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Abstract

Recently, neural methods have achieved state-of-the-art
(SOTA) results in Named Entity Recognition (NER) tasks
for many languages without the need for manually crafted fea-
tures. However, these models still require manually annotated
training data, which is not available for many languages. In
this paper, we propose an unsupervised cross-lingual NER
model that can transfer NER knowledge from one language to
another in a completely unsupervised way without relying on
any bilingual dictionary or parallel data. Our model achieves
this through word-level adversarial learning and augmented
fine-tuning with parameter sharing and feature augmentation.
Experiments on five different languages demonstrate the ef-
fectiveness of our approach, outperforming existing models
by a good margin and setting a new SOTA for each language
pair.

Introduction
Named-entity recognition (NER) is a tagging task that seeks
to locate and classify named entities in a text into predefined
semantic types such as person, organization, location, etc. It
has been a challenging problem mainly because there is not
enough labeled data for most languages to learn the specific
patterns for words that are part of a named entity. It is also
harder to generalize from a small dataset since there can be
a wide and often unconstrained variation in what constitutes
names. Traditional methods relied on carefully designed or-
thographic features and language or domain-specific knowl-
edge sources like gazetteers.

With the ongoing neural tsunami, most recent approaches
use deep neural networks to circumvent the expensive steps of
designing informative features and constructing knowledge
sources (Lample et al. 2016; Ma and Hovy 2016; Strubell
et al. 2017; Peters et al. 2017; Akbik, Blythe, and Vollgraf
2018; Devlin et al. 2018). However, crucial to their success
is the availability of large amounts of labeled training data.
Unfortunately, building large labeled datasets for each new
language of interest is expensive and time-consuming and
we need fairly educated manpower to do the annotation.
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As many languages lack suitable corpora annotated with
named entities, there have been efforts to design models for
cross-lingual transfer learning. This offers an attractive so-
lution that allows us to leverage annotated data from a source
language (e.g., English) to recognize named entities in a tar-
get language (e.g., German). One possible way to build such
a cross-lingual NER system is to encode knowledge about
the target language as constraints to regularize the training,
which has been tried before for part-of-speech (POS) tagging
(Ganchev et al. 2010). However, this would require extensive
knowledge of the target language.

Another way is to perform cross-language projection. Most
projection-based methods use a parallel sentence-aligned
bilingual corpus, or a bi-text. For example, Yarowsky et al.
(2001) use an English NER tagger on the English side of
a bi-text, then project its token-level predictions to the tar-
get side, and finally train a NER tagger on them. Wang and
Manning (2014) project model expectations and use them
as constraints rather than directly projecting labels, to better
transfer information and uncertainty across languages. Joint
learning of NER tags and cross-lingual word alignments has
also been proposed (Wang, Che, and Manning 2013). Over-
all, all of these methods require a bi-text with NER tags on
one side, which is not typical for low-resource languages.
Sentence-aligned parallel corpora are often not available for
low-resource languages, and building such corpora could be
even more expensive than building the NER dataset.

It is only recently that researchers have proposed cross-
lingual NER models for low-resource languages. Lin et al.
(2018) propose a multi-lingual multi-task architecture to de-
velop supervised NER models with minimal amount of la-
beled data in the target language. Xie et al. (2018) propose an
unsupervised transfer model by projecting source language
tags into the target language through word-to-word transla-
tion using the unsupervised word translation model of Con-
neau et al. (2017). However, this approach has several key
limitations. First, for each target language, they need to trans-
late from source to target and learn a brand new NER model.
For this, they have to pre-compute a translation dictionary
based on nearest neighbour search over the vocabulary items,
which is often computationally expensive (e.g., fasttext-en-
wiki has ∼2M items). This makes it difficult to scale time-
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and memory-wise. Furthermore, this often requires (as they
do) a target language labeled development set to select the
best model. Therefore, although the translation process is
unsupervised, their NER model is not purely unsupervised.1
Also, the training of the target language NER model is done
without any knowledge about the source.

Comprehensible Output (CO) theory (Swain and Lapkin
1995) of Second-Language Acquisition (SLA) states “learn-
ing takes place when a learner encounters a gap in his or her
linguistic knowledge of the second language. By noticing
this gap, the learner becomes aware of it and may be able to
modify his output so that he learns something new about the
language”. In other words, in SLA, the first language plays
an important role in learning the second language.

In this paper, we propose an unsupervised (or zero-
resource) cross-lingual neural NER model, which allows
one to train a model for a target language, using labeled
data from a source language. Inspired by the CO theory of
SLA, we propose to learn the second language task under the
supervision of the first language as opposed to completely
forgetting about the first language. Thus, rather than doing
word- or phrase-based translation (Xie et al. 2018; Mayhew
et al. 2017), we choose to learn a base NER model on the
source language first, and then tune the base model further
in the presence of both languages to maximize the objective.

Our framework has two encoders – one for the source lan-
guage and the other for the target. Our source model is based
on a bidirectional LSTM-CRF (Lample et al. 2016), which
we transfer to a target model in two steps. We first project
the mono-lingual word embeddings to a common space
through word-level adversarial training. The word-level map-
ping yields initial cross-lingual links between two languages
but does not take any NER information into account. Trans-
ferring task information in the cross-lingual setup is specifi-
cally challenging because languages vary in the word order.
To tackle this, we propose an augmented fine-tuning method
with parameter sharing and feature augmentation, and jointly
train the target model in supervision of the source model. In
summary, we make the following key contributions:
• We propose a novel unsupervised cross-lingual NER

model, assuming no labels in target language, no parallel
bi-texts, no cross-lingual dictionaries, and no comparable
corpora. To the best of our knowledge, we are the first
to show true unsupervised results (validation by source-
language) for zero-shot cross-lingual NER.

• Our approach is inspired by the CO theory of how humans
acquire a second language, which enables easy transfer to
a new language. Our approach only requires the tuning of
the pre-trained source model on the (unlabeled) target data.

• We systematically analyze the effect of different compo-
nents of the model and their contributions for transferring
the NER knowledge from one language to another.

• We report sizable improvements over state-of-the-art
cross-lingual NER methods on five language pairs encom-
passing languages from different families (2.43 for Span-

1We use ‘unsupervised’ to refer to cross-lingual models that do
not use any NER labels in the target language.

ish, 2.21 for Dutch, 6.14 for German, 7.1 for Arabic, 5.73
for Finnish). Our method also outperforms the models that
use cross-lingual and multilingual external resources.

• We have released our code for research purposes.2

Problem Definition
Our objective is to transfer NER knowledge from a source
language (e.g., English) to a target language (e.g., German) in
an unsupervised way. While doing so, we also wish to provide
the landscape of the probable solutions and analyze different
solution stages and the importance of different components
of the neural model. We make the following assumptions.
• We have access to mono-lingual corpora for both source

and target languages to create pretrained word embeddings
such as fasttext (Grave et al. 2018).

• For training, we assume that we have NER labels only for
the source language dataset.

• We consider two validation scenarios for model selection:
(i) we have access to a labeled target language validation
set, and (ii) only source language validation set is available.
Learning cross-lingual models involves two fundamental

steps: (i) learn a mapping between the source and the target
language, and (ii) retrain the mapped resources to maximize
the task objective. These two steps can be done separately or
jointly. For example, (Xie et al. 2018) first translate the source
sequences to target word-by-word (step i), then they learn a
target language NER model using the translated texts and
projected NER tags (step ii). However, as mentioned before,
this approach has several key limitations. Besides, training
over the (translated) source sequence makes the sequence
encoder more dependent on the source language order, which
could introduce noise for the target language.

In contrast, we propose to perform mapping and task trans-
fer jointly. Our model comprises two encoders – one for the
source language and the other for the target. We first train
a base NER model on the source language, and use it to
jointly train the target model through adversarial learning
and augmented fine-tuning. This way, the model is able to
learn from both source and target sequences. In the follow-
ing, we first describe our base model, then we present our
novel unsupervised cross-lingual transfer approach.

Our Source (Base) Model
Our source (base) model has the same architecture as Lam-
ple et al. (2016), as shown in Figure 1 (the left portion).
Given an input sentence s = (w1, . . . ,wm) of length m, we
first encode each token wk with a character-level bi-LSTM
(Hochreiter and Schmidhuber 1997), which gives a token
representation wch

k
by sequentially combining the current in-

put character representation with the previous hidden state in
both directions. The character bi-LSTM (shown at the bottom
in the box) captures orthographic properties (e.g., capitaliza-
tion, prefix, suffix) of a token. For each token wk , we also
have a word embedding wwr

k
that we fetch from a pretrained

word embedding matrix. The pretrained word vectors cap-
ture distributional semantics of the words. We concatenate

2https://github.com/ntunlp/Zero-Shot-Cross-Lingual-NER
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the character-level representation of a word with its word em-
bedding to get the combined representation xk = [wch

k
; wwr

k
].

Let X = (x1, . . . , xm) denote the representation of the
words in the sentence that we get from the character bi-
LSTM and embedding lookup. X is then fed into another
word-level bi-LSTM, which is also processed recurrently to
obtain contextualised representations of the words.

The word-level bi-LSTM captures contextual information
by propagating information through hidden layers, and can be
used directly as a feature for NER classification. However, its
modeling strength is limited compared to structured models
that use global inference to model consistency in the out-
put, especially in tasks having strong dependencies between
output labels such as NER. Therefore, instead of classifying
words independently with a Softmax layer, we model them
jointly with a CRF layer (Lafferty et al. 2001).

For an input-output sequence pair (X, y), we define the
joint probability distribution as follows.

p(y |X ) =
1

Z (θs)

m∏
i=1

ψn(yi |ui,V )︸���������︷︷���������︸
node factor

m∏
i=0

ψe (yi,i+1 |A)︸���������︷︷���������︸
edge factor

(1)

where (u1, · · · , um) are the LSTM encoded contextualized
word vectors, and ψn(yi = j |ui,V ) = exp(VT

j ui) is the
node-level score with V being the weight matrix, ψe is the
transition matrix parameterized by A, and Z (.) is the normal-
ization constant to ensure a valid probability distribution, and
θs denotes all the parameters of the (source) model. The cross
entropy loss for the (X, y) sequence pair is:

Ls (θs ) = −
m∑
i=1

logψn (yi |ui,V ) −
m∑
i=0

log Ai, i+1 + log Z (2)

We use Viterbi decoding to infer the most probable tag
sequence for an input sequence, y∗ = arg maxy p(y |X, θs).

Following Lample et al. (2016), we use a point-wise dense
layer to transform the word representations before passing
them to the CRF layer. As described later, the dense layer
works as a common encoder in our cross-lingual model
through which the two encoders share task information and
common language properties.

Our Cross-Lingual Model
Our main goal is to learn a mapping of NER distributions
between source and target languages. Neural approaches
to NER depend heavily on fixed or contextualized pre-
trained embeddings (Peters et al. 2018; Devlin et al. 2018;
Akbik, Blythe, and Vollgraf 2018). However, when we learn
the embeddings for two different languages separately, their
distribution spaces are very different even for closely related
languages (Søgaard, Ruder, and Vulić 2018). For example,
Figure 3a shows the t-SNE plot for NER tagged monolingual
embeddings for English and Spanish. We see that the distri-
butions are very different. Mapping these two distributions
is indeed a very challenging task, especially in the unsuper-
vised setup where no parallel data or dictionary is given. The
challenge is further compounded by the requirement that the
mappings should also reflect NER information; the effective
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Figure 1: Our proposed model for unsupervised Cross-
lingual Named Entity Recognition.

modeling of NER requires the consideration of sequential
dependencies, which generally vary between two languages
under consideration.

Figure 1 shows the overall architecture of our cross-lingual
NER model. We add three new components to the base model
described in the previous section: (i) a separate encoder for
the target language with shared character embeddings (box on
the right) followed by a target-specific dense layer, (ii) word-
level adversarial mappers that can map word embeddings
from one language to another (shown in the middle of the
two boxes), and (iii) an augmented fine-tuning method with
parameter sharing and feature augmentation.

Target Encoder with Shared Character Embedding
Our target encoder parameterized by θt has the same archi-
tecture as the source encoder – a character-level bi-LSTM
followed by a word-level bi-LSTM. Having a separate en-
coder as opposed to a shared one allows us to explicitly model
specific characteristics (e.g., morphology, word order) of the
respective languages. However, this also adds an additional
challenge on how to effectively share the NER knowledge
between the two encoders.

To promote knowledge sharing through cross-lingual map-
ping, we share the character embeddings of the two languages
by defining a common embedding matrix. If two languages
share alphabets or words, these common features can be used
as a prior to learn the mapping.3

Word-level Adversarial Mapping
Sharing of character embeddings works only for languages
that share alphabets. Even for languages sharing alphabets,
it can only provide an initial mapping that is often not good

3We also tried subword units with BPE. However, given that the
datasets are small, it did not give any additional gain.
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enough to learn cross-lingual mappings. To learn the word-
level mapping in an unsupervised way, we adopt the adver-
sarial approach of Conneau et al. (2017).

Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be two sets
consisting of n and m word embeddings of d-dimensions for a
source and a target language, respectively. We assume that X
and Y are trained independently from monolingual corpora.
Our aim is to learn a mapping f (y) in an unsupervised way
(i.e., no bi-lingual dictionary is given) such that for every yi ,
f (y) corresponds to its translation inX . LetWt→s denote the
linear mapping weight from target to source, and θD denote
the parameters of a discriminator D (a binary classifier). We
define the discriminator and adversary losses as follows.

LD (θD |Wt→s) = − 1
m

m∑
j=1

log PθD (src = 0|Wt→s y j )

− 1
n

n∑
i=1

log PθD (src = 1|xi) (3)

Ladv(Wt→s |θD ) = − 1
m

m∑
i=1

log PθD (src = 1|Wt→s y j )

− 1
n

n∑
i=1

log PθD (src = 0|xi) (4)

where PθD (src|z) is the probability according to D to distin-
guish whether z is coming from the source (src = 1) or from
the target-to-source mapping (src = 0). The mapper Wt→s is
trained jointly to fool the discriminator D.

Adversarial training gives an initial word-level mapping,
which is often not good enough. A refinement step fol-
lows, to enrich the initial mapping by considering the global
properties of the embedding spaces. Following Conneau et
al. (2017), we use refinement with the Procrustes solution,
where we first induce a seed dictionary using the learned
mapper from our adversarial training. In order to find the
nearest source word (x) of a target word (y) in the common
space, we use the Cross-domain Similarity Local Scaling
(CSLS). With the seed dictionary, we apply the following
Procrustes solution to improve the initial mappings, Wt→s .

Wt→s = VUT , where UΣVT = SVD(XTY ) (5)

We perform this fine-tuning iteratively: induce a new dictio-
nary using CSLS on the newly learned mapping, then use
the dictionary in the Procrustes solution to improve the map-
ping. The mapper for source to target Ws→t can be similarly
trained to map the source embedddings to the target space.

Augmented Fine-tuning
The word-level adversarial training gives a mapping of the
words independently. However, NER is a sequence labeling
task, and the word order varies from one language to another.
Besides, the word-level cross-lingual mapping process does
not consider any task information (NER tags); it is simply a
word translation model. As a result, the mappings may still
lack alignments based on the NER tags. This can be seen in

Figure 2: Sentence length vs. correctly tagged target words.

Figure 3b, where the words are mapped to their translations
but not clustered according to their NER tags.

To learn target language ordering information in the tar-
get encoder and simultaneously transfer the NER knowledge
from the source model, we propose a novel augmented fine-
tuning method, which works in three steps.

(i) Source model pretraining through weight sharing.
We first train an NER model on the source where we have
supervision. Our goal is to use this source model to generate
pseudo NER labels for the target language sentences in the
second step. Therefore, we train the model on the mapped
representation of the source words. Formally, we optimize:

P∑
i=1
Li

s (θs |Ws→t ) (6)

where Li
s is the CRF classification loss in Equation 2 with

P being the number of training samples in the source.
The word order in the target language generally differs

from the source. To make the model more effective on target
sentences, we promote order invariant features in the source
encoder by binding the parameters of the forward and back-
ward layers of the character bi-LSTM and word bi-LSTM.
Later in our experiments we show its effectiveness. Sharing
also reduces the number of parameters and helps to achieve
better generalization across languages (Lample et al. 2018).
We will refer to this pretrained model as the mapped source
model or simply source model parameterized by θs .

(ii) Generating pseudo target labels. Since our source
model is already trained in a cross-lingual space, it can di-
rectly be applied to infer the NER tags for the target sentences.
As shown in Figure 3b, the word-level mapping provides
good initial alignments that can be used to produce pseudo
training samples in the target language to bootstrap training.

However, since the source model initially does not have
any knowledge about the target language word order, it may
generate noisy labels as the length of the target sentence in-
creases. For example, Figure 2 shows the ratio of correctly
tagged target words for different sentence lengths in differ-
ent language pairs. We notice that the noise ratio is less for
shorter sentences and it increases upto a point as the length
increases. To effectively train our models with the pseudo
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(a) Mono-lingual embeddings (b) Cross-lingual embeddings (c) Common encoder output distribution

Figure 3: t-SNE plot of NER tagged embeddings of two languages with 1000 samples: (a) Mono-lingual embeddings (fasttext),
(b) Cross-lingual embeddings after word-level adversarial training, (c) Embeddings from our common encoder.

target labels, we adopt a stochastic selection method based
on sentence length. In particular, we randomly select a length
threshold l from a uniform distribution U (min,max), where
min and max are the minimum and maximum (target) sen-
tence lengths respectively, and then we train our models only
on sentences that have a maximum of l words; see Algorithm
1. This length restricted stochastic training schedule enables
the model to tackle the learning-inference gap between short
and long sentences.

(iii) Joint training with feature augmentation. We train
our target NER model jointly with the source model with
feature augmentation. For each batch from the source, we
optimize our source model as before (Equation 6). For each
target batch with pseudo labels, we jointly train the source
and the target model, and the features from the source encoder
are augmented with the features from the target encoder (see
Figure 1). The overall loss function of our model is:

L(θs, θt ) =
P∑
i=1
Li

s (θs |Ws→t )

︸������������������︷︷������������������︸
source batch

+

Q∑
j=1
L j

t (θs )

︸��������︷︷��������︸
target batch

+

Q∑
j=1
L j

t (θt )

︸�������︷︷�������︸
target batch

(7)

where Q is the number of target samples considered for train-
ing. This joint training with augmented features ensures that
the target model does not overfit on the (potentially) noisy
target samples. In a way, the source model guides the target
one. Algorithm 1 provides the pseudocode of our training
method. Fig. 3c shows a sample output distribution of our
common encoder. We can see that the representations are
now well clustered based on the NER tags.

Experimental Settings
Dataset We experiment with five different target languages
— Spanish, Dutch, German, Arabic and Finnish. The source
language is always English, for which we have sentences
tagged with NER classes. The data for English is from the
CoNLL-2003 shared task for NER (Sang and Meulder 2003),
while the data for Spanish and Dutch is from the CoNLL-
2002 shared task for NER (Sang 2002). We collected the
Finnish NER dataset from (Ruokolainen et al. 2019)4 and

4Available from https://github.com/mpsilfve/finer-data

Algorithm 1: Augmented fine-tuning for x-lingual NER

Input : Data DS = {xi, yi }Pi=1, DT = {x j }Qj=1,
Monolingual Embeddings Es and Et .

// Word-level adversarial mapping
1. repeat

repeat
i) Sample batches bs ∼ Es and bt ∼ Et

ii) Update θD on disc. loss LD (θD |W ) for bs
and bt

until n_disc_steps;
Sample batches bs ∼ Es and bt ∼ Et

Update W on adv. loss Ladv(W |θD ) for bs and bt
until w_steps;
// Source model pre-training
2. repeat

i) Sample a batch of sentences bs ∼ DS

ii) Update θs on CRF classification loss Ls (θs) for
bs

until n_steps;
// Augmented fine-tuning
3. Sample a length-threshold l from U (min,max)
4. Use θs to infer on DT to create a dataset
Dl

T = {x j, ŷj }Ql

j=1
5. repeat

repeat
i) Sample a batch of sentences bs ∼ DS and

bt ∼ Dl
T

ii) Update θs on CRF loss Ls (θs) for bs and bt
iii) Update θt on CRF loss Lt (θt ) for bt

until n_steps;
Sample a length-threshold l from U (min,max)
Create a target dataset Dl

T = {x j, ŷj }Ql

j=1 using θs
until convergence;

refactored a few tags. For Arabic, we use AQMAR Arabic
Wikipedia Named Entity Corpus (Mohit et al. 2012).5 The
corpus contains 28 annotated Wikipedia articles. We ran-
domly take 20% of the sentences from each article to create

5http://www.cs.cmu.edu/ ark/ArabicNER/
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Language Train Dev. Test
English 14041 3250 3453
Spanish 8323 1915 1517
Dutch 15519 2821 5076
German 12152 2867 3005
Arabic 2166 267 254
Finnish 13497 986 3512

Table 1: Training, Test and Development splits for different
datasets. We exclude document start tags (DOCSTART).

development and test sets.6 The NER data is tagged in the
IOB1 format. Following the standard practice, we convert it
to IOB2 to facilitate evaluation. We train and validate our
model in the IOBES format, which is more expressive, for
all languages except Arabic. Table 1 presents some basic
statistics of the datasets used in our experiments.

Compared Models We experiment with different base-
lines and variants of our model as described below.

• Source-Mono: We train an NER model on the source
language with source word embeddings and apply it to
the target language with target embeddings, which can be
pre-trained or randomly initialized. This model does not
use any cross-lingual information.

• Cross-Word: We project source and target word embed-
dings to a common space using the unsupervised map-
per (Ws→t or Wt→s). This model uses word-level cross-
lingual information learned from adversarial training and
the Procrustes-CSLS refinement procedure.

• Cross-Shared: This model is the same as Cross-Word,
but the weights of the forward and backward LSTM cells
are shared to encourage order invariance in the model.

• Cross-Augmented: This is our full cross-lingual model
trained with source labels and target pseudo-labels gener-
ated by the pretrained model and the model itself.

Model Settings We only use sentences with a maximum
length of 250 words for training on the source language data.
We use FastText embeddings (Grave et al. 2018), which are
trained on Common Crawl and Wikipedia, and SGD with a
gradient clipping of 5.0 to train the model. We found that the
learning rate was crucial for training, and used a decaying
rate to scale it down after every epoch. In particular, the
learning rate was set to max( lr0

1+decay∗epoch , 0.0001). The
initial learning rate of lr0 = 0.1 and decay = 0.01 worked
well with a dropout rate of 0.5. We trained the model for
30 epochs while using a batch size of 16, and evaluated the
model after every 150 batches. The sizes of the character
embeddings and char-LSTM hidden states were set to 25.
Our word LSTM’s hidden size was set to 100. The details of
the hyperparameters are given in our Github repository.7 We

6Both Arabic and Finnish dataset splits can be found at
http://github.com//ntunlp/Zero-Shot-Cross-Lingual-NER

7https://github.com/ntunlp/Zero-Shot-Cross-Lingual-NER

Emb. type Emb. dim F1 score
English
(Lample et al. 2016) random 100 83.63
(Lample et al. 2016) skip-ngram, no-char 100 90.20
(Lample et al. 2016) skip-ngram 100 90.94
Our glove 200 91.05 0.37
Our fasttext 300 89.77 0.19
Spanish
(Lample et al. 2016) skip-ngram 64 85.75
(Xie et al. 2018) glove 300 86.26 0.40
Our fasttext 300 84.71 0.06
Dutch
(Lample et al. 2016) skip-ngram 64 81.74
(Xie et al. 2018) glove 300 86.40 .17
Our fasttext 300 85.16 0.21
German
(Lample et al. 2016) skip-gram–no-char 64 75.06
(Lample et al. 2016) skip-gram 64 78.76
(Xie et al. 2018) glove 200 78.16 0.45
Our fasttext 300 78.14 0.32
Arabic
Our fasttext 300 75.49 .53
Finnish
Our fasttext 300 84.21 0.13

Table 2: Monolingual NER results in the supervised setting.

conducted all the experiments in Table 3 and Table 4 five (5)
times, and report the mean, standard deviation and maximum
value.

Results
Monolingual Results
In Table 2, we show the effect of different embeddings on
the NER task. We observe that character embeddings con-
tribute very little towards learning the monolingual NER
task. Though the monolingual model performs better with
GloVe embeddings (Pennington et al. 2014), adversarial
training performs better with FastText (Bojanowski et al.
2017), so we use FastText embeddings for all of our experi-
ments.

Source-Mono In Table 3, we show how the source base
models perform when they are directly applied to the target
language. We can see that the model only learns when charac-
ter embeddings (shared) are used. Random word embeddings
provide better results than monolingual word embeddings.

Cross-lingual Results
Word-level Mapping For all language pairs except En-Ar
and En-Fi, projecting word embeddings from the source to
the target language achieves the best results. For En-Ar, we
could not get reasonable results for source-to-target projec-
tion, which is an issue, as discussed by Hoshen and Wolf
(2018).8

Baseline Results From Table 4 we can see that the Cross-
Word model with character LSTM performs significantly

8See https://github.com/ntunlp/Zero-Shot-Cross-Lingual-NER
for detailed results.
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Model Language pair F∗1 score F1 score
Mono-lingual word-emb
Wrd-LSTM-CRF en-{es,nl,de,ar,fi} x x
Ch-LSTM-Wrd-LSTM-CRF en-es 33.66 0.90 26.76 1.45
Ch-LSTM-Wrd-LSTM-CRF en-nl 25.692 1.75 20.94 0.74
Ch-LSTM-Wrd-LSTM-CRF en-de 12.54 3.07 8.34 1.43
Ch-LSTM-Wrd-LSTM-CRF en-ar x x
Ch-LSTM-Wrd-LSTM-CRF en-fi 25.05 0.54 22.44 2.23

Random word-emb
Wrd-LSTM-CRF en-{es,nl,de,ar,fi} x x
Ch-LSTM-Wrd-LSTM-CRF en-es 36.87 2.46 32.61 1.71
Ch-LSTM-Wrd-LSTM-CRF en-nl 32.47 0.92 24.74 0.48
Ch-LSTM-Wrd-LSTM-CRF en-de 14.70 0.35 11.51 0.71
Ch-LSTM-Wrd-LSTM-CRF en-ar x x
Ch-LSTM-Wrd-LSTM-CRF en-fi 26.05 0.44 17.36 3.34

Table 3: Results for monolingual models applied to tar-
get language NER task. ‘x’ means the model fails to learn
anything. F∗1 and F1 scores are calculated by tuning on the
development datasets of the target and source, respectively.

better than the monolingual model (Source-Mono, Table 2)
for all languages.

Our Main Results The Cross-Shared model, in which the
weights of the forward and backward LSTM cells are shared,
gives us 1.73 and 0.71 absolute F1 score increments for the
English to Spanish and Dutch language pairs respectively,
over the Cross-Word (with/without character) model (Table
4). This already achieves a SOTA result by an absolute F1
score of +0.89 for the English-Spanish language pair.

Our Cross-Augmented model, (Tables 4-5) that performs
adaptation from source to target language, achieves SOTA
performance for all language pairs. It improves over the pre-
vious SOTA by 2.43, 2.21, 6.14 and 5.73 F1 for the English to
Spanish, Dutch, German and Finnish language pairs respec-
tively, even outperforming multi-lingual models. Our model
also outperforms the models that use cross-lingual resources
for all languages - including German, which has not been the
case in previous works. We also show the effectiveness of
our model by reporting results on a “proxy" low-resource9
dataset (Arabic), where there is no improvement using the
Cross-Shared model, but a gain of +7.1 F1 using the Cross-
Augmented method.

Analysis
Char embeddings Contrary to the monolingual case, we
find that pretrained source character embeddings make a sig-
nificant contribution towards transferring NER knowledge in
the cross-lingual task, if the two languages have similar mor-
phological features (en-es, en-nl, en-fi). For Arabic (does not
share characters with English), the character embeddings
only seem to work as noise. However, in case of German,
there is a similar noise effect despite the shared characters.
Presumably, this is because of the differences in the capital-
isation patterns, since German capitalises all nouns.

9In the Wikipedia dump as of September 2019, Arabic/English
size ratio is 891/16384 (in MB)=.0543 ( 5.5% of en)

Embedding distribution In the cross lingual model, the
baseline results improve significantly. 3a and 3b show the
distributions of the pairs of monolingual and cross-lingual
embeddings. As the two languages do not share (Fig 3a) any
space in their distribution, it is impossible for the model to
learn anything. Monolingual embeddings also hamper train-
ing; random embeddings increase the transfer score (Table
3), but the model performs poorly with random embeddings
for monolingual training (Table 2). However, the result im-
proves in 3. This suggests that we need to search for a better
common space for both languages; thus, we perform cross-
lingual projection by adversarial training.

Shared LSTM cell In order to get better sequence invari-
ance, we experimented with shared weights in forward and
backward LSTM cells. This comes from the idea of learn-
ing less to transfer more. For Spanish and Dutch, this leads
to significant improvements in results along with a 47% re-
duction in parameters. For German and Finnish there is no
significant difference, but the number of parameters are re-
duced by 54% and 47%. However, for Arabic, there is a drop
in the results, probably because of significant word-order dif-
ferences with the source language (English).

Effect of Sentence Length One of our main assumptions
is that pseudo-labels can reduce the entropy of the model
(Grandvalet and Bengio 2004). Sentence length is a good
feature for finding better pseudo-labels. However, this comes
with a cost. To study the effect of sentence length while
training the Cross-Augmented model, we perform experi-
ments with sentences of lengths varying from 30 to 150.
Figure 2 shows that as the sentence length increases, the ra-
tio of correctly tagged sentences reduces. But if we only train
the model on short sentences, the model will overfit on the
short sentences of the target language data. Our main model
addresses this issue by adding a teacher model and randomly
sampling sentence lengths from a uniform distribution.

Source vs. Target NER distribution We report the results
of our model tuned on both target and source development
data. We see that the model tuned on target development data
performs better than the model tuned on source dev data. The
results of the source dev data tuned model should be consid-
ered as the results under a purely unsupervised setting. These
results highlight the differences between the source and tar-
get NER distributions. Tuning on the target dev data therefore
plays a significant role in the results obtained in cross-lingual
NER research thus far. We also tried tuning the model with
target test data. Here also we observe a gap between the re-
sults. To report stable results, the standard practice should
be to report the results of multiple experiments with their
standard deviations. Until now, to our knowledge, the only
other paper to follow this has been Xie et al. (2018).

Related Work
Lample et al. (2016) proposed an LSTM-CRF model for
NER, which passes a hierarchical bi-LSTM encoding to a
CRF layer to encourage global consistency of the NER tags.
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Model Emb. prj. F♠1 (tuned on tgt-dev) F♠1 -max F♦1 (tuned on src-dev) F♦1 -max F♣1 (tuned on tgt-test) F♣1 -max # of params
Cross-Word en→ es 68.63 1.49 70.62 64.79 1.68 67.42 68.90 1.10 70.62 342906 (∼13↓)
(No char LSTM) en→ nl 65.01 0.53 65.73 64.28 0.71 65.05 65.86 0.29 66.25 342906 (∼13↓)

en→ de 58.76 0.70 59.7 57.12 0.53 58.15 59.11 0.37 59.7 342906 (∼13↓)
en← ar 29.81 1.01 31.18 24.79 0.65 25.46 30.74 0.71 31.18 341890 (∼14↓)
en← fi 28.77 1.19 30.01 26.55 0.61 27.71 29.99 0.36 30.44 342906 (∼13↓)

Cross-Word en→ es 72.66 0.39 73.19 70.49 1.34 72.82 73.62 0.70 74.76 395581 (=1x)
en→ nl 70.31 1.01 71.5 69.24 1.32 70.98 71.22 0.41 71.71 395881 (=1x)
en→ de 45.20 2.78 48.94 30.99 1.08 32.82 46.10 1.68 48.94 395756 (=1x)
en← ar 21.39 1.85 24.6 11.84 3.69 15.36 23.37 1.40 24.77 396215 (=1x)
en← fi 47.84 1.12 49.53 44.90 1.26 46.09 48.15 0.88 49.53 395356 (=1x)

Cross-Shared en→ es 74.39 0.94 75.72 71.97 0.85 72.54 74.91 0.81 75.72 210081 (∼47↓)
en→ nl 71.02 1.20 72.89 68.85 1.87 70.69 71.62 0.89 72.89 210381 (∼47↓)
en→ de 58.91 1.03 60.35 56.20 1.38 57.62 59.52 0.62 60.35 182506 (∼54↓)
en← ar 28.28 1.61 29.82 23.32 0.76 24.35 29.89 0.49 30.72 181490 (∼54↓)
en← fi 48.04 1.40 49.3 44.36 2.52 48.37 49.31 0.69 50.13 209856 (∼47↓)

Cross-Augmented en→ es 75.93 0.81 77.03 72.36 1.17 73.7 76.82 0.84 77.81 661281 (∼67↑)
en→ nl 74.61 1.24 76.43 69.43 2.43 72.03 75.47 1.25 77.45 661581 (∼67↑)
en→ de 65.24 0.56 65.83 59.45 2.56 62.61 65.76 0.41 66.02 636356 (∼61↑)
en← ar 36.91 2.74 40.36 27.12 3.00 31.84 38.02 2.41 41.63 797215 (∼101↑)
en← fi 53.77 1.54 56.05 45.69 2.61 50.67 54.42 1.33 56.54 661056 (∼67↑)

Table 4: Cross-lingual results for English → Spanish, English → Dutch, English → German, English → Finnish and
English → Arabic with respect to different settings. We pick the best performing model amongst the Cross-Word (No char
LSTM), Cross-Word and Cross-Shared models. Using this model as the base, we train the Cross Augmented model.

Model Method Word Emb. Lang. Pair
en→ es en→ nl en→ de en→ ar en→ fi

with cross-lingual resources
Tackstrom et al. (2012) Wiki article induction, parallel corpus - 59.30 58.40 40.40 - -
(Nothman et al. 2013) Word cluster features - 60.55 61.60 48.10 - -
(Tsai, Mayhew, and Roth 2016) Feature based methods - 61.0 64.00 55.80 - -
(Ni, Dinu, and Florian 2017) parallel corpus, dict polyglot emb. 65.10 65.40 58.50 - -
(Mayhew, Tsai, and Roth 2017) Cheap Translation, multi-lingual - 65.95 66.50 59.11 - -
(Mayhew, Tsai, and Roth 2017) Cheap Translation, english-only - 51.82 53.94 50.96 - -
without cross-lingual resources
(Xie et al. 2018) Translate (train on translated src) fasttext/MUSE, glove 71.03 0.44 71.25 0.79 56.90 0.76 - -
(Rahimi, Li, and Cohn 2019) Ranking and Retraining fasttext/MUSE 71.8 67.6 59.1 - -
(Chen et al. 2018) MAN-MoE+CharCNN, multi-lingual fasttext/MUSE 71.0 70.9 56.7 - -
(Chen et al. 2018) MAN-MoE+CharCNN, multi-lingual fasttext/UMWE 73.5 72.4 56.0 - -
Our method
Cross-Shared Common space proj (tgt→ src) fasttext/MUSE 74.39 .94 71.02 1.20 58.91 1.03 28.28 1.61 48.04 1.40
Cross-Augmented adaptation to tgt lang fasttext/MUSE 75.93 0.81 74.61 1.24 65.24 0.56 36.91 2.74 53.77 1.54

Table 5: Comparison of Cross-lingual NER results.

This model achieved impressive results for EN, NL, DE and
ES despite not using any explicit feature engineering or man-
ual gazetteers. We extend this base model to a cross-lingual
named entity recognizer for a target language using annotated
data for a source language and only monolingual, unanno-
tated data for the target.

Mayhew et al. (2017) use a dictionary and co-occurrence
probabilities to generate word and phrase based transla-
tions of the source data into a target data and then trans-
fer the labels; although the translation quality is poor, the
words/phrases and most of the relevant context is preserved,
and they are able to achieve good results using a combina-
tion of orthographic and Wikifier (Tsai et al. 2016) features.
Ni et al. (2017) use weak supervision for cross-lingual NER
where they do annotation projection to get target labels and
project word embeddings from the target language to the
source language. Finally, Yang et al. (2017) used a hierar-
chical recurrent network for semi-supervised cross-language

transfer learning, where the source and the target language
share the same character embeddings. Xie et al. (2018) are
the first to propose a neural-based model for cross-lingual
NER using the (Lample et al. 2016) model, with the addition
of a self-attention layer on top of word representation, and
validate the model based on target side development dataset.
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Conclusions and Future Work
In this paper, we contribute a detailed definition of the prob-
lem of cross-lingual NER, thus providing a structure to the
research to come hereafter. We also propose a new method for
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cross-lingual NER that generalizes well by weight-sharing
and iteratively adapting to the target language domain,
achieving SOTA in the process across languages from dif-
ferent language families. In future work, we want to explore
pre-trained language models for cross-lingual NER transfer.
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