
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Zero-Shot Text-to-SQL Learning with Auxiliary Task

Shuaichen Chang,1∗ Pengfei Liu,2 Yun Tang,3 Jing Huang,3 Xiaodong He,3 Bowen Zhou3

1The Ohio State University, 2Fudan University, 3JD.COM AI Research
chang.1692@osu.edu, pfliu14@fudan.edu.cn, {yun.tang, jing.huang, xiaodong.he, bowen.zhou}@jd.com

Abstract

Recent years have seen great success in the use of neural
seq2seq models on the text-to-SQL task. However, little work
has paid attention to how these models generalize to realistic
unseen data, which naturally raises a question: does this im-
pressive performance signify a perfect generalization model,
or are there still some limitations?
In this paper, we first diagnose the bottleneck of the text-to-
SQL task by providing a new testbed, in which we observe
that existing models present poor generalization ability on
rarely-seen data. The above analysis encourages us to de-
sign a simple but effective auxiliary task, which serves as
a supportive model as well as a regularization term to the
generation task to increase the models′ generalization. Ex-
perimentally, We evaluate our models on a large text-to-SQL
dataset WikiSQL. Compared to a strong baseline coarse-to-
fine model, our models improve over the baseline by more
than 3% absolute in accuracy on the whole dataset. More in-
terestingly, on a zero-shot subset test of WikiSQL, our models
achieve 5% absolute accuracy gain over the baseline, clearly
demonstrating its superior generalizability.

Introduction

Text-to-SQL has recently attracted much attention as a
sequence-to-sequence learning problem due to its practical
usage for search and question answering (Dong and Lap-
ata 2016; Zhong, Xiong, and Socher 2017; Xu, Liu, and
Song 2017; Cai et al. 2018; Yu et al. 2018a; Dong and
Lapata 2018; Finegan-Dollak et al. 2018; Yu et al. 2018b;
Wang et al. 2017; Shi et al. 2018; McCann et al. 2018). The
performance on some text-to-SQL tasks has been improved
progressively (Dong and Lapata 2018; Wang et al. 2017;
Shi et al. 2018; Hwang et al. 2019; He et al. 2019) in re-
cent years. As pointed out in (Finegan-Dollak et al. 2018),
when evaluating models on text-to-SQL tasks, we need to
measure how well the models generalize to realistic unseen
data, which is very common in the real applications.

Most of the previous text-to-SQL tasks assumed that all
questions came from a fixed database and hence share one

∗Work done during an internship at JD AI Research
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

global table schema. This assumption is useful for some
specific applications such as booking flights (Dahl et al.
1994) and searching GEO (Zelle and Mooney 1996), but
not applicable to many real scenarios when different ques-
tions involve querying on different tables. (Zhong, Xiong,
and Socher 2017) addressed this problem and generated a
dataset called WikiSQL, which is by far the largest text-to-
SQL benchmark dataset.

In WikiSQL many tables have different table schemas and
each table has its own limited labeled data. One common ap-
proach is to encode the table column names in the input to
the training of an encoder-decoder model (Yu et al. 2018a;
Dong and Lapata 2018). (Yu et al. 2018a) proposed to utilize
high-level type information to better understand rare entities
and numbers in the natural language questions and encode
these information from the input. These type information
come from either external knowledge graph, a column or
a number. This approach of TypeSQL (Yu et al. 2018a) was
proven to be effective on WikiSQL when it is required for
the model to generalize to new tables.

We observe that a text-to-SQL encoder-decoder model
implicitly learn a mapping between entities in natural lan-
guage questions to column names in tables. The model is
likely to fail on mapping to new table column names that it
never sees before. Hence if we learn a better mapping from
question words to table column names, then the text-to-SQL
generation model would be better generalized to new tables.
With this in mind, we introduce an auxiliary model to en-
hance the existing generation model.

Specifically, we propose a novel auxiliary mapping task
besides traditional text-to-SQL generation task. Here we
explicitly model the mapping from natural language entities
to table column names. The mapping model serves as an
supportive model to the specific text-to-SQL task as well as
regularization to the generation model to increase its gener-
alization. These two tasks are trained together with a multi-
task learning loss. In practice, we adopt the coarse-to-fine
decoder as the prototype of our generation model due to their
superior performance in text-to-SQL tasks. And the genera-
tion model is further improved by introducing bi-attention
layer (question-to-table attention and table-to-question at-
tention) (Seo et al. 2017) and attentive pooling layer (dos

7488

SELECT $AGG $SEL
(WHERE $COND COL $COND OP $COND VAL)
(AND $COND COL $COND OP $COND VAL)*

Figure 1: SQL Sketch. The tokens starting with “$” are slots
to fill. “*” indicates zero or more AND clauses.

Figure 2: Break down accuracy of a strong baseline model
(Dong and Lapata 2018). X-axis represents different subsets
of WikiSQL test set, split by how many times a table occurs
in training data. Splitting details are in Table 2.

Santos et al. 2016).
We test our models on WikiSQL, with emphasis on a

ZERO-SHOT subset, where the table schemas of the test data
never occur in the training data. Compared to the coarse-to-
fine model, our models improve over the baselines by 3%
absolute in accuracy, achieve execution accuracy of 81.7%.
In particular, on the ZERO-SHOT test part of WikiSQL, our
models achieve even more gain, with 5% improvement in
accuracy over the baseline model. 1

In summary our contributions in this paper are three-fold:
1) We find the existing testbed covers up the true general-

ization behavior of neural text-to-SQL models, and propose
a new zero-shot test setting.

2) We improve the generalization ability of existing mod-
els by introducing an auxiliary task, which can explicitly
learn the mapping between entities in the question and col-
umn names in the table.

3) The zero-shot evaluation not only shows the superior
performance of our proposed method compared with the
strong baseline but makes it possible to explain where the
major gain comes from.

Background

Text-to-SQL Task

Text-to-SQL task can be formulated as a conditional text gen-
eration problem, in which a question Q and a table C are
given, the goal is to generate a SQL language Y .

1Our code can be found in https://github.com/JD-AI-Research-
Silicon-Valley/auxiliary-task-for-text-to-sql

Figure 1 illustrates WikiSQL output format which con-
sists of three components: AGG, SEL, and WHERE. Partic-
ularly, WHERE clause contains multiple conditions where
each condition is a triplet with the form of (condi-
tion column, condition operation, condition value).

Encoding Layer The questionQ and corresponding table
schema C are first translated into the hidden representation
by a BiLSTM sentence encoder:

hq
t = BiLSTM(

−→
h q

t−1,
←−
h q

t+1,qt, θ)

hC
t = BiLSTM(

−→
h C

t−1,
←−
h C

t+1Ct, θ)

where qt is embedding of question word qt and Ct is the
representation of a column name Ct which consists of words
c1t , · · · , c|Ct|

t . The first and last hidden state of a BiLSTM
over Ct is concatenated as Ct.

Decoding Layer Different from traditional text generation
tasks, which share a decoder cross time-steps, in Text-to-
SQL task, different decoders are designed in terms of differ-
ent operations. Generally, these decoders can be classified
two types: CLS for classifier, and PT for pointer.

CLS is used for the operations, such as AGG and
COND OP:

CLS(hd
t , θ) = softmax(hd

t , θ) (1)

where hd
t is one decoder hidden representation.

PT can be used to choose a proper column or word from
a set of column or words. Formally, We refer to hd

t as
a pointer-query vector and K = {k1, ..k|K|} as a set of
pointer-key vectors, and predict the probability of choosing
each key:

PT(hd
t ,K) = softmax(u) (2)

ui can be obtained as:

ui = vT tanh (W[hd
t , ki] + b), i ∈ (1, ..., |K|) (3)

Diagnosing the Bottleneck of Text-to-SQL

The existing testbed covers up the true generalization behav-
ior of existing models. To address this problem, we provide
a new testbed by breaking down the testing samples. Specif-
ically, we analyze the generalization problem on table aware
Text-to-SQL tasks, by testing previous state-of-the-art model
(Dong and Lapata 2018) on different tables which occur dif-
ferent times in training set. We observe the following prob-
lems based on Figure 2:
• WHERE clause performance is more sensitive to how many

times the table has been seen in the training data;
• The performance of WHERE would get a big drop once

the table in test set is not present in the training data, i.e.
zero-shot testing case.
Despite of the importance of the generalization problem

of unseen tables, few work explored it due to the lack of ap-
propriate datasets. The WikiSQL dataset was originally con-
structed to ensure that the training and test set have disjoint

7489

(a)

(b)

Figure 3: Illustration of our model. The upper figure is the text-to-SQL generation model which consists of three parts: encoder
(lower left), AGG/SEL decoder (upper left) and where decoder (upper right). Lower right is WHERE decoder cell. The bottom
figure is our auxiliary mapping model with the ground-truth label of an example. Question word is mapped to a column only
when it is tagged as part of a condition value (Bv or Iv).

set of tables, which can provide a test bed for generalization
test of new tables. However, we find that the current version
of WikiSQL test cannot guarantee this because different ta-
bles extracted from different wiki pages may share the same
table schema (i.e. table column names), even though their
table content may not be the same.

The above problems motivate us to explicitly model
the mapping between words in question and table column
names, and test the model generalization to new tables on
the true zero-shot sub testset of WikiSQL.

Model

Our model consists of a seq2seq model for the SQL gen-
eration task (largely following the baseline coarse-to-fine
model), and a mapping model as a auxiliary task to explicitly
map question words to table schema (column names).

Main Generation Model

Encoder we follow the background section to obtain
question and schema hidden representation Hq and Hc. To
enhance the interaction between question words q and col-
umn name c, a bi-attention is used to generate final question
and table schema representation:

H̄q, H̄c = BiAtt(Hq,Hc, θ)

Considering the nature of structured SQL, we follow pre-
vious works to use different sub-decoders for AGG, SEL and
WHERE clause. Especially, our WHERE decoder is adapted
from the baseline model (Dong and Lapata 2018).

AGG and SEL Decoder Each SQL only contains one AGG
and SEL, so we generate AGG and SEL based on entire ques-
tion representation. Since different words or phrases in ques-
tion do not equally contribute to the decisions of AGG and

7490

SEL, we employ an attentive pooling layer over H̄q to gen-
erate final hidden representation qSEL for AGG and SEL.

We feed qSEL into CLS layer to generate the aggregation
operation AGG and meassure the similarity score between
qSEL and each column name C̄j to predict SEL with PT
layer in (2):

yAGG = CLS(qSEL, θ)

ySEL = PT(qSEL, H̄c)

WHERE Decoder We take the WHERE decoder from the-
state-of-the-art model (Dong and Lapata 2018), which first
generates a slot sketch of WHERE clause and transform the
SQL generation into a slot filling problem. There are 35 cat-
egories of WHERE clauses in WikiSQL and each one is sub-
sequence of WHERE clause which skips the COND COL and
COND VAL. For example, ”WHERE= AND> ” is a sketch of
WHERE clause which has 2 conditions. We first predict the
sketch α based on H̄q:

yα = CLS(qWhere, θ),

where qWhere = [h̄q
1, h̄

q
|Q|].

Once yα is predicted, we obtain the COND OP sequence
it represents. We embed each operation in COND OP se-
quence and feed them into WHERE-decoder cell. As Figure 3
shows, the WHERE-decoder cell takes one COND OP as in-
put and output COND COL and COND VAL for each decoder
time step, while each decoder time step has 3 LSTM time
steps. For the ith condition, xd

i,1,xd
i,2,xd

i,3 are COND OPi and
COND COLi and COND VALi and output ydi,1,ydi,2 are proba-
bility distribution of the index of COND COLi and the span
of COND VALi. We do not have output for each ydi,3 be-
cause the input of next time step is given by pre-predicted
COND OPi+1. The lstm-cell is updated 3 times inside the
WHERE-decoder cell for each decoder time step:

hd
i,j =

{
LSTM(xd

i,j , h
d
i,j−1) j �= 1

LSTM(xd
i,j , h

d
i−1,3) j = 1

The output layers for COND COL and COND VAL are both
pointer layer which are pointed to column names and ques-
tion words to predict COND COL index and the left and right
end V ALl, V ALr of the span of COND VAL in question:

ydi,1 = PT(hd
i,1,Hc)

ydi,2 = P (V ALl
i|·) · P (V ALr

i |V ALl
i, ·)

P (V ALl
i|·) = PT(hi,2,Hq)

P (V ALr
i |V ALl

i, ·) = PT([hi,2; h̄
q

V ALl
i

],Hq)

Auxiliary Mapping Model

For a SQL query, each condition consists of three parts,
COND COL, COND OP and COND VAL. Our mapping model
aims to discover the mapping between condition column and
condition value. The mapping prediction is based on ques-
tion and table schema representation Hq and Hc, which are

shared with generation model. Optimization based on map-
ping task loss can improve the question and table schema
representation. An intuitive way to achieve mapping is to di-
rectly learn a mapping function from each word in question
to column names. However, since not all words in a ques-
tion are condition values, it’s challenging to take all words
into consideration. To address this problem, we propose a
two-step mapping model, in which we first learn a detector
to screen out condition values, and then we learn a mapping
function from condition values to column names.

Condition Value Detection Because the condition value
sometimes covers multiple words, we label the span for con-
dition values in questions with typical BIO (Nadeau and
Sekine 2007) tags. We notice sometimes condition column
names appear exactly in question, so the span of column
name in question is also labeled with tags Bc, Ic during train-
ing when a column name appear in question. Altogether we
have five tags Bc, Ic, Bv, Iv, O, which represent the first
word of condition column, subsequent word of condition
column, the first word of condition value, subsequent word
of condition value and outside, respectively. Figure 3 illus-
trates our mapping model by giving the ground-truth label
for an example.

The mapping model takes encoding vector of ques-
tion words H̄q = h̄q

1, ..., h̄
q
|Q| and column names H̄c =

h̄c
1, ..., h̄

c
|C| as input. Mapping model first predict gate ytag:

ytagi = argmax(vtag tanh(Wtagh̄
q
i + btag)),

where Wtag ∈ R
5∗H and btag ∈ R

5 are tagging parame-
ters.

Value-column Mapping We only learn the mapping for
question words which are tagged as Bv, Iv:

ymap
i = PT(h̄q

i , H̄c), ytagi ∈ {Bv, Iv}
Loss Function

We refer to the following Lgen as generation task loss and
Lmap as mapping task loss.

Lgen = −
|Y|∑
i=1

yopi log(ŷopi),

Lmap = −
|Q|∑
i=1

ytagi log(ŷtagi)−
K∑
i=1

ymap
i log(ŷmap

i),

where op represents different operations during decoder
phase. y and ŷ denote the probability distribution of real la-
bel and predicted probability distribution. K represents how
many times words in question have been predicted as condi-
tion values.

Finally, the overall loss can be written as:

L =

N∑
i=1

λLgen + (1− λ)Lmap

where N is the number of training samples and λ is hyper-
parameter.

7491

Experimental Setup

Dataset

WikiSQL has over 20K tables and 80K questions corre-
sponding to these tables. This dataset was designed for trans-
lating natural language questions to SQL queries using the
corresponding table columns without access to the table con-
tent. This dataset is further split into training and testing sets
that are separately obtained from different Wiki pages, as-
suming there is no overlap of tables between training and
testing sets. However, we find in this split, 70% question-
table pairs in test set have the same table schema as those
in the training set. This is because even train and test tables
were obtained from different Wiki pages, these tables could
still have the same table schema. For example, different foot-
ball teams have their own Wiki page but each one have a
table with the same schema recording match information.

We split the test set based on the number of shots (the
number of a table occurrences in training data). We report
experiments on the original full WikiSQL test set as well as
different subset based on the number of shots, especially on
the zero-shot testing case. Statistics of new test sets are in
table 2.

Evaluation

We follow the evaluation metrics in (Xu, Liu, and Song
2017) to measure the query synthesis accuracy: query-match
accuracy (ACCqm) which measures the decoded query
match the ground truth query without considering the order
of conditions and execution accuracy (ACCex) which mea-
sures the results from executing predicted queries. The ac-
curacies are further broken down into three categories: AGG,
SEL and WHERE, as in (Xu, Liu, and Song 2017).

Model Configuration

We use 300-dim Glove word embedding as our pre-trained
embedding. Hidden size for all LSTM is 250 and hidden
size in attention function is set to 64. The loss weight λ is
set to 0.5. A 0.5-rate dropout layer is used before each output
layer. Each concatenation is followed by one full-connected
layer to reduce the dimension to the original hidden or at-
tention size. Test model is selected by the best performing
model on validation set.

Overall Results and Analysis

Table 1 shows the overall and breakdown results on full Wik-
iSQL dataset. We compare our models with strong baseline
models on the original WikiSQL test data. All these models
have no access to table content following (Zhong, Xiong,
and Socher 2017).

First our Gen-model with enhanced encoder/decoder im-
proves over the baseline coarse-to-fine model by 1.6% in ac-
curacy of both ACCqm and ACCex. Our Gen-model mainly
improves on ACCSEL compared to baseline models. Abla-
tion test shows it is attributed to the attentive pooling in SEL
decoding.

Second our Full-model outperforms our single genera-
tion model by 1.5% and 1.6% in query-match accuracy and

(a) WHERE DECODER

(b) AGG/SEL DECODER

Figure 4: Accuracy of Full-model and Gen-model in differ-
ent test subsets. W-0 represents zero-shot setting. The fre-
quency of the table has been seen in the training data de-
crease from W-6 to W-0.

execution accuracy, achieving a very competitive new ex-
ecution accuracy of 81.7%. Break down results show Full-
model mainly improves the accuracy over Gen-model on the
WHERE clause, with 1.9% accuracy gain. Break down results
illustrate the function of mapping task, which is to connect
condition value with condition column explicitly.

Training data amount

Figure 4a illustrates Gen-model and Full-model accuracy of
WHERE clause prediction on different test subsets from Table
2. Full-model is consistently better than single Gen-model
in WHERE clause prediction. The biggest gap between Full-
model and Gen-model in WHERE clause accuracy is on test
subset W-0. This shows that Full-model generalizes better
than Gen-model for the unseen test tables. We also found
that Full-model accuracy on W-4 is slightly lower than that
on W-3. We believe this is due to the fact that table itself is
the other fact affecting models’ performance, in addition to
the amount of training tables.

Figure 4b again illustrates Gen-model outperforms Gen-
model without attentive pooling on different amount of

7492

Model ACCqm ACCex ACCagg ACCsel ACCwhere

SEQ2SQL (Zhong, Xiong,
and Socher 2017)

- 59.4% 90.1% 88.9% 60.2%

SQLNET (Xu, Liu, and
Song 2017)

61.3% 78.0% 90.3% 90.9% 71.9%

TypeSQL (Yu et al. 2018a) 66.7% 73.5% 90.5% 92.2% 77.8%

COARSE2FINE (Dong and
Lapata 2018)

71.7% 78.5% 90.4% 92.4% 84.2%

Gen-model w/o AP 72.8% 79.4% 90.2% 93.0% 84.7%

Gen-model 73.5% 80.1% 90.3% 94.2% 84.8%

Full-model 75.0% 81.7% 90.5% 94.5% 86.7%

Table 1: Overall and break down results on full WikiSQL dataset. ACCqm, ACCex are accuracy numbers of query match
(ignore the order of conditions) and execution result, and ACCagg, ACCsel, ACCwhere are the accuracy of AGG, SEL, WHERE
clauses. The upper part are baseline models, and the lower part are our generation model Gen-model and the whole model
Full-model which is the Gen-model with the auxiliary mapping model. Gen-model w/o AP is the generation model without
attentive pooling.

QM EX AGG SEL WHERE
60

70

80

90

#
A
cc
.

C2F Gen-M Full-M

(a) Results on Unseen tables (W-0)

Seen Unseen
60

70

80

90

#
A
cc
.

Gen-M Full-M

(b) Results on seen/unseen columns

Figure 5: C2F, Gen-M and Full-M represent the baseline coarse-to-fine model, and our proposed Gen-model and Full-model
respectively.

training data.

Zero-shot Test

After analyzing the function of our attentive pooling and
auxiliary mapping model, we want to know the effectiveness
of the mapping model in zero-shot setting.

Figure 5a illustrates the results on zero-shot test case (i.e.
W-0). Our Full-model outperforms baseline coarse-to-fine
model by 4.9% and 4.4% in ACCqm and ACCex. The accu-
racy improvement over the baseline coarse-to-fine model lie
on the SEL and WHERE clause. Full-model achieves 3.6%
WHERE accuracy gain for unseen data over the Gen-model
while it outperforms Gen-model by 1.1% on WHERE clause
for seen data (1.9% improvement on all data), which shows
the generalization ability of the auxiliary mapping model on
zero-shot setting.

Figure 4a shows WHERE clause accuracy has a big drop on
zero-shot setting (W-0) compared to few-shot setting (W-1).
We further analyze the reason of this degradation by look-
ing into how the performance is affected by whether a col-
umn name is present in the training data. On unseen test ta-
ble schema, 28% column names never appear in training set,
which makes question related to these columns harder. We
further divide conditions in WHERE clauses into two classes,
one class with condition column appearing in training, the
other with condition column not appearing in training. We
measure the accuracy of each class on the WHERE clause.
The result is reported in Figure 5b. Full-model outperforms
single generation model by 4.2% on unseen column names
and 2.1% on seen column names. Full-model even shows the
better generalization ability for harder data (column names
never appear in training set) comparing to seen columns

7493

dataset number of shots #questions

W-full [0,2045] 15878

W-0 0 5201

W-1 [1,5] 1700

W-2 [6,15] 1842

W-3 [16,40] 1971

W-4 [41,100] 1654

W-5 [101,500] 1887

W-6 [501,2045] 1623

Table 2: Statisitics of WikiSQL test set. W-full is original
WikiSQL test set and W-0, W-1,· · · , W-6 are subsets split
by the number of shots (number of a table occurrences in
the training data).

Examples (a) (b) (c) others

Case-Wrong 63 22 18 4

Case-Correct 71 19 10 3

Table 3: Number of samples in each error categories.

names.

Case Study on Zero-shot Setting

We also manually analyze the Full-model behavior on zero-
shot test compared to the Gen-model alone. We first ran-
domly sample 100 examples of which Full-model pre-
dicts correct on WHERE clause (Case-Correct in Table 3),
while Gen-model fails. We label the failure reasons of Gen-
model into four categories (one example can belong to
more than one categories): (a) wrong COND COL predic-
tion, (b) wrong COND VAL prediction, (c) predicting ex-
tra conditions or missing conditions and (d) others. Table 3
shows the majority of WHERE clause errors are in (a): wrong
COND column name errors. We then randomly sample an-
other set of 100 examples (Case-Wrong in Table 3): Gen-
model predicts WHERE clause correctly on these examples
but Full-model fails. Table 3 indicates Full-model corrects
Gen-model mainly on wrong COND COL prediction, which
shows our mapping task improves column name predic-
tionin the generation task.

Related Work

Recently neural network based approaches, especially seq-
to-seq models have been applied to text-to-SQL successfully
(Wang, Cheung, and Bodik 2017; Neelakantan et al. 2017;
Iyer et al. 2017; Yin and Neubig 2017; Huang et al. 2018;
Zhong, Xiong, and Socher 2017; Xu, Liu, and Song 2017;
Cai et al. 2018; Yu et al. 2018a; Dong and Lapata 2018;
Finegan-Dollak et al. 2018; Hwang et al. 2019).

Sketch-based approach is very effective, especially on
WikiSQL task (Zhong, Xiong, and Socher 2017; Xu, Liu,

and Song 2017; Yu et al. 2018a). In (Zhong, Xiong,
and Socher 2017) SEQ2SQL model used a coarse-grained
sketch: aggregation, SELECT column and WHERE clause;
(Xu, Liu, and Song 2017) used a finer sketch to align to the
syntactical structure of a SQL query with three specific slot-
filling models: model COL, model AGG, and model VAL.
In TypeSQL (Yu et al. 2018a) it also adopted this sketch-
based model structures. However, in (Dong and Lapata
2018) sketch was referred to as abstractions for meaning
representation, leaving out low-level details. This meaning
sketch was used as an input to the final decoding.

One challenge of using neural seq2seq models is the need
of large annotated question-query pairs. (Zhong, Xiong, and
Socher 2017; Cai et al. 2018) have automatically generated
large datasets using templates and had humans paraphrased
the questions into natural language questions. WikiSQL is
by far the largest text-to-SQL dataset. WikiSQL was de-
signed for testing model’s generalization by splitting the ta-
bles in a way that there is no overlap of tables in training and
testing.

Execution guided (EG) decoding was recently proposed
in (Wang et al. 2017) that detects and excludes faulty out-
puts during the decoding by conditioning on the execution of
partially generated output. Adding execution guided decod-
ing to the coarse-to-fine model improved accuracy by 5.4%
on the wikiSQL dataset; and adding on top of the most re-
cent IncSQL model (Shi et al. 2018) improved accuracy by
3.4%. It is proven that the EG module is very effective with
any generative model.

Zero-shot semantic parsing has not obtained enough at-
tention. (Herzig and Berant 2018) applied a pipeline frame-
work, including four independent models to achieve gener-
alization, while our work is end-to-end trained and focus-
ing on improving model’s generalization with an auxiliary
mapping task. Zero-shot slot filling (Bapna et al. 2017) also
leverages the text of schema to connect language question
words to column names (slots), but their model needs to pre-
dict the probability of each possible column indepentently
while our model can select the column by processing the
question and schema one time.

Conclusions and Future Work

In this paper, we propose a novel auxiliary mapping task for
zero-shot text-to-SQL learning. Traditional seq2seq gener-
ation model is augmented with an explicit mapping model
from question words to table schema. The generation model
is first improved by an attentive pooling inside the question,
and bi-directional attention flow to improve the interaction
between the question and table schema. The mapping model
serves as an enhancement model to text-to-SQL task as well
as regularization to the generation model to increase its gen-
eralization.

We compare our models with the a strong baseline coarse-
to-fine model on the original WikiSQL testset as well as
on the totally unseen test tables (a subset of zero-shot test-
ing). Experimental results show that our models outperform
baseline models on both setting. Even though the generation
model is already augmented with bi-directional attention to

7494

enhance the interaction between question and table, our re-
sults and analysis demonstrate that the explicitly mapping
task can further increase the capability of generalization to
unseen tables.

Spider (Yu et al. 2018b) was recently proposed as another
large cross-domain text-to-SQL dataset besides WikiSQL.
It has more complex SQL templates including joint tables,
which brings other interesting problems except for general-
ization. We plan to expand our models on this new dataset
in the future.

References

Bapna, A.; Tur, G.; Hakkani-Tur, D.; and Heck, L. 2017. To-
wards zero-shot frame semantic parsing for domain scaling.
arXiv preprint arXiv:1707.02363.
Cai, R.; Xu, B.; Yang, X.; Zhang, Z.; and Li, Z. 2018. An
encoder-decoder framework translating natural language to
database queries. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence.
Dahl, D. A.; Bates, M.; Brown, M.; Fisher, W.; Hunicke-
Smith, K.; Pallett, D.; Pao, C.; Rudnicky, A.; and Shriberg,
E. 1994. Expanding the scope of the atis task: The atis-3 cor-
pus. In Proceedings of the Workshop on Human Language
Technology, 43–48.
Dong, L., and Lapata, M. 2016. Language to logical form
with neural attention. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics,
33–43.
Dong, L., and Lapata, M. 2018. Coarse-to-fine decoding for
neural semantic parsing. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics,
731–742.
dos Santos, C. N.; Tan, M.; Xiang, B.; and Zhou, B. 2016.
Attentive pooling networks. CoRR.
Finegan-Dollak, C.; Kummerfeld, J. K.; Zhang, L.; Ra-
manathan, K.; Sadasivam, S.; Zhang, R.; and Radev, D.
2018. Improving text-to-sql evaluation methodology. In
Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, 351–360.
He, P.; Mao, Y.; Chakrabarti, K.; and Chen, W. 2019. X-sql:
reinforce schema representation with context. arXiv preprint
arXiv:1908.08113.
Herzig, J., and Berant, J. 2018. Decoupling structure
and lexicon for zero-shot semantic parsing. arXiv preprint
arXiv:1804.07918.
Huang, P.-S.; Wang, C.; Singh, R.; Yih, W.-t.; and He, X.
2018. Natural language to structured query generation via
meta-learning. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, 732–
738.
Hwang, W.; Yim, J.; Park, S.; and Seo, M. 2019. A compre-
hensive exploration on wikisql with table-aware word con-
textualization. arXiv preprint arXiv:1902.01069.
Iyer, S.; Konstas, I.; Cheung, A.; Krishnamurthy, J.; and
Zettlemoyer, L. 2017. Learning a neural semantic parser

from user feedback. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics,
963–973.
McCann, B.; Keskarm, N. S.; Xiong, C.; and Socher, R.
2018. The natural language decathlon: Multitask learning as
question answering. arXiv preprint arXiv::1806.08730v1.
Nadeau, D., and Sekine, S. 2007. A survey of named entity
recognition and classification. Lingvisticae Investigationes
30(1):3–26.
Neelakantan, A.; Le, Q. V.; Abadi, M.; MacCallum, A.; and
Amodei, D. 2017. Learning a natural language interface
with neural programmer. In Proceedings of the 5th Interna-
tional Conference on Learning Representations, 1–10.
Seo, M.; Kembhavi, A.; Farhadi, A.; and Hajishirzi, H. 2017.
Bidirectional attention flow for machine comprehension. In
Proceedings of the 5th International Conference on Learn-
ing Representations.
Shi, T.; Tatwawadi, K.; Chakrabarti, K.; Mao, Y.; and Polo-
zov, Oleksandr, a. C. W. 2018. Incsql: Training incremen-
tal text-to-sql parsers with non-deterministic oracles. arXiv
preprint arXiv:1809.05054v2.
Wang, C.; Kedar, T.; Marc, B.; Po-Sen, H.; Yi, M.; Olek-
sandr, P.; and Rishabh, S. 2017. Robust text-to-sql gen-
eration with execution-guided decoding. arXiv preprint
arXiv:1807.03100v3.
Wang, C.; Cheung, A.; and Bodik, R. 2017. Synthesizing
highly expressive sql queries from input-output examples.
In ACM SIGPLAN Notices, volume 52, 452–466. ACM.
Xu, X.; Liu, C.; and Song, D. 2017. Sqlnet: Generating
structured queries from natural language without reinforce-
ment learning. arXiv preprint arXiv:1711.04436.
Yin, P., and Neubig, G. 2017. A syntactic neural model
for general-purpose code generation. In Proceedings of the
55th Annual Meeting of the Association for Computational
Linguistics, 440–450.
Yu, T.; Li, Z.; Zhang, Z.; Zhang, R.; and Radev, D.
2018a. Typesql: knowledge-based type-aware neural text-
to-sql generation. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, 588–
594.
Yu, T.; Zhang, R.; Yang, K.; Yasunaga, M.; Wang, D.; Li,
Z.; Ma, J.; Li, I.; Yao, Q.; Roman, S.; Zhang, Z.; and Radev,
D. 2018b. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-to-sql
task. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, 3911–3921.
Zelle, J. M., and Mooney, R. J. 1996. Learning to parse
database queries using inductive logic programming. In Pro-
ceedings of the Thirteenth National Conference on Artificial
Intelligence - Volume 2, 1050–1055.
Zhong, V.; Xiong, C.; and Socher, R. 2017. Seq2sql: Gen-
erating structured queries from natural language using rein-
forcement learning. arXiv preprint arXiv:1709.00103.

7495

