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Abstract

Recent progress in NLP witnessed the development of large-
scale pre-trained language models (GPT, BERT, XLNet, etc.)
based on Transformer (Vaswani et al. 2017), and in a range of
end tasks, such models have achieved state-of-the-art results,
approaching human performance. This clearly demonstrates
the power of the stacked self-attention architecture when
paired with a sufficient number of layers and a large amount
of pre-training data. However, on tasks that require complex
and long-distance reasoning where surface-level cues are not
enough, there is still a large gap between the pre-trained mod-
els and human performance. Strubell et al. (2018) recently
showed that it is possible to inject knowledge of syntactic
structure into a model through supervised self-attention. We
conjecture that a similar injection of semantic knowledge, in
particular, coreference information, into an existing model
would improve performance on such complex problems. On
the LAMBADA (Paperno et al. 2016) task, we show that
a model trained from scratch with coreference as auxiliary
supervision for self-attention outperforms the largest GPT-2
model, setting the new state-of-the-art, while only contain-
ing a tiny fraction of parameters compared to GPT-2. We also
conduct a thorough analysis of different variants of model ar-
chitectures and supervision configurations, suggesting future
directions on applying similar techniques to other problems.

1 Introduction

When does it help performance on NLP tasks to explic-
itly take linguistic structure into account? Large-scale pre-
trained language models such as ELMo (Peters et al. 2018),
GPT (Radford et al. 2018), BERT (Devlin et al. 2019),
and XLNet (Yang et al. 2019) have recently achieved state-
of-the-art results on a wide range of tasks. These models,
mostly built on a stacked self-attention architecture as in
the Transformer (Vaswani et al. 2017), are not explicitly
trained to take linguistic structure into account, but they have
been shown to encode some linguistic knowledge anyway,
in particular knowledge related to syntactic structure (Ten-
ney et al. 2019; Jawahar, Sagot, and Seddah 2019). But on
some tasks that require complex and long-distance reason-
ing, there is still a large gap between the pre-trained models
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and human performance, including tasks that require knowl-
edge of broader discourse (Paperno et al. 2016) or corefer-
ence (Dasigi et al. 2019), or that require identifying valid
reasoning (Niven and Kao 2019). For such tasks in particu-
lar, it is interesting to test whether explicit information about
linguistic structure can be helpful, how such structure should
be injected, and whether it can be helpful in addition to re-
cent language models. Strubell et al. (2018) investigated how
to inject syntactic knowledge into a Transformer-style model
by applying supervision on self-attention weights. Intrigu-
ingly, their model, which they apply to semantic role label-
ing, benefits from the use of ELMo embeddings, and im-
proves over a benchmark that uses those embeddings but no
supervised self-attention.

In this paper, we consider a task that was explicitly de-
signed to require long-distance knowledge, the LAMBADA
task (Paperno et al. 2016). LAMBADA is a language mod-
eling task on narrative text passages, where test set data
points are chosen to be easily solvable for humans given a
larger preceding context of several sentences, but impossi-
ble to solve for humans given only a single sentence (see
Figure 1 for an example). In the paper that originally in-
troduced LAMBADA, Paperno et al. (2016) report model
accuracies of only 7.3%. Since then, more recent models
(GPT-2) have improved performance to 63.24% (Radford et
al. 2019), while human performance is above 80%. So the
LAMBADA dataset clearly has the characteristic described
above, with a large gap between pre-trained models and hu-
man performance.

We test whether an injection of linguistic knowledge in
a similar manner to Strubell et al. (2018), adding super-
vised self-attention to an existing, non-Transformer model,
will improve performance on this complex task. As LAM-
BADA focuses on narrative texts, we hypothesize that se-
mantic knowledge about the entities mentioned in the pas-
sage will be particularly useful for solving the task (i.e., in
Figure 1, it is important to know that “you” refers to “Jon”
and “he” refers to “Tony” in the first two sentences to make
the right prediction). We phrase entity knowledge as knowl-
edge about the coreference chains in the passage. We find
that a BIDAF-based (Seo et al. 2017) model trained with
coreference as auxiliary supervision achieves state-of-the-
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art performance with only a tiny fraction of the parameters
of the previous best model, the largest GPT-2 model.

We further analyze the results in more detail, finding ev-
idence that the auxiliary supervision enables the model to
better capture coreference information in the text. To pro-
vide some insights on how to apply similar techniques to
other problems, we experiment with different model vari-
ants to test where best to insert the supervision into the sys-
tem, and we also test different types of linguistic knowl-
edge as supervision signals. Our code is available at https:
//github.com/pxch/att-ent.

2 Background and Related Work

Pre-trained Language Models There has been rapid
progress on large-scale pre-trained language models that
provide contextualized embeddings for downstream tasks,
setting up new state-of-the-art over traditional fixed vec-
tor word embeddings like word2vec(Mikolov et al. 2013)
or Glove (Pennington, Socher, and Manning 2014). Peters
et al. (2018) first introduced ELMo, a bidirectional-LSTM
language model pre-trained on the 1B Word Benchmark,
achieving the best results at the time on a broad range of
tasks, including reading comprehension, semantic role la-
beling, coreference resolution, and many others.

With the gaining popularity of the Transformer architec-
ture (Vaswani et al. 2017) in NLP, later efforts shifted focus
to pre-trained Transformer models. Radford et al. (2018) in-
troduced GPT, by pre-training a 12-layer Transformer model
as a generative language model on the BooksCorpus (Zhu
et al. 2015). GPT outperformed previous state-of-the-art on
9 out of the 12 tasks studied. BERT (Devlin et al. 2019)
enhanced the GPT model by allowing bidirectional self-
attention with a new “masked language model” pre-training
objective, and achieved even better results than GPT. GPT-2
(Radford et al. 2019) directly extended GPT with 10x larger
pre-training corpus and much more complex model archi-
tectures (up to 1.5 billion parameters), and set new state-of-
the-art on a number of language modeling tasks. More recent
models, including XLNet (Yang et al. 2019) and RoBERTa
(Liu et al. 2019), further improved over BERT by introduc-
ing new pre-training and optimization strategies.

Linguistic Structure in Pre-trained Models The afore-
mentioned pre-trained models do not explicitly take any lin-
guistic structure into account, as the pre-training objective
is to predict the next word, a randomly masked word, or
the next sentence. While these pre-trained models achieved
state-of-the-art results on many tasks, it is still largely un-
known to what extent implicit knowledge of linguistic struc-
tures, such as syntactic structure or coreference, contributes
to the improvement. Tenney et al. (2019) designed a list of
probing tasks to test how well the contextualized represen-
tations learned from ELMo / GPT / BERT do on some core
NLP pipeline tasks, and found out that contextualized em-
beddings improve largely on syntactic tasks (like part-of-
speech tagging and parsing) but not so much on semantic
tasks (like coreference).

Strubell et al. (2018) recently achieved state-of-the-art

Context:  "By the way, Elizabeth asked if I’d seen you," 
Tony lied. He wanted Jon to leave so he could talk with 
Ezekiel alone. There was something that aunt Casey, 
Patella and Gabriella had said about Tom that had bothered 
him ever since meeting Ezekiel earlier that afternoon.

Target sentence:  "I’m sure she’ll find me," Jon remarked 
curtly, trying to cut short the conversation with       .

Target word:  Tony

Figure 1: An example from the LAMBADA dataset.

performance on semantic role labeling by injecting syn-
tactic knowledge into a Transformer-style model. In their
LISA model, one self-attention head is guided to learn de-
pendency parsing via an auxiliary supervision signal that
encourages each token to only attend to its syntactic par-
ent. They also showed that such syntactically-informed self-
attention can be combined with ELMo embeddings to fur-
ther improve performance over a baseline with only ELMo
and self-attention but no auxiliary supervision. In this pa-
per, we want to investigate whether linguistic knowledge of
semantic structures can be injected in a similar manner.

The LAMBADA Task Paperno et al. (2016) introduced
the LAMBADA dataset, a specially designed language mod-
eling task where each data point is a passage composed of a
context (on average 4 to 5 sentences) and a target sentence,
and the task is to guess the last word of the target sentence.
The data comes from the BooksCorpus (Zhu et al. 2015),
and is filtered by human subjects such that it is easy for hu-
mans to guess the target word when provided with the whole
passage, but impossible to guess given only the target sen-
tence. An example is shown in Figure 1.

Paperno et al. (2016) also reported the results of some
standard language models on the task, which are extremely
low as none of them reached an accuracy of 1%, while a
baseline of selecting a random capitalized word from pas-
sage gave an accuracy of 7.3%, indicating the difficulty of
the task.

Since then, Chu et al. (2017) proposed to view LAM-
BADA as reading comprehension, with the context sen-
tences as the context and the target sentence without the
last word as the query. The model is then asked to select
a word from the context as the answer. Despite the fact that
models under this setup will decidedly fail on 19% of the
test cases where the target word is not in the context, do-
ing so still greatly improved performance to 49%. Dhingra
et al. (2018) improved the number to 55.69% by combin-
ing the Gated-Attention Reader (Dhingra et al. 2017) with
a “Coref-GRU” layers (where both the previous token and
the co-referent antecedent serve as the input to the current
GRU cell). Hoang, Wiseman, and Rush (2018) combined the
Attention-Sum Reader (Kadlec et al. 2016) with a multi-task
objective to track entities in the context, further improving
performance to 59.23%. Both these experiments proved the
effectiveness of coreference knowledge in the task.

There have also been some efforts in applying
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(b) The BIDAF-SA-EARLY variant.
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(c) The BIDAF-SA-LATE variant.

Figure 2: The original BIDAF model (Seo et al. 2017) that we use as a baseline in our experiment, and two variants with a
self-attention encoder (in red) being added either as the contextual layer or after the bidirectional attention layer.

Transformer-style models to the task. Dehghani et al. (2019)
achieved 56.25% with Universal Transformers. Most re-
cently, Radford et al. (2019) reported 63.24% with the
largest GPT-2 model (1.5 billion parameters), setting the
current state-of-the-art. Nonetheless, it is still far from the
human performance of 86% estimated by Chu et al. (2017).

3 Method

3.1 Task

We adopt the same setting as most of the previous work on
LAMBADA, that is, to view the task as reading compre-
hension. Formally, we concatenate all tokens in the context
sentences to get the context input x = {x1 . . . xn}. We rep-
resent all but the last word from the target sentence as the
query input q = {q1 . . . qm}, and the last word of the target
sentence as the answer a.

The model computes a probability of being the correct
answer for each word in the context P (xi|x,q). Because
the answer a might occur multiple times in the context, at
training time, we sum the probabilities of all correct tokens,
and compute the loss as the negative log-likelihood of the
summed probability:

L0 = − logP (a|x,q) = − log
∑

i:xi=a

P (xi|x,q) (1)

At test time, a pointer sum mechanism (Kadlec et al. 2016)
is used to predict the word type with the highest summed
probability among all distinct word types in the context.

3.2 Model

The aim of this paper is to test whether linguistic knowledge
of semantic structures can be injected into an existing model
via supervised self-attention, and whether the performance
of such a model on the LAMBADA task can be matched
with the large-scale pre-trained language models (i.e., GPT-
2).1

1We take this route, rather than adding supervision to an exist-
ing GPT-2 model, because of the high computational cost of train-
ing such a large Transformer model from scratch.

As discussed in Section 2, a range of different read-
ing comprehension models (i.e., Gated-Attention Reader,
Attention-Sum Reader) have been tested in the previous
work, and they all showed reasonably strong performance
on the task (Dhingra et al. 2018; Hoang, Wiseman, and Rush
2018). Therefore, we decide to start with a conventional
reading comprehension model, and fuse into it a simpler and
shallower stacked self-attention architecture (with fewer lay-
ers, fewer attention heads, and smaller hidden size compared
to GPT-2). We choose another widely-used reading com-
prehension model, the BiDAF model (Seo et al. 2017), as
our starting point, because BiDAF has consistently outper-
formed the aforementioned models in many reading com-
prehension benchmarks.

BIDAF Baseline The original BIDAF model, as illus-
trated in Figure 2a, mainly consists of the following com-
ponents:

1. Embedding Layer: represents each token in the context
and the query by a concatenation of Glove embeddings
and Character-CNN embeddings.

2. Contextual Layer: encodes the context sequence and the
query sequence with a bidirectional-LSTM encoder.

3. Bidirectional Attention Layer: computes both context-
to-query and query-to-context attentions, which are then
used to merge the query representations and the context
representations to get query-aware vector representations
for each context word.

4. Modeling Layer: encodes the query-aware context rep-
resentation with another bidirectional-LSTM encoder to
capture the interaction among context words conditioned
on the query.

5. Output Layer: predicts the probability for each context
word being the correct answer with a feed-forward layer
followed by a softmax layer.

Our baseline model is mostly the same as the original
BIDAF model, except for a few small changes: we substi-
tute the LSTMs for GRUs; we add a Layer Normalization
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"By the way, Elizabeth asked if I’d seen you," Tony lied. 

He wanted Jon to leave so he could talk with Ezekiel 

alone. There was something that aunt Casey, Patella and 

Gabriella had said about Tom that had bothered him ever 

since meeting Ezekiel earlier that afternoon.

(a) The dependency parses (arrows) and
coreference chains (color-coded) of a con-
text input (same as in Figure 1), which are
used to construct different auxiliary super-
vision signals, as shown on the right.
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DEPPARSE COREFALL NARRATIVE

(b) Examples of 3 different supervision types for self-attention (only showing part of the full
matrices due to space limit). Light gray represents 0, and dark gray stands for 1.

Figure 3: An example showing how we construct different types of supervision signals from pre-processed text input.

(Ba, Kiros, and Hinton 2016) after the bidirectional atten-
tion layer and after the modeling layer to improve stability
(see Section 4).

BiDAF with Self-Attention In order to inject semantic
knowledge into the model via supervised attention, we need
to fuse a stacked multi-head self-attention encoder into the
BIDAF model. Intuitively, there are two options on where
the self-attention encoder fits in:

a) Use the encoder to replace the Contextual Layer, as
shown in Figure 2b.
This is inspired by the trend of using self-attention en-
coders to replace traditional RNN-based encoders in
many NLP problems. Also, a common practice in us-
ing BERT is to first encode raw input with BERT and
then pass the output to higher-level task-specific layers,
which is similar to what we do here. We name this vari-
ant BIDAF-SA-EARLY.

b) Add the encoder after the Bidirectional Attention
Layer, as shown in Figure 2c.
This is inspired by the BIDAF++ model (Clark and
Gardner 2018), where a standard self-attention layer is
added after the bidirectional attention layer to help rea-
son over multiple paragraphs. Here we instead use multi-
head self-attention, since applying auxiliary supervision
on an attention layer with just one attention head leads to
inferior performance in our preliminary experiments. We
name this variant BIDAF-SA-LATE.

We also explore another variant that combines the two op-
tions, called the BIDAF-SA-BOTH model.

3.3 Auxiliary Supervision for Self Attention

Similar to Strubell et al. (2018), we want to apply auxiliary
supervision on a self-attention encoder to guide the model to
learn some specific linguistic structure. Our model receives
context input, namely the passage, as well as query input,
which is the target sentence minus the last word. We focus
on investigating auxiliary supervision on the context input,

because the context input, with 4 to 5 sentences on aver-
age, should exhibit much richer linguistic structures than the
query input, which is a single sentence. To examine what
kind of linguistic structures are beneficial to the problem,
we experiment with 3 types of supervision signals:

Syntax Supervision: Given the dependency parses for
each sentence in the context, we construct the target self-
attention weights by putting a weight of 1 from each token
to its syntactic head token, and 0 otherwise, as shown in the
left column of Figure 3b. We name this type of supervision
DEPPARSE.

This is similar to the auxiliary supervision used in Strubell
et al. (2018), except that we have multiple sentences rather
than just one sentence. If an attention head is trained with
this syntax supervision, we constrain the self-attention win-
dow by sentence boundaries, that is, each token can only
attend to other tokens in the same sentence, to make it easier
for the model to approach the target self-attention weights.

Coreference Supervision: Given a list of coreference
chains from the context (each coreference chain contains a
set of mentions that refer to the same entity), we construct
the target self-attention weights by putting a weight of 1 be-
tween each pair of mention heads in the same coreference
chain, and 0 otherwise, as shown in the middle column of
Figure 3b. We name it COREFALL.

We also test other variants of coreference supervision,
namely, guiding the head of each mention to only attend to
the head of the most recent previous mention, or to the head
of the immediately following mention. We refer to these two
variants as COREFPREV and COREFNEXT respectively.

Narrative Supervision: Since the LAMBADA dataset is
built from a corpus of novels, we hypothesize that narrative
structures, that is, the sequence of events and their partic-
ipants, could also be important for predicting the missing
word. The interaction between the predicate and arguments
of a single event is largely captured by the syntax super-
vision described above. Therefore, we combine the depen-
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TRAIN DEV TEST
Size 709,568 4,869 5,153

% Answer-in-context 100% 82.4% 81.7%
Filtered by human subjects No Yes Yes

Table 1: A brief summary of the LAMBADA dataset.

dency parses and coreference chains to construct another
type of self-attention targets that reflect higher-level narra-
tive knowledge, as shown in the right column of Figure 3b:
For each event argument a, we put a weight of 1 between a
and all predicates that have an argument that co-refers with
a. We name this supervision NARRATIVE.

Note that while we require some extra information (i.e.,
dependency parses and coreference chains, as shown in Fig-
ure 3a) to construct the auxiliary supervision signals, we do
NOT rely on any gold annotations on either the training set
or the test set. All the information can be obtained automat-
ically from running existing NLP tools. We discuss the pre-
processing steps more in Section 4.

If any auxiliary supervision is applied to a self-attention
head, we compute a loss from the supervision matrix S ∈
Rn×n and the attention weights A ∈ Rn×n as:

Ls =
1

k

n∑
i=1

⎡
⎣− log

⎛
⎝

n∑
j=1

Aij ∗ Sij

⎞
⎠ ∗

n∑
j=1

Sij

⎤
⎦ (2)

where k is the number of rows in S such that there is at least
one non-zero element in the row. To explain, for each token
with at least one supervision target, we compute the negative
log-likelihood loss against all of its supervision targets, and
then get the mean value.

The model is trained in an end-to-end fashion, no matter
whether any auxiliary supervision is applied. For a model
combined with auxiliary supervisions s1, s2, . . . , the total
loss being optimized is:

L = L0 + λ ∗
∑
i

Lsi (3)

where λ is a hyper-parameter to balance between the final
prediction loss and the auxiliary losses.

4 Experimental Results

Dataset & Pre-processing When introducing the LAM-
BADA dataset, Paperno et al. (2016) divided the BooksCor-
pus randomly into 2 partitions, and only applied the human
subjects filtering process to the second half to create the de-
velopment / test set, while leaving the first half raw data un-
touched to be the training set. With the reading comprehen-
sion setup introduced by Chu et al. (2017), they also con-
structed a new training set of ~1.6M instances out of the
original raw data, by requiring that the last word in the target
sentence must exist in the context. Follow-up work (Dhin-
gra et al. 2018; Hoang, Wiseman, and Rush 2018) further
filtered the new training set by removing all instances where
the target word is a stopword, leaving ~700k instances. We
follow the same setup here. A summary is shown in Table 1.

As discussed in Section 3, we also need to get the depen-
dency trees and coreference chains from the data in order
to construct the target attention weights for auxiliary super-
visions. We use the neural dependency parser and the sta-
tistical coreference system from Stanford CoreNLP toolkit
(Manning et al. 2014) to pre-process the whole dataset. Fur-
ther discussion on the choice of pre-processing alternatives
will be in Section 5.

Implementation Details We build our models and run all
the experiments with AllenNLP (Gardner et al. 2017). For
the baseline BIDAF model, we mostly follow the hyper-
parameters of the original model: due to space limits, we
provide a detailed description of hyper-parameter choices in
the supplemental material. We train the model for 10 epochs,
and perform early-stopping when the validation accuracy
does not increase for two consecutive epochs. We use val-
idation accuracy to select the best epoch, from which then
weights are then used for test set evaluation.

For the multi-head self-attention encoders in the BIDAF-
SA-* variants, we always use 4 attention heads per layer.
For BIDAF-SA-EARLY, we include 4 layers in the stacked
self-attention encoder, as preliminary studies show that us-
ing only 1 or 2 layers damages performance heavily, while
using more than 4 layers gives no significant improve-
ment. For BIDAF-SA-LATE, we only add 1 multi-head
self-attention layer, because again, preliminary results show
no further gain of using 2 or more layers. In some experi-
ments, we also try replacing the embedding layer with the
pre-trained ELMo embeddings (Peters et al. 2018).

We find that performance is very sensitive to the initial
random state, possibly due to the fact that there is a large sta-
tistical discrepancy between the training set and the devel-
opment / test sets (because the training set is not filtered by
human subjects). We observed a similar effect when we re-
ran existing models from the literature (Dhingra et al. 2018;
Hoang, Wiseman, and Rush 2018). Therefore, for each
model variant, we train 4 different runs with different ran-
dom seeds, and report the average and maximum perfor-
mance (in parentheses in the following tables) across the 4
runs.

Results on LAMBADA We compare our method with
the two best previous approaches that did not use large-
scale pre-training language models (Dhingra et al. 2018;
Hoang, Wiseman, and Rush 2018), and GPT-2 (Radford et
al. 2018). Note that we do not compare to other major pre-
trained LMs, because BERT (Devlin et al. 2019) and its
follow-ups like XLNet (Yang et al. 2019) and RoBERTa (Liu
et al. 2019) all used the BooksCorpus as part of the pre-
training data. As the LAMBADA task is constructed from
the BooksCorpus, BERT and other models would gain an
unfair advantage on the task because all the test instances
have been accessed by these models during pre-training.

We present our main results in Table 2. Here we first fo-
cus on the BIDAF-SA-EARLY model and the COREFALL
supervision, because intuitively, knowledge about corefer-
ence chains in the passage is likely to be the most beneficial
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Models Accuracy (%)
Dhingra et al. (2018) 55.69
Hoang, Wiseman, and Rush (2018) 59.23
GPT-2 (Radford et al. 2019) 63.24
BIDAF 59.12 (59.54)
BIDAF-SA-EARLY 60.54 (60.88)
BIDAF-SA-EARLY + COREFALL 61.51 (61.94)
BIDAF-SA-EARLY + ELMo 61.38 (61.87)
BIDAF-SA-EARLY + ELMo + COREFALL 63.71 (64.62)

Table 2: Accuracy on the LAMBADA TEST set: average ac-
curacy across 4 runs, with max accuracy in parentheses.

factor for solving the task. Results from other variants are
discussed in Section 5.

We see that our BIDAF baseline already performs sim-
ilarly to the previous best results before GPT-2. Adding
the COREFALL auxiliary supervision consistently improves
accuracy, with or without ELMo embeddings, but we see
larger improvement from COREFALL with ELMo embed-
dings (~2.3 points) compared to that without ELMo embed-
dings (~1 point). This confirms our hypothesis that the injec-
tion of semantic knowledge via supervised self-attention can
be helpful in addition to recent pre-trained language mod-
els. Also, the fact that ELMo itself only brings less than 1
point of improvement without COREFALL emphasizes the
difficulty of the task. With both ELMo embeddings and
COREFALL supervision, we achieve an average accuracy of
63.71% (and the best run achieves 64.62%), outperforming
the largest GPT-2 model. This is quite surprising, consider-
ing that our model only contains 2.6 million tunable param-
eters2, significantly smaller than the number of parameters
in GPT-2 (1.5 billion).

5 Analysis

In this section, we aim to understand why the coreference
supervision helps, what is the best possible way to apply
auxiliary supervision, and how different types of supervision
signals compare.

Does pre-processing quality affect performance? The
statistical coreference system from Stanford CoreNLP, from
which we construct the supervision signals, is not the cur-
rent best coreference model in terms of benchmark met-
rics. We also experimented with a more recent end-to-end
neural coreference model (Lee et al. 2017)3, with much
higher benchmark scores, as supervision signal for our
BIDAF-SA-EARLY + COREFALL model. Surprisingly, this
yields inferior performance (61.13% on average, compared
to 61.51% with the Stanford coreference results).

We manually examined the output of both coreference
systems on some data points, and found that the neural
coreference system often produces highly erroneous output,
possibly because it is highly optimized towards its news-
centric training data, the OntoNotes dataset (Hovy et al.

2Even if we take the frozen ELMo parameters into account, the
total number of parameters is only 96 million.

3We use a re-implementation from AllenNLP.

Context:  "By the way, Elizabeth asked if I’d seen you," 
Tony lied. He wanted Jon to leave so he could talk with 
Ezekiel alone. There was something that aunt Casey, 
Patella and Gabriella had said about Tom that had bothered 
him ever since meeting Ezekiel earlier that afternoon.

Target sentence:  "I’m sure she’ll find me," Jon remarked 
curtly, trying to cut short the conversation with       .

Target word:  Tony        Prediction (Wrong): Ezekiel 

Figure 4: Does pre-processing quality affect performance?
An example where a wrong coreference chain (color-coded)
from a neural coreference system (which we do not use for
our experiments) leads to the wrong prediction. A better
coreference output from the Stanford coreference system on
this example is shown in Figure 3a.

DEV subset # no supervision with supervision
Require coref 21 48.5 ± 4.1 62.0 ± 3.5

Noun 2,006 58.42 ± 0.32 59.48 ± 0.23
Pronoun 2,138 72.31 ± 0.15 76.72 ± 0.53

Not NE 2,848 54.15 ± 0.21 54.90 ± 0.33
PERSON 1,646 72.71 ± 0.08 77.95 ± 0.66

Table 3: Does COREFALL learn coreference? Accuracy on
some DEV subsets, BIDAF-SA-EARLY + ELMo model
with and without COREFALL supervision. We report aver-
age and standard deviation across 4 runs.

2006), while LAMBADA consists of narrative texts. Fig-
ure 4 shows an example where a wrong coreference chain
from the neural system leads to a wrong prediction. This is
the same example as in Figure 3a, which shows the corefer-
ence output from the Stanford system. In this example, it is
hard to predict the right answer without knowing that “you”
refers to “Jon” and “he” refers to “Tony”, both of which are
predicted correctly by the Stanford system.

This indicates that a better coreference signal could lead
to even better results on the task. We leave it to future work,
given some very recent work that further improved corefer-
ence performance (Joshi et al. 2019).

Does COREFALL really learn coreference knowledge?
We want to know whether the improvement from COREF-
ALL supervision is because the supervision will actually al-
low the model to better learn coreference structures, or due
to some unknown confounding factors. Chu et al. (2017)
manually analyzed 100 random instances from the LAM-
BADA DEV set to identify the type of reasoning needed for
humans to make the right prediction, and found that 21 out
of the 100 instances require coreference resolution. We test
our models on these 21 instances. To obtain a larger set of
instances, we also compare the cases in the DEV set where
the target word is a noun to cases where the target is a pro-
noun, and we compare the cases where the target word is a
PERSON to the cases where it is not a named entity (the most
common named entity type is PERSON, with all other types
occurring very rarely, so we focus on PERSON).
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Models Accuracy (%)
BIDAF-SA-EARLY 60.54 (60.88)
BIDAF-SA-EARLY + COREFALL 61.51 (61.94)
BIDAF-SA-LATE 59.48 (59.58)
BIDAF-SA-LATE + COREFALL 61.19 (61.54)
BIDAF-SA-BOTH 60.88 (61.27)
BIDAF-SA-BOTH + COREFALL (early) 61.72 (62.35)
BIDAF-SA-BOTH + COREFALL (late) 61.54 (61.67)

Table 4: Location of supervision: Accuracy (average of 4
runs, with max in parentheses) on the LAMBADA TEST set
for different locations to fuse in the self-attention encoder
and to apply auxiliary supervision.

The results in Table 3 show that not only does COREFALL
supervision improve accuracy on the 21 instances manually
classified as requiring coreference, it also strongly boosts
performance on the “Pronoun” and “PERSON” subsets, in
comparison to their “Noun” and “Not NE” counterparts.
Though not a direct proof, this intuitively supports the claim
that the auxiliary supervision does enable the model to bet-
ter capture coreference information, which is likely to help
to reason particularly over pronouns and named entities.

Where should the supervision be applied? Is it more
beneficial to apply auxiliary supervision at an earlier stage of
the model, i.e., at the contextual layer as in the BIDAF-SA-
EARLY model, or at a later stage, i.e., after the bidirectional
attention layer as in the BIDAF-SA-LATE model? We com-
pare performance using COREFALL supervision. Also, to
disentangle the effect of architectural change, we experiment
with the BIDAF-SA-BOTH model with supervision being
added at different stages.

Table 4 shows that without supervision, BIDAF-SA-
EARLY offers much better results than BIDAF-SA-LATE.
Although adding supervision to BIDAF-SA-LATE leads to
a larger relative improvement, applying supervision at an
earlier stage still leads to a better absolute performance than
doing so at a later stage, which is also confirmed by the
numbers on BIDAF-SA-BOTH. This is not surprising, as
intuitively coreference information about the context input
should be beneficial to getting better query-aware context
representations, rather than the other way around.4

Are other types of supervision also useful? We have so
far focused on the COREFALL supervision. In Table 5 we
show the results of applying other types of auxiliary super-
vision.

All other types of auxiliary supervision, except for NAR-
RATIVE, show inferior performance compared to CORE-
FALL. This is as expected. As the LAMBADA task is specif-
ically designed to require broader discourse context, intra-
sentence syntactic structure (DEPPARSE) should not play an
important role. The COREFPREV and COREFNEXT variants

4In all our experiments with BIDAF-SA-EARLY, we apply
auxiliary supervision on the 3rd layer (out of all 4 layers). We also
test applying supervision on other layers, and find the 3rd layer
generally works the best, though the difference is not significant.

Models Accuracy (%)
BIDAF-SA-EARLY 60.54 (60.88)
BIDAF-SA-EARLY + COREFALL 61.51 (61.94)
BIDAF-SA-EARLY + DEPPARSE 61.06 (61.34)
BIDAF-SA-EARLY + COREFPREV 60.94 (61.71)
BIDAF-SA-EARLY + COREFNEXT 61.27 (61.63)
BIDAF-SA-EARLY + NARRATIVE 61.86 (62.39)

Table 5: Supervision types: Accuracy on the LAMBADA
TEST set (average of 4 runs, with max in parentheses) with
different types of auxiliary supervision.

of coreference information only provide guidance towards
the immediately preceding or following mention in the same
coreference chain. Such knowledge will fall short when the
reasoning over a long coreference chain is crucial in making
the prediction.

The NARRATIVE supervision provides slightly better per-
formance than COREFALL. This is also not surprising, as the
NARRATIVE signal is derived from both dependency parses
and coreference chains. Theoretically, this type of supervi-
sion should capture useful linguistic structures from both
COREFALL, which makes the main contribution to the per-
formance improvement, and DEPPARSE, which might of-
fer some additional boost.5 We further verify the hypothesis
by computing the agreement between the predictions of two
models on the DEV set, and find that on average, a run with
COREFALL and a run with NARRATIVE agree on 89.3% of
all DEV instances, confirming that it is largely the corefer-
ence signal that leads to the performance improvement ob-
served with the NARRATIVE supervision.

6 Conclusion

In this paper we have investigated whether the injection of
semantic knowledge into an existing model (BIDAF) via
supervised self-attention can lead to better performance on
tasks requiring complex and long-distance reasoning. On
the LAMBADA dataset, where the current best result from
GPT-2 (Radford et al. 2019) is still far below human perfor-
mance, we show that a BIDAF model trained with coref-
erence as auxiliary supervision achieves the new state-of-
the-art, while requiring only a tiny fraction of the parame-
ters in GPT-2. We further tested model variants to test where
in a BIDAF model it is most useful to add a self-attention
layer with supervision, and how different types of linguistic
knowledge compared as supervision signal.

This paper takes a first step in explicitly using structural
semantic knowledge to inform self-attention, which leads
to many interesting future directions. First, we want to test
other types of linguistic knowledge, for example, semantic
role labeling or AMR parsing (O’Gorman et al. 2018). We
also want to see how our current approach can be applied to
other tasks, for example, the new QUOREF dataset (Dasigi et
al. 2019) that requires resolving coreference among entities

5We also briefly test combining multiple supervision signals,
and find that COREFALL + NARRATIVE leads to slightly better
performance than using NARRATIVE alone, but the difference is
not significant as well.
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to answer a question. In this paper, we extract supervision
signals from existing NLP pipeline tools, and the signals are
actually quite noisy (especially on coreference). It would
be interesting to see whether such semantic structures can
be learned jointly when pre-training language models, with
some distant supervision (for example, in a Wikipedia docu-
ment, tokens with links pointing to the same Wikipedia page
should be considered as co-referential mentions).
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