakistan: A personal history", Imran khan
focused on bilateral ties{person, athlete, author, coach, politician}

S3: Former cricketer Imran khan is selected as the head trainer by
Pakistan cricket board {person, athlete, author, coach, politician}

S4: Imran khan founded PTI, a centrist political party, in 1996.
{person, athlete, author, coach, politician}

(a) (b) (c)

Root

location person organization- - -

author artist politiciancoachathlete

Figure 1: (a) Entity mention and candidate entity types acquired via distant supervision, (b) Target Entity Type Hierarchy (c)
Noisy training data with irrelevant entity types struck-through.

set of noisy mentions with a set of confident mentions hav-
ing high contextual overlap. And, performs edge-weighted
attentive graph convolutions to recompute/refine the repre-
sentation of noisy mention as an aggregate of the confident
neighboring mentions lying at multiple hops (Phase-II). Fi-
nally, the refined mention representation is embedded along
with the type label representations for entity typing.

We argue that the proposed framework has following ad-
vantages: (i) it allows appropriate information sharing by ef-
ficient propagation of corpus-level contextual clues across
noisy mentions; (ii) it analyzes the aggregated label-specific
context, which is more refined compared with the noisy
mention-specific context; (iii) it effectively correlates the lo-
cal (sentence-level) and the global (corpus-level) context to
refine mention’s representation, required to perform the end-
task in a robust way. We summarize the major contributions
of this paper as follows:

• We introduce FGET-RR, a novel approach for FG-NET
that pays an equal importance on analyzing the entity
mentions with respect to the corpus-level context in addi-
tion to the sentence-level context to perform entity typing
in a performance-enhanced fashion.

• We propose an edge-weighted attentive graph convolution
network to refine the noisy mention representations. To
the best of our knowledge, this is the first work that, in
contrast to the existing models that de-noise the data at
model’s input, refines the representations learnt over dis-
tantly supervised data.

• We demonstrate the effectiveness of the proposed model
by comprehensive experimentation. FGET-RR outper-
forms the existing research by a margin of upto 10.2%
and 8.3% in terms of macro-f1 and micro-f1 scores re-
spectively.

2 Related Work

Earlier research on NET relies on assigning entity men-
tions to a small number of entity types, i.e., person, lo-
cation, organization, etc. (Sang and Meulder 2003). In the
recent decade, the traditional NET is extended to a wide
range of fine-grained entity types (Ling and Weld 2012;
Yosef et al. 2013). All the systems in FG-NET majorly fo-

cus on entity typing only, i.e., they assume that the men-
tion boundaries have been pre-identified. Yogatama, Gillick,
and Lazic, (2015) used embeddings to jointly embed entity
mentions and the type information. Gillick et al., (2014) pro-
posed pruning heuristics to prune the noisy mentions. Corro
et al., (2015) introduced the most fine-grained system so
far, with types encompassing Word-Net Hierarchy (Miller
1998). Ren et al., (2016a) introduced Automated Fine-
grained named Entity Typing (AFET) using a set of hand-
crafted features to represent mention, later jointly embed the
feature vectors and the label vectors for classification.

Shimaoka et al., (2016) used an averaging encoder to en-
code the entity mention, bi-directional LSTM to encode the
context, followed by attention to attend over label-specific
context. Inui et al., (2017) extended (Shimaoka et al. 2016)
by incorporating hand-crafted features along with attention.
Abhishek, Anand, and Awekar, (2017) used end-to-end ar-
chitecture to encode entity mention and its context. Xu and
Barbosa, (2018) modified the FG-NET problem definition
from multi-label classification to single-label classification
problem with a hierarchical aware loss to handle noisy data.
Xin et al., (2018) proposed FG-NET based on language
models that compute compatibility between the type labels
and the context to eliminate inconsistent types.

Graph Convolution Networks (GCNs) have received con-
siderable research attention in the recent past. GCNs extend
the convolutions from regular grids to graph-structured data
in spatial and/or spectral domain. They are widely been used
in classification settings, i.e., both semi-supervised (Kipf
and Welling 2017), and supervised (Yao, Mao, and Luo
2019). While GCNs have successfully been used for image
de-noising (Valsesia, Fracastoro, and Magli 2019), we are
the first to effectively utilize it to refine the representations
learnt over noisy text data.

3 The Proposed Model

3.1 Problem Definition

In this paper, we aim to build a multi-label, multi-class en-
tity typing system that can use distantly supervised data
to classify an entity mention into a set of fine-grained en-
tity types based on the context. Specifically, we refine the
representations learnt on the noisy data prior to entity typ-
ing. Similar to the existing research (used for comparative
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Figure 2: Proposed model for FG-NET (FGET-RR); Phase-I learns mention’s representation based on local sentence-specific
context; Phase-II refines the representations learnt in Phase-I by sharing corpus-level type-specific context

evaluation in Table 1), we assume the availability of train-
ing data Dtrain acquired via distant supervision and man-
ually labeled test data Dtest. Formally, the data set D is a
set of sentences/paragraphs for which the entity mentions
{mi}Ni=1 (tokens corresponding to the entities), the context
{ci}Ni=1 and the candidate type labels {yi}Ni=1 ∈ {0, 1}Y
(Y -dimensional binary vector with yi,t = 1 if tth type cor-
responds to the true label and zero otherwise) have been
pre-identified. Here, the type labels correspond to type hi-
erarchy in the knowledge base ψ with the schema Yψ . We
represent the data as a set of triples D = {(mi, ci, yi)}Ni=1.
Following (Ren et al. 2016a), we bifurcate the training men-
tionsMtrain into cleanMclean and noisyMnoisy depending
upon if the mention’s type path corresponds to a single path
in Yψ or otherwise. For example, considering the type-path
in Figure 1 (b), a mention with labels {person, athlete, au-
thor} will be considered as a noisy, whereas, a mention with
labels {person, artist} will be considered as clean.

3.2 Overview

Our proposed model (shown in Figure 2) consists of two
phases: in Phase-I, we learn local context-dependent noisy
mention representations using LSTM networks (Hochreiter
and Schmidhuber 1997). In Phase-II, we form a sparse graph
that takes the representations learnt in Phase-I as input and
perform edge-weighted attentive graph convolutions to re-
fine these representations. Finally, we embed the refined
mention representations along with the label representations
for FG-NET.

We argue that the proposed two-phase design has the fol-
lowing advantages: (i) it allows us to quantify the contribu-
tion of each phase, as it provides the maximal flexibility to
correlate and/or analyze these phases independently, (ii) it
enables effective propagation of corpus-level contextual in-
formation that facilitates refinement of noisy mention repre-

sentations.

3.3 Phase-I (Noisy Mention Representations)

Phase-I follows a standard approach with multiple LSTM
networks to encode sequential text data. We use−→x and←−x to
represent the left-to-right and the right-to-left LSTM encod-
ings. The components of Phase-I are explained as follows:

Mention Encoder: To encode the morphological struc-
ture of entity mentions, we first decompose the mention
into character sequence. Later, use a standard LSTM net-
work to encode the character sequence. We use φmen =
[−−−−−→menchar] ∈ Rd to represent the encoded mention.

Context Encoder: In order to encode the context, we use
bidirectional LSTMs to encode the tokens corresponding to
the left and the right context of the entity mention, as shown
in Figure 2. Note that for each bi-directional LSTM, we feed
mention tokens along with the context to get the context en-
coding. The motivation is to analyze the context in relation
with the entity mention. We use φleft = [←−−cleft;

−−→cleft] ∈ Rc ,
and φright = [←−−−cright;

−−−→cright] ∈ Rc to represent bi-directional
encoding of the left and the right context respectively.

Position Encoder: The position feature is used to encode
the relative distance between the mention and the contex-
tual words using LSTM network. Previously, this feature has
shown good performance in relation classification (Zeng et
al. 2014). We use φlpos = [

←−−−−
leftpos] ∈ Rp and φrpos =

[
−−−−−→
rightpos] ∈ Rp to encode the relative positions of the left

and the right contextual tokens.
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Mention Representation: Finally, we concatenate all the
mention-specific encodings to get the noisy mention repre-
sentation: xm ∈ Rf , where f = d+ 2 ∗ c+ 2 ∗ p

xm = [φlpos;φleft;φmen;φright;φrpos] (1)

3.4 Phase-II (Refining Mention Representations)

In order to refine the noisy mention representations learnt
on distantly supervised data (Phase-I), we propose an edge-
weighted attentive Graph Convolution Network (GCN).
GCN extends convolution from regular structured grids to
arbitrary graphs. We exploit the fact that for a given graph
node, the GCN uses the information contained in the neigh-
boring nodes to come up with a new representation of the
node. For this, we construct an undirected graph with nodes
as entity mentions and enforce the mentions with high con-
textual overlap to be adjacent to each other by forming
edges. Formally, let G = (V,E) be a graph with |V | = n
nodes (entity mentions); |E| edges; we use A to denote its
symmetric adjacency matrix. The construction of G is out-
lined in Algorithm 1 and explained as follows:

Graph Construction: Firstly, we learn 1024d deep con-
textualized ELMO embeddings (Peters et al. 2018) for all
the sentences in data set D. We average out the embed-
ding vectors corresponding to the mention tokens to acquire
context-dependent mention embeddings ELMOmen. Later,
for the training data Dtrain, we compute pivot vectors,
i.e., {Pivoty}Yy=1, as representatives for each entity type
y ∈ Y , by averaging the mention embeddings correspond-
ing to the type y (ELMOmeny ). We use these pivot vectors
to capture confident mention candidates for each entity type
{Candidates}Yy=1, i.e., the mentions with high contextual
overlap having cos(ELMOmen, {Pivoty}Yy=1) ≥ thr, as
illustrated in lines (7-13) of Algorithm 1. We observed that
a reasonably high value for the threshold thr offers the fol-
lowing benefits: (i) avoids computational overhead, (ii) cap-
tures only the most confident mention candidates. Finally,
for the candidate mentions corresponding to each entity type
{Candidates}Yy=1, we form pairwise edges to construct the
graph G, with adjacency matrix A (line 14-16).

Attentive Aggregation: Depending upon the value of thr,
the graph G surrounds a subset of nodes (noisy mentions),
with a set of confident mentions having high type-specific
contextual overlap, by forming edges. Later, for noisy men-
tion representations, we aggregate the information contained
in the neighbors to come up with the refined mention repre-
sentations. Specifically, unlike the existing work (Kipf and
Welling 2017), we propose an edge-weighted attentive graph
convolution network that uses the following layer-wise prop-
agation rule:

L(1) = ρ( ˜ηij �AL(0)W0) (2)

where ηij is the attention term computed via pairwise sim-
ilarity of the context-dependent mention embeddings, i.e.,
cos(ELMOmeni , ELMOmenj ) ∀(i, j) ∈ V ; ηij �A is

Algorithm 1 Graph Construction
Input: Embeddings (ELMOmen); D = Dtrain +Dtest

Output: Graph: G

1: {Pivoty}Yy=1 ← 0; G← ∅
2: for men← 1 to Dtrain do
3: for y ∈ menlabels do
4: Pivoty ← Pivoty + ELMOmeny

5: end for
6: end for
7: {Candidates}Yy=1 ← ∅
8: for men← 1 to D do
9: y∗ = argmaxy∈Y cos (ELMOmen, P ivoty)

10: if cos (ELMOmen, P ivoty∗) ≥ thr then
11: Candidatesy∗ ← Candidatesy∗ ∪men
12: end if
13: end for
14: for y ← 1 to Y do
15: G← G ∪ {edge(v1, v2) ∈ Candidatesy}
16: end for
17: return G

the Hadamard product of attention weights and the adja-
cency matrix; ˜ηij �A = D̃−1/2((ηij � A) + I)D̃−1/2 is
the normalized symmetric matrix; D̃ is the degree matrix of
(ηij �A); L(0) is input from the previous layer, in our case:
L(0) = Xm ∈ RN×f is the matrix corresponding to the
noisy mentions’ representations from Equation (1), ρ is the
activation function and W0 is the matrix of learn-able pa-
rameters. Note, by adding identity matrix I to (ηij � A),
the model assumes that every node v ∈ V is connected
to itself, i.e, (v, v) ∈ E. We observed, that for our prob-
lem, this simple symmetrically normalized edge-weighted
attentive formulation outperforms the attention formulation
of (Bahdanau, Cho, and Bengio 2015). We can accumulate
information from the higher-order neighborhood by stacking
multiple layers:

L(i+1) = ρ( ˜ηij �AL(i)Wi) (3)

where i corresponds to the layer no., with L(0) = Xm.
For our model, we use a two-layered network to learn the
refined mention representations Φm ∈ RN×k as follows:

Φm = ˜ηij �A(ReLU( ˜ηij �AXmW0))W1 (4)

3.5 The Complete Model

Let φm ∈ Rk be a refined mention representation and
{φy}Yy=1 ∈ Rk be the type label representations. For classi-
fication, we embed these representations in the same space.
For this, we learn a function f(φm, φy) = φTm.φy + biasy
that incorporates label bias biasy in addition to the label and
the refined mention representations. We extend loss func-
tions from our previous work (Ali et al. 2019) to separately
model the clean and the noisy entity mentions, as explained
below:
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Loss Function for clean data: In order to model the clean
entity mentions Mclean, we use a margin-based loss to em-
bed the mention representation close to its true label repre-
sentations, while at the same time pushing it away from the
false type labels. The loss function for modeling the clean
entity mentions is shown in Equation (5).

Lclean =
∑
y∈Ty

ReLU(1− f(φm, φy))

+
∑
y′∈T ′

y

ReLU(1 + f(φm, φy′ ))
(5)

where Ty represents the true labels and Ty′ represents the
false labels in Yψ .

Loss Function for noisy data: In order to model the noisy
entity mentions Mnoisy , we use a variant of the loss func-
tion in Equation 5 to focus on the most relevant label among
noisy type labels. The loss function for modeling the noisy
entity mentions is illustrated in Equation (6).

Lnoisy = ReLU(1− f(φm, φy∗))
+

∑
y′∈T ′

y

ReLU(1 + f(φm, φy′ ))

y∗ = argmax
y∈Ty

f(φm, φy)

(6)

where y∗ corresponds to the most relevant label among
the set of noisy labels, Ty represents the set of noisy labels
and Ty′ represents the false labels in Yψ .

Finally, we minimize Lnoisy + Lclean as the loss function
of FGET-RR.

Model Training and Inference: Owing to the adjacency
matrix A involved in Phase-II, our current implementa-
tion trains two phases iteratively. Specifically, we repeat the
following process till convergence: (i) perform mini-batch
Stochastic Gradient Descent (SGD) in Phase-I, (ii) concate-
nate the noisy representations learnt in Phase-I (i.e., Xm)
and perform gradient descent in Phase-II. We leave an ap-
propriate formulation of SGD for Phase-II as future work.
For inference, we use mention’s refined representation φm
and carry-out a top-down search in the type-hierarchy, i.e.,
we recursively select the type y that yields the best score
f(φm, φy) until we hit a leaf node or the score falls below a
threshold of zero.

4 Experiments

4.1 Dataset

For evaluation, we use publicly available data sets provided
by (Ren et al. 2016a). Table 2 shows the statistics of these
data sets. A detailed description is as follows:

Wiki/Figer: Its training data consists of Wikipedia sen-
tences automatically labeled via distant supervision by map-
ping the entity mentions to Freebase types (Bollacker et al.
2008). The testing data consists of news reports manually
labeled by (Ling and Weld 2012).

OntoNotes: It consists of sentences from newswire doc-
uments contained in OntoNotes corpus (Weischedel et
al. 2011) mapped to Freebase types via DBpedia Spot-
light (Daiber et al. 2013). The testing data is manually anno-
tated by (Gillick et al. 2014).

BBN: It consists of sentences from the Wall Street Journal
annotated by (Weischedel and Brunstein 2005). The training
data is annotated using DBpedia Spotlight.

4.2 Experimental Settings:

In order to come up with a unanimous platform for compar-
ative evaluation, we use the priorly defined data split by the
existing models to training, test and dev sets. The training
data is used for model training (i.e., learning noisy represen-
tations in Phase-I and refinement in Phase-II). The dev set is
used for parameter tuning and the model performance is re-
ported on the test set. All the experiments are performed on
Intel Xenon Xeon(R) CPU E5-2640 (v4) with 256 GB main
memory and Nvidia Titan V GPU.

Hyperparameters: We separately analyze the perfor-
mance of FGET-RR using 300d Glove embeddings (Pen-
nington, Socher, and Manning 2014) and 1024d deep con-
textualized ELMO embeddings (Peters et al. 2018). Charac-
ter, position and label embeddings are randomly initialized.
For position and bi-directional context encoders, the hidden
layer size of LSTM is set to 100d. For mention encoder the
hidden layer size is 200d. Maximum sequence length is set
to 100. For Phase-II, we use graphs with 1.6M, 0.6M, 5.4M
edges for Wiki, Ontonotes, and BBN respectively. For model
training, we use Adam optimizer (Kingma and Ba 2015)
with learning rate (0.0008-0.001).

4.3 Baseline Models / Model Comparison

We compare FGET-RR with the existing state-of-the-art re-
search on FG-NET, namely: (i) FIGER (Ling and Weld
2012), (ii) HYENA (Yosef et al. 2013), (iii) AFET (Ren
et al. 2016a) and its variants AFET-NoCo, AFET-NoPa,
AFET-CoH, (iv) Attentive (Shimaoka et al. 2016), (v)
FNET (Abhishek, Anand, and Awekar 2017), and (vi)
NFGEC+LME (Xin et al. 2018) 1. For all these models,
we use the scores reported in the published papers, as they
are computed using the same data settings as that of ours.

Note that our model is not comparable with the imple-
mentation of Xu and Barbosa (2018), because Xu and Bar-
bosa changed the FG-NET problem definition to single-label
classification problem and updated the training and testing
data accordingly. It is hard to transform their work for multi-
label, multi-class classification settings.

4.4 Main Results

We compare the results of our proposed approach
(FGET-RR) with the baseline models in Table 1. We bold-
face the overall best scores with the previous state-of-the-art

1We used code shared by authors to compute results for BBN
data.
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Wiki OntoNotes BBN
strict mac-F1 mic-F1 strict mac-F1 mic-F1 strict mac-F1 mic-F1

FIGER (Ling and Weld 2012) 0.474 0.692 0.655 0.369 0.578 0.516 0.467 0.672 0.612
HYENA (Yosef et al. 2013) 0.288 0.528 0.506 0.249 0.497 0.446 0.523 0.576 0.587
AFET-NoCo (Ren et al. 2016a) 0.526 0.693 0.654 0.486 0.652 0.594 0.655 0.711 0.716
AFET-NoPa (Ren et al. 2016a) 0.513 0.675 0.642 0.463 0.637 0.591 0.669 0.715 0.724
AFET-CoH (Ren et al. 2016a) 0.433 0.583 0.551 0.521 0.680 0.609 0.657 0.703 0.712
AFET (Ren et al. 2016a) 0.533 0.693 0.664 0.551 0.711 0.647 0.670 0.727 0.735
Attentive (Shimaoka et al. 2016) 0.581 0.780 0.744 0.473 0.655 0.586 0.484 0.732 0.724
FNET-AllC (Abhishek, Anand, and Awekar 2017) 0.662 0.805 0.770 0.514 0.672 0.626 0.655 0.736 0.752
FNET-NoM (Abhishek, Anand, and Awekar 2017) 0.646 0.808 0.768 0.521 0.683 0.626 0.615 0.742 0.755
FNET (Abhishek, Anand, and Awekar 2017) 0.658 0.812 0.774 0.522 0.685 0.633 0.604 0.741 0.757
NFGEC+LME (Xin et al. 2018) 0.629 0.806 0.770 0.529 0.724 0.652 0.607 0.743 0.760
FGET-RR Phase I-II (Glove + Context Encoders) 0.674 0.817 0.777 0.567 0.737 0.680 0.740 0.811 0.817
FGET-RR Phase I-II (Contextualized Embeddings) 0.710 0.847 0.805 0.577 0.743 0.685 0.703 0.819 0.823

Table 1: FGET-RR performance comparison against baseline models

Dataset Wiki OntoNotes BBN
Training Mentions 2.6 M 220398 86078
Testing Mentions 563 9603 13187
% clean mentions (training) 64.58 72.61 75.92
% clean mentions (testing) 88.28 94.0 100
Entity Types 128 89 47
Max hierarchy depth 2 3 2

Table 2: Fine-Grained Named Entity Typing data sets

underlined. These results show that FGET-RR outperforms
all the previous state-of-the-art research by a large margin.
Especially noteworthy is the performance of our model on
the BBN data outclassing the existing models by a mar-
gin of 10.4%, 10.2% and 8.3% in strict accuracy, macro-f1,
and micro-f1 respectively. For OntoNotes, our model yields
5.1% improvement in micro-f1 compared to the previous
best by Xin et al. (2018). For Wiki data, the FGET-RR im-
proves the performance by 7.5%, 4.3% and 4.0% in strict
accuracy, macro-f1, and micro-f1 respectively. Such promis-
ing results show that refining the mention representations
via corpus-level contextual clues help in alleviating the la-
bel noise associated with the distantly supervised data.

4.5 Ablation study

We present a detailed ablation analysis of the FGET-RR in
Table 3. Note that we only report the results for the Glove
embeddings along with the context encoders. A similar trend
is observed by replacing the Glove embeddings and contex-
tual encoders with the deep contextualized ELMO embed-
dings.

For Phase-I, we analyze the role of position encoder in
addition to the mention and the context encoders. We also
compare the results of our model with noisy mention rep-
resentations (Phase-I) with that of refined representations
(Phase I-II). For Phase I-II, we examine the impact of vari-
ants of the adjacency matrix on representations’ refinement,
namely: (i) random adjacency matrix (FGET-RR + RND);
(ii) identity as the adjacency matrix (FGET-RR + EYE); (iii)
adjacency matrix based on pivots, i.e., ηij = 1 (FGET-RR
+ PIVOTS); and (iv) edge-weighed attention along with the
adjacency matrix (FGET-RR + ATTN).

First two rows in Table 3 show that the position feature
slightly improved the performance for all data sets, yielding
higher scores across all categories. Comparing the results

for different adjacency matrices, we observe that the identity
matrix didn’t play a significant role in improving the model
performance. For randomly generated adjacency matrices, a
decline in performance shows that when the structure in data
is lost the graph convolution layers are no longer useful in
de-noising the representations. Note that we use randomly
generated adjacency matrices with an equivalent number of
edges as that of the original graphs (Section 4.2).

On the contrary, the models with adjacency matrices ac-
quired from type-specific pivots, (FGET-RR + PIVOTS;
FGET-RR + ATTN) show a substantial improvement in the
performance, which is governed by an appropriate refine-
ment of the noisy representations trained on distantly su-
pervised training data. Especially, the edge-weighted atten-
tion yields a much higher score, because attention helps the
model to reinforce the decision by attending over the contri-
bution of each neighbor. Overall, the results show that the
refined representations indeed augment the model perfor-
mance by a significant margin.

4.6 Analyses

In this section, we analyze the effectiveness of the refined
representations (Phase-II), followed by a detailed analysis
of the error cases.

Effectiveness of Phase-II (BBN data): In order to ana-
lyze the effectiveness of the refined representations (Phase-
II), we perform a comparative performance analysis for the
most frequent entity types in the BBN dataset.

As shown in Table 4, Phase-II has a clear dominance over
Phase-I across all entity types. The major reason for poor
performance in Phase-I is highly correlated nature of entity
types with substantial contextual overlap. The distant su-
pervision, moreover, adds to the intricacy of the problem.
For example, “organization” and “cooperation” are two
highly correlated entity types, “organization” is a generic
term, whereas, the “corporation” being a sub-type, is more
intended towards an enterprise and/or company with some
business-related concerns, i.e., every corporation is an orga-
nization but not otherwise. Analyzing the corpus-level addi-
tive lexical contrast along the type-hierarchy revealed that
in addition to sharing the context of the “organization”,
the context of the “corporation” is more oriented towards
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Adjacency Matrix Model
Wiki OntoNotes BBN

strict mac-F1 mic-F1 strict mac-F1 mic-F1 strict mac-F1 mic-F1
mention + context 0.649 0.802 0.762 0.521 0.690 0.632 0.612 0.746 0.759

Phase-I mention + context + position 0.661 0.807 0.767 0.531 0.694 0.638 0.616 0.755 0.765
Phase I-II (FGET-RR + RND) mention + context + position + GCN 0.642 0.797 0.755 0.464 0.641 0.595 0.617 0.693 0.709
Phase I-II (FGET-RR + EYE) mention + context + position + GCN 0.664 0.812 0.773 0.519 0.681 0.630 0.659 0.754 0.766
Phase I-II (FGET-RR + PIVOTS) mention + context + position + GCN 0.672 0.815 0.775 0.570 0.735 0.675 0.736 0.804 0.810
Phase I-II (FGET-RR + ATTN) mention + context + position + GCN 0.674 0.817 0.777 0.567 0.737 0.680 0.740 0.811 0.817

Table 3: Ablation study for FGET-RR using Glove + Context Encoder

Labels Support Phase-I Phase I-II
Prec Rec F1 Prec Rec F1

/organization 45.30% 0.837 0.850 0.843 0.924 0.842 0.881
/organization/corporation 35.70% 0.824 0.759 0.790 0.921 0.779 0.844
/person 22.00% 0.746 0.779 0.762 0.86 0.886 0.872
/gpe 21.30% 0.878 0.831 0.853 0.924 0.845 0.883
/gpe/city 9.17% 0.737 0.738 0.738 0.802 0.767 0.784

Table 4: Phase-I vs Phase (I-II) comparison for BBN data

tokens: cents, business, stake, bank, etc. However, for dis-
tantly supervised data, it is hard to ensure such a distinctive
distribution of contextual tokens for each entity mention. In
addition, the lack of information sharing among these dis-
tinctive tokens across sentence boundaries leads to poor per-
formance for Phase-I, which makes it a much harder prob-
lem from the generalization perspective. A similar scenario
holds for other entity types, e.g., actor vs artist vs director,
etc. Whereas, after sharing type-specific contextual clues,
we can see a drastic improvement in the performance for
phase I-II, i.e., F1 = 0.844 compared to F1 = 0.790 in phase-
I for “corporation”, shown in Table 4.

To further verify our claim, we analyze the nearest neigh-
bors for both the noisy and the refined representation spaces
along with the corresponding labels. An example in this re-
gard is shown in Table 5, where we illustrate the neigh-
boring representations corresponding to the representation
of the mention “Maytag” from the sentence: “We have of-
ficials from giants like Du Pont and Maytag, along with
lesser knowns like Trojan Steel and the Valley Queen Cheese
Factory.” with true context-dependent label as “organiza-
tion/corporation”. The neighboring representations corre-
sponding to the noisy representation space are dominated by
irrelevant labels, having almost no correlation with the origi-
nal mention’s label. Whereas, for the refined representations,
almost all the neighboring representations carry the same la-
bel as that of mention “Maytag”. This ascertains that the
refined representations are more semantically oriented w.r.t
context, which enables them to accommodate more distin-
guishing information for entity typing compared to that of
the noisy representations.

These analyses strengthen our claim that FGET-RR en-
ables representation refinement and/or label smoothing by
implicitly sharing corpus-level contextual clues across entity
mentions. This empowers FGET-RR to indeed learn across
sentence boundaries, which makes it more robust compared
with the previous state-of-the-art methods that classify en-
tity mentions entirely independent of each other.

Error Cases: We categorize the errors into two major cat-
egories: (i) missing labels, and (ii) erroneous labels. Missing

Noisy Representations (Phase-I) Refined Representations (Phase I-II)
Mention Label Mention Label
Yves Goupil /person Ford Motor /organization/corporation
Berg /person Vauxhall Motors Ltd. /organization/corporation
Volokhs /person Chrysler Corp. /organization/corporation
lawns /plant Advanced Micro Devices Inc. /organization/corporation
Rafales /product/vehicle,/product Chesebrough-Pond s Inc.’ /organization/corporation

Table 5: Top 5-nearest neighboring representations (noisy
and refined) for the representation of mention“Maytag”

labels correspond to the entity mentions for which type la-
bels are not predicted by the model, thus effecting the recall,
while erroneous labels correspond to mis-labeled instances,
effecting the precision. Following the results for the BBN
data in Table 4, most of the errors (for phase-I and I-II) cor-
respond to the labels ”/organization/corporation” and “or-
ganization”.

For missing labels, most of them are attributed to the
cases, where type labels are entirely dictated by the names
of corporations, with very little information contained in
the context. For example, in the sentence: “That has got to
cause people feel a little more optimistic, says Glenn Cox
the correspondence officer of Mcjunkin”, the entity men-
tion “Mcjunkin” is labeled “organization/corporation”. For
such cases, type information is not explicit from the context.
This is also evident by a relatively low recall score for both
Phase-I and Phase I-II, shown in Table 4.

Likewise, most of the erroneous labels (esp., Phase-I) are
caused by the overlapping context for highly correlated en-
tity types, e.g., “organization” and “corporation”, as ex-
plained previously. This problem was somehow eradicated
by refining the representations in Phase-II, as is evident by
a higher change in precision for Phase I-II relative to that
of Phase-I. A similar trend was observed for OntoNotes and
Wiki data. Other limiting factors of the proposed model in-
clude: (i) the assumption that ELMO embeddings are able to
capture distinctive mention representation based on the con-
text, (ii) acquiring pivot vectors from noisy data, which did
some smoothing but didn’t completely rectify the noise.

5 Conclusions and Future Work

In this paper, we propose FGET-RR, a novel approach for
FG-NET that outperforms existing research by a large mar-
gin. In the future, we will augment the proposed frame-
work by explicitly identifying type-specific clauses to per-
form edge conditioned representations’ refinement.
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