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Abstract

Different from the traditional classification tasks which as-
sume mutual exclusion of labels, hierarchical multi-label
classification (HMLC) aims to assign multiple labels to ev-
ery instance with the labels organized under hierarchical rela-
tions. Besides the labels, since linguistic ontologies are intrin-
sic hierarchies, the conceptual relations between words can
also form hierarchical structures. Thus it can be a challenge
to learn mappings from word hierarchies to label hierarchies.
We propose to model the word and label hierarchies by em-
bedding them jointly in the hyperbolic space. The main rea-
son is that the tree-likeness of the hyperbolic space matches
the complexity of symbolic data with hierarchical structures.
A new Hyperbolic Interaction Model (HyperIM) is designed
to learn the label-aware document representations and make
predictions for HMLC. Extensive experiments are conducted
on three benchmark datasets. The results have demonstrated
that the new model can realistically capture the complex data
structures and further improve the performance for HMLC
comparing with the state-of-the-art methods. To facilitate fu-
ture research, our code is publicly available.

Introduction

Traditional classification methods suppose the labels are
mutually exclusive, whereas for hierarchical classification,
labels are not disjointed but organized under a hierarchical
structure. Such structure can be a tree or a Directed Acyclic
Graph, which indicates the parent-child relations between
labels. Typical hierarchical classification tasks include pro-
tein function prediction in bioinformatics tasks (Wehrmann
et al. 2017), image annotation (Dimitrovski et al. 2011) and
text classification (Meng et al. 2019). In this paper, we focus
on hierarchical multi-label text classification, which aims to
assign multiple labels to every document instance with the
labels hierarchically structured.

In multi-label classification (MLC), there usually exist a
lot of infrequently occurring tail labels (Bhatia et al. 2015),
especially when the label sets are large. The fact that tail
labels lack of training instances makes it hard to train an
efficacious classifier. Fortunately, the effectiveness of utiliz-
ing label correlations to address this problem has lately been
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demonstrated. In literatures, label correlations can be deter-
mined from label matrix (Zhang et al. 2018) or label content
(Wang et al. 2018). The main idea is to project the labels
into a latent vectorial space, where each label is represented
as a dense low-dimensional vector, so that the label corre-
lations can be characterized in this latent space. For hier-
archical multi-label classification (HMLC), labels are orga-
nized into a hierarchy and located at different hierarchical
levels accordingly. Since a parent label generally has sev-
eral child labels, the number of labels grows exponentially
in child levels. In some special cases, most labels are located
at the lower levels, and few training instances belong to each
of them. In other words, tail labels also exist in HMLC. Dif-
ferent from the traditional MLC, the label structure, which
is intuitively useful to detect label correlations, is well pro-
vided in HMLC.

Inspired by recent works on learning hierarchical repre-
sentations (Nickel and Kiela 2017), we propose to embed
the label hierarchy in the hyperbolic space. Taking advan-
tage of the hyperbolic representation capability, we design
a Hyperbolic Interaction Model (HyperIM) to classify hi-
erarchically structured labels. HyperIM embeds both doc-
ument words and labels jointly in the hyperbolic space to
preserve their latent structures (e.g. structures of conceptual
relations between words and parent-child relations between
labels). Semantic connections between words and labels can
be furthermore explicitly measured according to the word
and label embeddings, which benefits extracting the most
related components from documents and constructing the
label-aware document representations. The prediction is di-
rectly optimized by minimizing the cross-entropy loss. Our
contributions are summarized as follows:

• We adopt hyperbolic space to improve HMLC. A novel
model HyperIM is designed to embed the label hierarchy
and the document text in the same hyperbolic space. For
the classification, semantic connections between words
and labels are explicitly measured to construct the label-
aware document representations.

• We present partial interaction to improve the scalability
of the interaction model. For large label spaces, negative
sampling is used to reduce the memory usage during in-
teraction.
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(a) Visualization of geodesics and Möbius addition (b) A tree embedded in the Poincaré disk

Figure 1: (a) Point C represents the Möbius addition of point A and B. In the Poincaré disk model, geodesics between points
are arcs and perpendicular to its boundary due to its negative curvature. (b) The line segments indicate the geodesics between
each pair of connected nodes in a tree.

• Extensive experiments on three benchmark datasets show
the effectiveness of HyperIM. An ablation test is per-
formed to demonstrate the superiority of the hyperbolic
space over the Euclidean space for HMLC. In addition,
our code is publicly available.

Preliminaries

Let X denote the document instance space, and let L =
{li}Ci=1 denote the finite set of C labels. Labels are or-
ganized under a hierarchical structure in HMLC, T =
{(lp, lq) | lp � lq, lp, lq ∈ L} denotes their parent-child re-
lations, where lp is the parent of lq . Given the text sequence
of a document instance x ∈ X and its one-hot ground truth
label vector y ∈ {0, 1}C , the classification model learns the
document-label similarities, i.e. the probabilities for all the
labels given the document. Let p ∈ [0, 1]C denote the la-
bel probability vector predicted by the model for x, where
p[i] = P (li | x) for li ∈ L (i = 1, . . . , c) (the subscript [i] is
used to denote the i-th element in a vector). The model can
be trained by optimizing certain loss function that compares
y and p.

To capture the fine-grained semantic connections between
a document instance and the labels, the document-label sim-
ilarities are obtained by aggregating the word-label similar-
ities. More specifically, for the text sequence with T word
tokens, i.e. x = [x1, . . . , xT ], the i-th label-aware document
representation si = [score(x1, li); . . . ; score(xT , li)] can
be calculate via certain score function, p[i] is then deduced
from si. This process is adapted from the interaction mech-
anism (Du et al. 2019), which is usually used in tasks like
natural language inference (Wang and Jiang 2016). Based
on the idea that labels can be considered as abstraction from
their word descriptions, sometimes a label is even a word
itself, the word-label similarities can be derived from their
embeddings in the latent space by the same way as the word
similarity, which is widely studied in word embedding meth-
ods such as GloVe (Pennington, Socher, and Manning 2014).

Note that word embeddings are insufficient to fully repre-
sent the meanings of words, especially in the case of word-
sense disambiguation (Navigli 2009). Take the word ”bank”
as an example, it has significantly different meanings in the

text sequences ”go to the bank and change some money” and
”flowers generally grow on the river bank”, which will cause
a variance when matching with labels ”economy” and ”en-
vironment”. In order to capture the real semantics of each
word, we use RNN-based word encoder which can take the
contextual information of text sequences into consideration.

The Poincaré Ball

In HyperIM, both document text and labels are embedded
in the hyperbolic space. The hyperbolic space is a homo-
geneous space that has a constant negative sectional cur-
vature, while the Euclidean space has zero curvature. The
hyperbolic space can be described via Riemannian geome-
try (Hopper and Andrews 2011). Following previous works
(Nickel and Kiela 2017; Ganea, Becigneul, and Hofmann
2018; Tifrea, Bécigneul, and Ganea 2019), we adopt the
Poincaré ball.

An n-dimensional Poincaré ball (Bn, gB
n

) is a subset
of R

n defined by the Riemannian manifold Bn = {x ∈
R

n | ‖x‖ < 1} equipped with the Riemannian metric
gB

n

, where ‖ · ‖ denotes the Euclidean L2 norm. As the
Poincaré ball is conformal to the Euclidean space (Can-
non et al. 1997), the Riemannian metric can be written as
gB

n

p = λ2
pg

R
n

p with the conformal factor λp := 2
1−‖p‖2 for

all p ∈ Bn, where gR
n

p = In is the Euclidean metric tensor.
It is known that the geodesic distance between two points
u,v ∈ Bn can be induced using the ambient Euclidean ge-
ometry as dBn(u,v) = cosh−1(1+ 1

2λuλv‖u−v‖2). This
formula demonstrates that the distance changes smoothly
w.r.t. ‖u‖ and ‖v‖, which is key to learn continuous em-
beddings for hierarchical structures.

With the purpose of generalizing operations for neural
networks in the Poincaré ball, the formalism of the Möbius
gyrovector space is used (Ganea, Becigneul, and Hofmann
2018). The Möbius addition for u,v ∈ Bn is defined as
u ⊕ v = (1+2〈u,v〉+‖v‖2)u+(1−‖u‖2)v

1+2〈u,v〉+‖u‖2‖v‖2 , where 〈·, ·〉 denotes
the Euclidean inner product. The Möbius addition operation
in the Poincaré disk B2 (2-dimensional Poincaré ball) can be
visualized in Figure 1a. Then the Poincaré distance can be
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rewritten as

dBn(u,v) = 2 tanh−1(‖ − u⊕ v‖). (1)

The Möbius matrix-vector multiplication for M ∈ R
m×n

and p ∈ Bn when Mp �= 0 is defined as M ⊗ p =

tanh(‖Mp‖
‖p‖ tanh−1(‖p‖)) Mp

‖Mp‖ , and M ⊗ p = 0 when
Mp = 0. Moreover, the closed-form derivations of the ex-
ponential map expp : TpBn → Bn and the logarithmic map
logp : Bn → TpBn for p ∈ Bn, w ∈ TpBn \ {0}, u ∈
Bn \ {p} are given as expp(w) = p⊕ (tanh(

λp

2 ‖w‖) w
‖w‖ )

and logp(u) =
2
λp

tanh−1(‖ − p⊕ u‖) −p⊕u
‖−p⊕u‖ .

These operations make hyperbolic neural networks avail-
able (Ganea, Becigneul, and Hofmann 2018) and gradient-
based optimizations can be performed to estimate the model
parameters in the Poincaré ball (Bécigneul and Ganea 2019).

Hyperbolic Interaction Model

We design a Hyperbolic Interaction Model (HyperIM) for
hierarchical multi-label text classification. Given the text se-
quence of a document, HyperIM measures the word-label
similarities by calculating the geodesic distance between the
jointly embedded words and labels in the Poincaré ball. The
word-label similarity scores are then aggregated to estimate
the label-aware document representations and further pre-
dict the probability for each label. Figure 2 illustrates the
framework of HyperIM.

Hyperbolic Label Embedding

The tree-likeness of the hyperbolic space (Hamann 2018)
makes it natural to embed hierarchical structures. For in-
stance, Figure 1b presents a tree embedded in the Poincaré
disk, where the root is placed at the origin and the leaves
are close to the boundary. It has been shown that any fi-
nite tree can be embedded with arbitrary low distortion
into the Poincare ball while the distances are approximately
preserved (Sarkar 2011). Conversely, it is difficult to per-
form such embedding in the Euclidean space even with un-
bounded dimensionality (Sala et al. 2018). Since the label hi-
erarchy is defined in the set T = {(lp, lq) | lp � lq, lp, lq ∈
L}, the goal is to maximize the distance between labels
without parent-child relation (Nickel and Kiela 2017). Let
ΘL = {θl

i}Ci=1, θ
l
i ∈ Bk be the label embedding set, using

Riemannian adaptive optimization methods (Bécigneul and
Ganea 2019), ΘL can be efficiently estimated by minimiz-
ing the loss function

Lh
loss = −

∑
(lp, lq)∈T

log
exp

(
−dBk (θ

l
p, θ

l
q)
)

∑

l
q′∈N(lp)

exp
(
−dBk (θl

p, θ
l
q′ )
) , (2)

where N (lp) = {lq′ |(lp, lq′) /∈ T }∪{lp} is the set of nega-
tive samples. The obtained ΘL can capture the hierarchical
structure among labels.

Hyperbolic Word Embedding

For natural language processing, word embeddings are es-
sential in neural networks as intermediate features. Given

the statistics of word co-occurrences in the corpus, we adopt
the Poincaré GloVe (Tifrea, Bécigneul, and Ganea 2019)
to capture the elementary relations between words by em-
bedding them in the hyperbolic space. Let Xij indicate the
times that word i and word j co-occur in the same con-
text window, θe

i ∈ Bk be the target embedding vector in
the k-dimensional Poincaré ball for word i, and θ̃e

j ∈ Bk

be the context embedding vector for word j. With the aid
of Riemannian adaptive optimization methods, the embed-
dings ΘE = {θe

i }Vi=1 and Θ̃E = {θ̃e
j}Vj=1 for the corpus

with vocabulary size V are estimated by minimizing the loss
function

Le
loss =

V∑
i,j=1

f(Xij)
(
− h(dBk(θe

i , θ̃
e
j )) + bi + b̃j − log(Xij)

)2
, (3)

where bi, b̃j are the biases, and the two suggested weight
functions are defined as f(x) = min(1, (x/100)3/4),
h(x) = cosh2(x).

Moreover, some words in the corpus are also in the Word-
Net (Miller 1995) hypernym set T w = {(xp, xq) | xp �
xq}, where word xp is the hypernym of word xq . As it is
similar to the label hierarchy, providing the hypernym in-
formation to the word embeddings, latent correlations be-
tween the two hierarchies can be later captured via interac-
tion. Therefore, a post-processing step is further conducted
to minimizes a loss similar to Eq. (2) on top of the learned
Poincaré GloVe embeddings ΘE , which do not explicitly
capture the conceptual relations among words.

Hyperbolic Word Encoder

Considering the word-sense disambiguation (Navigli 2009),
meanings of polysemous words are difficult to distinguish
if the word and label embeddings interact with each other
directly, since all the meanings of a word are embedded on
the same position. However, polysemous words can usually
be inferred from the context.

Given the text sequence of a document with T word to-
kens x = [x1, . . . , xT ], pre-trained hyperbolic word em-
beddings ΘE can be used to learn the final word represen-
tations according to the text sequence. To consider the se-
quentiality of the text sequence, we take advantage of the
hyperbolic space adaptive RNN-based architectures (Ganea,
Becigneul, and Hofmann 2018). More specifically, given
Θe = [θe

1, . . . ,θ
e
T ] where θe

t ∈ ΘE(t = 1, . . . , T ), the
hyperbolic word encoder based on the GRU architecture ad-
justs the embedding for each word to fit its context via

rt = σ
(
log0(W

r ⊗ θw
t−1 ⊕U r ⊗ θe

t ⊕ br)
)
,

zt = σ
(
log0(W

z ⊗ θw
t−1 ⊕U z ⊗ θe

t ⊕ bz)
)
,

θ̃w
t = ϕ((W gdiag(rt))⊗ θw

t−1 ⊕Ug ⊗ θe
t ⊕ bg),

θw
t = θw

t−1 ⊕ diag(zt)⊗ (−θw
t−1 ⊕ θ̃w

t ),

(4)

where Θw = [θw
1 , . . . ,θ

w
T ] denotes the encoded embed-

dings for the text sequence, the initial hidden state θw
0 := 0,

rt is the reset gate, zt is the update gate, diag(·) denotes
the diagonal matrix with each element in the vector on its
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Figure 2: Framework of the Hyperbolic Interaction Model (HyperIM). Word-label similarities are measured in the Poincaré
Disk. The label nodes are the centres of the hyperbolic circles, which have the same radius. The dash lines are the geodesics
from the label nodes to a word node. Note that the hyperbolic centers of the circles in general do not correspond to the Euclidean
ones. Labels have the same similarity scores for words embedded on the boundary of their circles.

diagonal, σ is the sigmoid function, ϕ is a pointwise non-
linearity, typically sigmoid, tanh or ReLU. Since the hyper-
bolic space naturally has non-linearity, ϕ can be identity (no
non-linearity) here.

The formula of the hyperbolic GRU is derived by con-
necting the Möbius gyrovector space with the Poincaré ball
(Ganea, Becigneul, and Hofmann 2018). The six weights
W ,U ∈ R

k×k are trainable parameters in the Euclidean
space and the three biases b ∈ Bk are trainable parameters
in the hyperbolic space (the superscripts are omitted for sim-
plicity). Thus the weights W and U are updated via vanilla
optimization methods, and the biases b are updated with Rie-
mannian adaptive optimization methods. Θw will be used
for measuring the word-label similarities during the follow-
ing interaction process.

Interaction in the Hyperbolic Space

The major objective of text classification is to build connec-
tions from the word space to the label space. In order to cap-
ture the fine-grained semantic information, we first construct
the label-aware document representations, and then learn the
mappings between the document instance and the labels.

Label-Aware Document Representations Once the en-
coded word embeddings Θw and label embeddings ΘL

are obtained, it is expected that every pair of word and la-
bel embedded close to each other based on their geodesic
distance if they are semantically similar. Note that cosine
similarity (Wang, Hamza, and Florian 2017) is not appro-
priate to be the metric since there does not exist a clear
hyperbolic inner-product for the the Poincaré ball (Tifrea,
Bécigneul, and Ganea 2019), so the geodesic distance is
more intuitively suitable. The similarity between the t-th
word xt(t = 1, . . . , T ) and the i-th label li(i = 1, . . . , C)
is calculated as score(xt, li) = −dBk(θw

t ,θ
l
i), where θw

t

and θl
i are their corresponding embeddings, dBk(·, ·) is the

Poincaré distance function defined in Eq. (1). The i-th label-
aware document representation can be formed as the con-
catenation of all the similarities along the text sequence,
i.e. si = [score(x1, li); . . . ; score(xT , li)]. The set S =
{si}Ci=1 acquired along the labels can be taken as the label-
aware document representations under the hyperbolic word
and label embeddings.

Prediction Given the document representations in S , pre-
dictions can be made by a fully-connected layer and an out-
put layer. The probability of each label for the document
instance can be obtained by

pi = σ(W eϕ(W fsi)), ∀si ∈ S, i = 1, . . . , C, (5)
where σ is the sigmoid function, ϕ is a non-linearity. The
weights W e ∈ R

1×(T/2) and W f ∈ R
(T/2)×T are trainable

parameters.

Partial Interaction

During the above interaction process, the amount of compu-
tation increases with the number of labels. When the output
label space is large, it is a burden to calculate the label-aware
document representations. On account of the fact that only
a few labels are assigned to one document instance, we pro-
pose to use a negative sampling method to improve the scal-
ability during training. Let L+ denote the set of true labels
and L− denote the set of randomly selected negative labels,
the model is trained by minimizing the loss function which
is derived from the binary cross-entropy loss as it is com-
monly used for MLC (Liu et al. 2017), i.e.

Lb
loss = −

( ∑

i∈L+

log(pi) +
∑

j∈L−
log(1− pj)

)
. (6)

The hyperbolic parameters, i.e. ΘE , ΘL and b in the hy-
perbolic word encoder, are updated via Riemannian adaptive
optimization methods. The Euclidean parameters, i.e. W ,U
in the hyperbolic word encoder and W in the prediction lay-
ers, are updated via vanilla optimization methods. Partial in-
teraction can significantly reduce the memory usage during
training especially when the label set is large.

Experiments
Datasets Experiments are carried out on three publicly
available multi-label text classification datasets, including
the small-scale RCV1 (Lewis et al. 2004), the middle-scale
Zhihu1 and the large-scale WikiLSHTC (Partalas et al. 2015).
All the datasets are equipped with labels that explicitly ex-
hibit a hierarchical structure. Their statistics can be found in
Table 1.

1https://biendata.com/competition/zhihu/.
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Table 1: Statistics of the datasets: Ntrain and Ntest are the
number of training and test instances, L is the number of
labels, L̂ is the average number of label per document, L̃
is the average number of documents per label, Wtrain and
Wtest denote the average number of words per document in
the training and test set respectively.

Dataset Ntrain Ntest L L̂ L̃ Wtrain Wtest

RCV1 23,149 781,265 103 3.18 729.67 259.47 269.23
Zhihu 2,699,969 299,997 1,999 2.32 3513.17 38.14 35.56
WikiLSHTC 456,886 81,262 36,504 1.86 4.33 117.98 118.31

Evaluation Metrics We use the rank-based evaluation
metrics which have been widely adopted for multi-label
classification tasks, i.e. Precision@k (P@k for short) and
nDCG@k for k = 1, 3, 5 (Bhatia et al. 2015; Liu et al. 2017;
Zhang et al. 2018). Let y ∈ {0, 1}C be the ground truth la-
bel vector for a document instance and p ∈ [0, 1]C be the
predicted label probability vector. P@k records the fraction
of correct predictions in the top k possible labels. Let the
vector r ∈ {1, . . . , C}k denote the indices for k most pos-
sible labels in descending order, i.e. the r[1]-th label has the
largest probability to be true, then the metrics are defined as

P@k =
1

k

k∑

i=1

y[r[i]],

nDCG@k =

∑k
i=1 y[r[i]]/log(i+ 1)

∑min(k, ‖y‖0)
i=1 1/log(i+ 1)

,

(7)

where ‖y‖0 denotes the number of true labels, i.e. the num-
ber of 1 in y. The final results are averaged over all the test
document instances. Notice that nDCG@1 is omitted in the
results since it gives the same value as P@1.

Baselines To demonstrate the effectiveness of HyperIM
on the benchmark datasets, five comparative multi-label
classification methods are chosen. EXAM (Du et al. 2019)
is the state-of-the-art interaction model for text classifica-
tion. EXAM use pre-trained word embeddings in the Eu-
clidean space, its label embeddings are randomly initial-
ized. To calculate the similarity scores, EXAM uses the dot-
product between word and label embeddings. SLEEC (Bha-
tia et al. 2015) and DXML (Zhang et al. 2018) are two
label-embedding methods. SLEEC projects labels into low-
dimensional vectors which can capture label correlations by
preserving the pairwise distance between them. SLEEC uses
the k-nearest neighbors when predicting, and clustering is
used to speed up its prediction. Ensemble method is also
used to improve the performance of SLEEC. DXML uses
DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) to embed
the label co-occurrence graph into vectors, and uses neu-
ral networks to map the features into the embedding space.
HR-DGCNN (Peng et al. 2018) and HMCN-F (Wehrmann,
Cerri, and Barros 2018) are two neural network models
specifically designed for hierarchical classification tasks.
Taking advantage of the label hierarchy, HR-DGCNN adds
a regularization term on the weights of the fully-connected
layer. The original HMCN-F cannot take in the raw text data.

To make HMCN-F more competitive, CNN-based architec-
ture similar to XML-CNN (Liu et al. 2017) is adopted to
extract the primary features. HMCN-F then fits its neural
network layers to the label hierarchy, each layer focuses on
predicting the labels in the corresponding hierarchical level.

Results As shown in Table 2, HyperIM consistently out-
performs all the baselines. HyperIM effectively takes ad-
vantage of the label hierarchical structure comparing with
EXAM, SLEEC and DXML. EXAM uses the interaction
mechanism to learn word-label similarities, whereas clear
connections between the words and the label hierarchy can-
not be captured since its label embeddings are randomly ini-
tialized. The fact that HyperIM achieves better results than
EXAM further confirms that HyperIM benefits from the re-
tention of the hierarchical label relations. Meanwhile, the
word embeddings learned by HyperIM have strong connec-
tions to the label structure, which is helpful to the measure-
ment of word-label similarities and the acquirement of the
label-aware document representations. SLEEC and DXML
take the label correlations into account. However, the label
correlations they use are captured from the label matrix, e.g.
embedding the label co-occurrence graph, which may be in-
fluenced by tail labels. For HyperIM, the label relations are
determined from the label hierarchy, so the embeddings of
labels with parent-child relations are dependable to be cor-
related.

As expected, HyperIM is superior to the existing hier-
archical classification methods HR-DGCNN and HMCN-
F, even though they take advantage of the label hierarchy
information. By investigating the properties of these three
methods, we summarize the main reasons as follows. HR-
DGCNN adds the regularization terms based on the assump-
tion that labels with parent-child relations should have sim-
ilar weights in the fully-connected layer, which may not
always be true in real applications. HMCN-F highly de-
pends on the label hierarchy, it assumes that different paths
pass through the same number of hierarchical levels. Un-
fortunately, in the real data, different paths may have to-
tally different lengths. HyperIM models the label relations
by embedding the label hierarchy in the hyperbolic space.
Any hierarchical structure can be suitable and labels are
not required to sit on a specific hierarchical level, which
makes HyperIM less reliant on the label hierarchy. Further-
more, HyperIM can learn the word-label similarities and
preserve the label relations simultaneously to acquire label-
aware document representations, whereas HR-DGCNN and
HMCN-F treat document words and labels separately.

Experimental Details In order to evaluate the baselines
on the benchmark datasets, hyperparameters recommended
by their authors are used. On account of the numeric error
issue caused by the constrain ‖p‖ < 1 for p ∈ Bk when the
embedding dimension k is large, the workaround is taken to
address this issue, i.e. the embedding vector is a concatena-
tion of vectors in the low-dimensional Poincaré ball. Conse-
quently, the embedding dimension for HyperIM is 75× 2D
as it generally outperforms the baselines.
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Table 2: Results in P@k and nDCG@k, bold face indicates the best in each line.

Dataset Metrics EXAM SLEEC DXML HR-DGCNN HMCN-F HyperIM

P@1 95.98 94.45 95.27 95.17 95.35 96.78
P@3 80.83 78.60 77.86 80.32 78.95 81.46

RCV1 P@5 55.80 54.24 53.44 55.38 55.90 56.79
nDCG@3 90.74 90.05 89.69 90.02 90.14 91.52
nDCG@5 91.26 90.32 90.24 90.28 90.82 91.89

P@1 51.41 51.34 50.34 50.97 50.24 52.14
P@3 32.81 32.56 31.21 32.41 32.18 33.66

Zhihu P@5 24.29 24.23 23.36 23.87 24.09 24.99
nDCG@3 49.32 49.27 47.92 49.02 48.36 50.13
nDCG@5 50.74 49.71 48.65 49.91 49.21 51.05

P@1 54.90 53.57 52.02 52.67 53.23 55.06
P@3 30.50 31.25 30.57 30.13 29.32 31.73

WikiLSHTC P@5 22.02 22.46 21.66 22.85 21.79 23.08
nDCG@3 49.50 46.06 47.97 49.24 48.93 50.46
nDCG@5 50.46 47.52 48.14 50.42 49.87 51.36

Figure 3: Results in nDCG@k for the ablation test. E-rand and H-rand denote EuclideanIM and HyperIM take the randomly
initialized label embeddings respectively, E-hier and H-hier take the same label embeddings initialized according to the hierar-
chical label relations.

Figure 4: Visualization of labels (blue nodes) and words
jointly embedded in the Poincaré disk. The connected labels
denote that they are related to each other.

Ablation Test

In order to show the characteristics of HyperIM and jus-
tify the superiority of the hyperbolic space for hierarchical
multi-label text classification, we are interested in compar-
ing it with an analogous model in the Euclidean space.

Euclidean Interaction Model The analogous model in
the Euclidean space (EuclideanIM) has a similar architec-

ture as HyperIM. EuclideanIM takes the vanilla pre-trained
GloVe word embeddings (Pennington, Socher, and Manning
2014) and uses the vanilla GRU (Chung et al. 2014) as the
word encoder. The label embeddings are randomly initial-
ized for E-rand, while E-hier takes the same label embed-
dings initialized by the hierarchical label relations as H-
hier. The word-label similarities are computed as the neg-
ative of the Euclidean distance between their embeddings,
i.e. score(xt, li) = −‖θw

t − θl
i‖ for θw

t ,θ
l
i ∈ R

k. The same
architecture of the prediction layers is adopted.

Results Figure 3 shows the nDCG@k results for differ-
ent embedding dimensions on the RCV1 dataset. The fact
that E-hier slightly outperforms E-rand indicates that the
label correlations provide useful information for classifica-
tion. However, H-rand still achieves better results than the
Euclidean models even without the hierarchical label struc-
ture information, which confirms that the hyperbolic space
is more suitable for HMLC. For E-hier, the hierarchical la-
bel structure is not appropriate to be embedded in the Eu-
clidean space, thus it cannot fully take advantage of such
information. HyperIM generally outperforms EuclideanIM
and achieves significant improvement especially in low-
dimensional latent space. H-hier takes in the label correla-
tions and outperforms H-rand as expected.

Interaction Visualization The 2-dimensional hyperbolic
label embeddings and the encoded word embeddings (not
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the pre-trained word embeddings) can be visualize jointly in
the Poincaré disk as shown in Figure 4. The hierarchical la-
bel structure which can represent the parent-child relations
between labels is well preserved by HyperIM. Note that the
embedded label hierarchy resembles the embedded tree in
Figure 1b. The top-level nodes (e.g. the label node A) are
embedded near the origin of the Poincaré disk, while the leaf
nodes are close to the boundary. The hierarchical label rela-
tions are well modeled by such tree-like structure. Moreover,
in the dataset, the top-level labels are not connected to an ab-
stract ”root”. The structure of the embedded label hierarchy
still suggests that there should be a ”root” that connects all
the top-level labels to put at the very origin of the Poincaré
disk, which indicates that HyperIM can really make use of
the hierarchical label relations.

The explicit label correlations can further help HyperIM
to learn to encode the word embeddings via interaction. The
encoded text of a document instance are generally embed-
ded close to the assigned labels. This clear pattern between
the encoded word embeddings and the label hierarchy indi-
cates that HyperIM learns the word-label similarities with
the label correlations taken into consideration. This is the
main reason that HyperIM outperforms EuclideanIM signif-
icantly in low dimensions. Some of the words such as ”the”,
”is” and ”to” do not provide much information for classifi-
cation, putting these words near the origin can make them
equally similar to labels in the same hierarchical level. A
nice by-product is that the predicted probabilities for labels
in the same hierarchical level won’t be influenced by these
words. Moreover, the variance of word-label distance for la-
bels in different hierarchical levels make parent labels distin-
guishable from child labels, e.g. top-level labels can be made
different from the leaf labels since they are generally closer
to the word embeddings. Such difference suggests that Hy-
perIM treats the document instances differently along the
labels in different hierarchical levels.

Related Work

Hierarchical Multi-Label Classification

The existing methods dedicating to hierarchical classifica-
tion usually focus on the design of loss functions or neural
network architectures (Cerri, Barros, and de Carvalho 2015;
Gargiulo et al. 2019). Traditional hierarchical classification
methods optimize a loss function locally or globally (Silla
and Freitas 2011). Local methods are better at capturing
label correlations, whereas global methods are less com-
putationally expensive. Researchers recently try to use a
hybrid loss function associated with specifically designed
neural networks, e.g. HR-DGCNN (Peng et al. 2018). The
archetype of HMCN-F (Wehrmann, Cerri, and Barros 2018)
employs a cascade of neural networks, where each neural
networks layer corresponds to one level of the label hier-
archy. Such neural network architectures generally require
all the paths in the label hierarchy to have the same length,
which limits their application. Moreover, on account of the
fact that labels in high hierarchical levels usually contain
much more instances than labels in low levels, whereas neu-
ral network layers for low levels need to classify more la-

bels than layers for high levels, such architectures also lead
to imbalance classification.

Hyperbolic Deep Learning

Research on representation learning (Nickel and Kiela 2017;
Wang, Zhang, and Shi 2019; Chen and Quirk 2019) indi-
cates that the hyperbolic space is more suitable for embed-
ding symbolic data with hierarchical structures than the Eu-
clidean space, since the tree-likeness properties (Hamann
2018) of the hyperbolic space make it efficient to learn hi-
erarchical representations with low distortion (Sarkar 2011).
As linguistic ontologies are innately hierarchies, hierarchies
are ubiquitous in natural language, (e.g. WordNet (Miller
1995)). Some works lately demonstrate the superiority of
the hyperbolic space for natural language processing tasks
such as textual entailment (Ganea, Becigneul, and Hofmann
2018), machine translation (Gulcehre et al. 2019) and word
embedding (Tifrea, Bécigneul, and Ganea 2019).

Riemannian Optimization In the same way that gradient-
based optimization methods are used for trainable parame-
ters in the Euclidean space, the hyperbolic parameters can
be updated via Riemannian adaptive optimization meth-
ods (Bécigneul and Ganea 2019). For instance, Riemannian
adaptive SGD updates the parameters θ ∈ Bk by θt+1 =
expθt

(−η∇RL(θt)), where η is the learning rate, and the
Riemannian gradient ∇RL(θt) ∈ TθBk is the rescaled Eu-
clidean gradient, i.e. ∇RL(θ) = 1

λ2
θ
∇EL(θ) (Wilson and

Leimeister 2018).

Conclusion

The hierarchical parent-child relations between labels can
be well modeled in the hyperbolic space. The proposed Hy-
perIM is able to explicitly learn the word-label similarities
by embedding the words and labels jointly and preserving
the label hierarchy simultaneously. HyperIM acquires label-
aware document representations to extract the fine-grained
text content along each label, which significantly improves
the hierarchical multi-label text classification performance.
Indeed, HyperIM makes use of the label hierarchy, whereas
there is usually no such hierarchically organized labels in
practice, especially for extreme multi-label classification
(XMLC). Nevertheless, the labels in XMLC usually follow a
power-law distribution due to the amount of tail labels (Bab-
bar and Schölkopf 2018), which can be traced back to hier-
archical structures (Ravasz and Barabási 2003). Thus, it will
be interesting to extend HyperIM for XMLC in the future.
Our code is publicly available to facilitate other research. 2
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Hierarchical annotation of medical images. Pattern Recognition
44(10-11):2436–2449.
Du, C.; Chin, Z.; Feng, F.; Zhu, L.; Gan, T.; and Nie, L. 2019. Ex-
plicit interaction model towards text classification. In Proceedings
of the Thirty-third AAAI Conference on Artificial Intelligence.
Ganea, O.; Becigneul, G.; and Hofmann, T. 2018. Hyperbolic
neural networks. In Advances in neural information processing
systems 31. 5345–5355.
Gargiulo, F.; Silvestri, S.; Ciampi, M.; and De Pietro, G. 2019.
Deep neural network for hierarchical extreme multi-label text clas-
sification. Applied Soft Computing 79:125–138.
Gulcehre, C.; Denil, M.; Malinowski, M.; Razavi, A.; Pascanu, R.;
Hermann, K. M.; Battaglia, P.; Bapst, V.; Raposo, D.; Santoro, A.;
et al. 2019. Hyperbolic attention networks. In Proceedings of the
Seventh International Conference on Learning Representations.
Hamann, M. 2018. On the tree-likeness of hyperbolic spaces. In
Mathematical Proceedings of the Cambridge Philosophical Soci-
ety, volume 164, 345–361. Cambridge University Press.
Hopper, C., and Andrews, B. 2011. The Ricci flow in Riemannian
geometry. Springer.
Lewis, D. D.; Yang, Y.; Rose, T. G.; and Li, F. 2004. Rcv1: A new
benchmark collection for text categorization research. Journal of
machine learning research 5(Apr):361–397.
Liu, J.; Chang, W.-C.; Wu, Y.; and Yang, Y. 2017. Deep learn-
ing for extreme multi-label text classification. In Proceedings of
the Forty International ACM SIGIR Conference on Research and
Development in Information Retrieval, 115–124. ACM.
Meng, Y.; Shen, J.; Zhang, C.; and Han, J. 2019. Weakly-
supervised hierarchical text classification. In Proceedings of the
Thirty-third AAAI Conference on Artificial Intelligence.
Miller, G. A. 1995. Wordnet: a lexical database for english. Com-
munications of the ACM 38(11):39–41.

Navigli, R. 2009. Word sense disambiguation: A survey. ACM
computing surveys (CSUR) 41(2):10.
Nickel, M., and Kiela, D. 2017. Poincaré embeddings for learning
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