
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Dynamic Embedding on Textual Networks via a Gaussian Process

Pengyu Cheng, Yitong Li, Xinyuan Zhang, Liqun Chen, David Carlson, Lawrence Carin
Duke University

pengyu.cheng@duke.edu

Abstract

Textual network embedding aims to learn low-dimensional
representations of text-annotated nodes in a graph. Prior work
in this area has typically focused on fixed graph structures;
however, real-world networks are often dynamic. We ad-
dress this challenge with a novel end-to-end node-embedding
model, called Dynamic Embedding for Textual Networks
with a Gaussian Process (DetGP). After training, DetGP can
be applied efficiently to dynamic graphs without re-training
or backpropagation. The learned representation of each node
is a combination of textual and structural embeddings. Be-
cause the structure is allowed to be dynamic, our method uses
the Gaussian process to take advantage of its non-parametric
properties. To use both local and global graph structures,
diffusion is used to model multiple hops between neigh-
bors. The relative importance of global versus local structure
for the embeddings is learned automatically. With the non-
parametric nature of the Gaussian process, updating the em-
beddings for a changed graph structure requires only a for-
ward pass through the learned model. Considering link pre-
diction and node classification, experiments demonstrate the
empirical effectiveness of our method compared to baseline
approaches. We further show that DetGP can be straightfor-
wardly and efficiently applied to dynamic textual networks.

1 Introduction

Learning latent representations for graph nodes has attracted
considerable attention in machine learning, with applica-
tions in social networks (Fan et al. 2019; Perozzi, Al-Rfou,
and Skiena 2014), knowledge bases (Trivedi et al. 2017),
recommendation systems (Ying et al. 2018), and bioinfor-
matics (Zitnik and Leskovec 2017). Textual networks addi-
tionally contain rich semantic information, so text can be in-
cluded with the graph structure to predict downstream tasks,
such as link prediction (Zhang et al. 2018a), node classifi-
cation (Kipf and Welling 2017), and graph generation (Kipf
and Welling 2016). For instance, social networks have links
between users, and typically each user has a profile (text).
The goal of textual network embedding is to learn node em-
beddings by jointly considering textual and structural infor-
mation in the graph.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Most of the aforementioned textual network embedding
methods focus on a fixed graph structure (Tu et al. 2017;
Zhang et al. 2018a; Shen et al. 2019). When new network
nodes are added to the graph, these frameworks require that
the whole model be re-trained to update the existing nodes
and add representations for the new nodes, leading to high
computational complexity. However, networks are often dy-
namic; in social networks, users and relationships between
users change over time (e.g., new users, new friends, un-
friending, etc.). It is impractical to update the full model
whenever a new user is added. This paper seeks to address
this challenge and learn an embedding method that adapts to
a changed graph, without re-training.

Prior dynamic embedding methods usually focus on pre-
dicting how the graph structure changes over time, by train-
ing on multiple time steps (Zhou et al. 2018; Seo et al. 2018;
Du et al. 2018). In such a model, a dynamic network em-
bedding is approximated by multiple steps of fixed network
embeddings. In contrast, our method only needs to train on
a single graph and it can quickly adapt to related graph
structures. Additionally, in prior work textual information
is rarely included in dynamic graphs. Two exceptions have
looked at dynamic network embeddings with changing node
attributes (Li et al. 2017; 2018). However, both require pre-
trained node features, whereas we show that it is more pow-
erful to learn the text encoder in a joint framework with the
structural embedding.

We propose Dynamic Embedding for Textual Networks
with a Gaussian Process (DetGP), a novel end-to-end model
for performing unsupervised dynamic textual network em-
bedding. DetGP learns textual and structural features jointly
for both fixed and dynamic networks. The textual features
indicate the intrinsic attributes of each node based on the
text alone, while the structural features reveal the node re-
lationships of the whole community. The structural features
utilize both the textual features and the graph topology. This
is achieved by smoothing the kernel function in a Gaus-
sian process (GP) with a multi-hop graph transition matrix.
This GP-based structure can handle newly added nodes or
dynamic edges due to its non-parametric properties (Ras-
mussen 2006). To facilitate fast computation, we learn in-
ducing points to serve as landmarks in the GP (Yu and Chu

7562

2008). Since the inducing points are fixed after training,
computing new embeddings only requires calculating sim-
ilarity to the inducing points, alleviating computational is-
sues caused by changing graph structure.

To evaluate the proposed approach, the learned node em-
beddings are used for link prediction and node classification.
Performance on those downstream tasks demonstrates that
learned embeddings capture relevant information. We also
perform these tasks on dynamic textual networks and visual-
ize the learned inducing points. Empirically, DetGP outper-
forms other models in downstream tasks, yielding efficient
and accurate predictions on newly added nodes.

2 Related Work

Textual Network Embedding: Many graphs have rich text
information for each node (Yang et al. 2015) (e.g., paper
abstracts in citation networks, user profiles in social net-
works, product and costumer descriptions in online shop-
ping, etc.), which leads to the problem of textual network
embedding (Tu et al. 2017). Textual network embedding
learns enhanced node representations by combining the tex-
tual embeddings and structural embeddings together. Tex-
tual embeddings are learnt by encoding raw-text via text
encoders. Structural are obtained based on the connection
information on graphs. Recent textual embedding meth-
ods (Zhang et al. 2018a; Shen et al. 2019; Tu et al. 2017;
Sun et al. 2016) learn both textual and structural embed-
dings jointly in an end-to-end training process with neural
networks. However, previous methods require all the net-
work connection information before training, which makes
them difficult to apply in dynamic network scenarios.

Dynamic Network Embedding: Graph structures are of-
ten dynamic (e.g., paper citation increasing or social rela-
tionship changing overtime), but fixed network embedding
algorithms require re-training when graphs change. This is-
sue is addressed by dynamic network embeddings (Trivedi et
al. 2018). Research on dynamic graphs has usually focused
only on structural embeddings (Trivedi et al. 2018; Du et
al. 2018; Guo, Xu, and Chen 2018) without considering rich
side information associate with vertices. While these meth-
ods learn how to update the model as the graph changes, they
are not real-time algorithms, instead using gradient back-
propagation to update representations when new nodes are
added or the graph structure changes (Goyal et al. 2018;
Du et al. 2018).

Gaussian Process: A Gaussian Process (GP) f(x) is a
collection of random variables such that any finite subset
of those variables are Gaussian distributed. More specif-
ically, given finite set {x1,x2, . . . ,xn} with n ∈ N+,
the corresponding signal [f(x1), f(x2), . . . , f(xn)]

ᵀ ∼
N ([m(x1),m(x2), . . . ,m(xn)]

ᵀ, [k(xi,xj)]n×n), where
m(x) is a mean function and k(·, ·) is a covariance ker-
nel function. GPs are used widely in the Bayesian ma-
chine learning literature as priors on functions (Titsias 2009;
Rasmussen 2006; Titsias and Lawrence 2010). To learn
the mapping y = f(x) with training data {(xi, yi)}Ni=1

and unlabeled testing data {x′
j}Mj=1, with Gaussian process

as the prior, [f(x1), f(x2) . . . , f(xn), f(x
′
1), . . . , f(x

′
M)]

follows a multivariate Gaussian distribution. Given ob-
servations f(xi) = yi, the conditional distribution for
[f(x′

1), . . . , f(x
′
M)] can be easily obtained, which is also

Gaussian distributed. Recently, GPs have been used for node
embedding learning on graphs (Ma, Cui, and Zhu 2018;
Ng, Colombo, and Silva 2018). However, these works re-
quire pre-trained node features, leading to a two-step train-
ing process. In contrast, our proposed model is an end-to-end
framework that can jointly train the feature extractor (text
encoder) with the GP parameters.

3 Model

We assume the input data are given as an undirected graph
G = (V, E), where V = {vn}Nn=1 is the node set and E =
{(vn, vn′) : vn, vn′ ∈ V} is the edge set. Each node vn has
an associated Ln-length text sequence tn = {wi}Ln

i=1, where
each wi is a natural language word. The adjacency ma-
trix A ∈ {0, 1}N×N represents node relationships, where
Ann′ = 1 if (vn, vn′) ∈ E and Ann′ = 0 otherwise. Our ob-
jective is to learn a low-dimensional embedding vector hn

for each node vn ∈ V that captures both textual and struc-
tural features of the graph G.

Figure 1 gives the framework of the proposed model,
DetGP. Text tn is input to a text encoder gθ(·) with param-
eters θ, described in Section 3.1. The output xn = gθ(tn)
is the textual embedding of node vn. This textual embed-
ding is both part of the complete embedding hn and an in-
put into the structural embedding layer (dotted purple box)
that is combined with the graph structure in a GP frame-
work, discussed in Section 3.2. In addition, multiple hops
are modeled in this embedding layer to better reflect the
graph architecture and use both local and global graph struc-
ture. The mathematical analysis of the structural embed-
dings is given in Section 3.3. To scale up the model to large
datasets, we adopt the idea of inducing points (Titsias 2009;
Titsias and Lawrence 2010), which serve as grid points in
the model. The output structural embeddings are denoted as
sn, which are combined to form the complete node embed-
ding hn = [xn; sn].

The model is trained by using the negative sampling
loss (Tu et al. 2017), where neighbor nodes should be
more similar than non-neighbor nodes. The learning pro-
cedure is fully described in Section 3.4. When the graph
structure is updated, i.e. new nodes vnew with text tnew
are added or links are changed, the node embeddings are
updated by a single forward-propagation step without re-
learning any model parameters. This property comes from
the non-parametric nature of the GP-based structure, and it
greatly increases efficiency for dynamic graphs.

3.1 Text Encoder

There are many existing text encoders (Melamud, Gold-
berger, and Dagan 2016; Cer et al. 2018; Lin et al. 2017),
often based on deep neural networks. However, using a deep
neural network encoder can overfit on graphs because of the
relatively small size of textual data (Zhang et al. 2018a).
Therefore, various encoders are proposed to extract rich tex-
tual information specifically from graphs (Tu et al. 2017;

7563

����������	
������������

�������
	
������

��������
	
������

�����������
	
������

�

��

��

��

��

�����
	������

A

X

Z

−1

T

P∗KxzK
−1
zz

Figure 1: The input of the DetGP is the connection information A of the network and textual side information T = {tn}Nn=1 for
nodes. The model first encodes text T to a low-dimension representation X = {xn}Nn=1, then infers the structural embeddings
by X and A via a Gaussian process. Inducing points Z = {zm}Mm=1 are used to reduce computational complexity. The output
network embeddings combine the textual and structural embeddings.

Zhang et al. 2018a; Shen et al. 2019). In general, we aim to
learn a text encoder gθ with parameters θ that encodes se-
mantic features xn = gθ(tn). A simple and effective text
encoder is the word embedding average (Wavg) gθ(t) =
1
Ln

∑Ln

i=1 νi, where νi is the corresponding embedding of
wi from the sequence tn = {wi}Ln

i=1. This is implemented
by a learnable look-up table. (Zhang et al. 2018a) proposed
a diffused word average encoder (DWavg) to leverage tex-
tual information over multiple hops on the network. Be-
cause DetGP focuses mainly on the structural embeddings,
we do not focus on developing a new text encoder. Instead,
we show that DetGP has compatibility with different text
encoders, and our experiments use these two text encoders
(Wavg and DWavg).

3.2 Structural Embedding Layer

The structural embedding layer transforms the encoded text
feature x to structural embedding s using a GP in conjunc-
tion with the graph topology. Before introducing the GP,
we introduce the multi-hop transition matrix P∗ that will
smooth the GP kernel.

Multi-hop Transition Matrix: In a graph, one node can
be directly or indirectly connected to others by edges. Only
considering direct connections is limiting. For example, in
citation networks, cited papers should be closely related to a
manuscript, so considering both a neighbor and its neighbors
should add information. Following this intuition, we propose
to use multiple hops, or multi-step graph random walks, to
model both local and global structure.

Suppose P is the normalized transition matrix, i.e. a nor-
malized version of A where each row sums to one and Pnn′

represents the probability of a transition from node n to node
n′. If P represents the transition from a single hop, then
higher orders of P will give multi-hop transition probabil-
ities. Specifically, P j is the jth power of P , where P j

nn′

gives the probability of transitioning from node n to node n′

after j random hops on the graph (Abu-El-Haija et al. 2018).
Different powers of P provide different levels of smooth-
ing on the graph, and vary from using local to global struc-
ture. A priori though, it is not clear what level of structure is
most important for learning the embedding. Therefore, they
are combined in a learnable weighting scheme. Denoting the
weights as α, this is

P∗ =
∑J

j=0 αjP
j , s.t.

∑J
j=0 αj = 1, (1)

where J is the maximum number of steps considered. The
constraint that

∑J
j=0 αj = 1 in (1) is implemented by a soft-

max function. Note that P 0 = IN is an identity matrix, that
treats each node independently. In contrast, a large power of
P would typically be very smooth after taking many hops.
Therefore, α can learn the importance of local (P 0 or P 1)
and global (large powers of P) graph structure for the node
embeddings. Equation (1) can be viewed as a generalized
form for DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) or
Node2vec (Grover and Leskovec 2016). In practice, learning
the weights appears to be more robust than hand-engineering
them (Abu-El-Haija et al. 2018).

GP Structural Embedding Prior: To describe the other
key components of the structural embedding layer, we de-
scribe the GP approach. We define a latent function f(x)
over the textual embedding x with a GP prior f(x) ∼
GP (0, k(xn,xn′)). Inspired by (Ng, Colombo, and Silva
2018), instead of using this GP directly to determine the em-
bedding, the learned graph diffusion is used on top of this
Gaussian process. For finite samples, the combination of the
graph diffusion and the GP yields a conditional structural
embedding that can be expressed as a multivariate Gaussian
distribution:

p([s1i, . . . , sNi]
ᵀ|[x1, . . . ,xN]) = N (0,P ᵀ

∗ KXXP∗) , (2)
where [KXX]nn′ = k(xn,xn′) and i is a index of our

structure embedding feature. Each dimension of the struc-
tural embedding follows this Gaussian distribution with the

7564

Figure 2: Model flow chart. Inducing points are denoted as
z, with embedding u. The final node embedding h is the
concatenation of text embedding x and structural embed-
ding s.

same covariance matrix KXX smoothed by P ∗. In practice,
we use the first-degree polynomial kernel

k (xn,xn′) = xᵀ
nxn′ + C, C > 0 (3)

because it outperforms others due to its numerical stability.
Moreover, the linear kernel in (3) speeds up computation and
increases model stability.

Inducing Points: GP models are known to suffer from
computational complexity with large data size N . To scale
up the model, we use the inducing points based on the
Sparse pseudo-inputs Gaussian process (SPGP) (Snelson
and Ghahramani 2006). Let Z = [z1, · · · , zM]ᵀ with M <
N denote inducing points (pseudo-textual embeddings) in
the same space as the textual features. Assume U =
[u1, · · · ,uM]ᵀ are corresponding the pseudo-structural em-
beddings of Z, which is a function of z following the
same GP function. The structural and textual embeddings
of real data samples are denoted as S = [s1, · · · , sN]ᵀ and
X = [x1, · · · ,xN]ᵀ. Given the inducing points, the condi-
tional distribution of our structural embeddings is
p(Si|X,Z,U) = N (

μSi|Z ,ΣS|Z
)
, (4)

μSi|Z = P ᵀ
∗ KXZ (KZZ + σIM)−1 Ui,

ΣS|Z = P ᵀ
∗ KXXP∗ − P ᵀ

∗ KXZ (KZZ + σIM)−1 KZXP∗,

where [KXZ]nm = k(xn, zm) and [KZZ]mm′ =
k(zm, zm′). The subscript i indicates the ith column of a
matrix (Si is the concatenation of the ith element from all
node structural embeddings). Each dimension of S has a
multivariate Gaussian distribution with unique mean value
μsi|Z but the same covariance ΣS|Z . Note that a small
number σ is added to the diagonal elements of the ker-
nel KZZ to enhance model stability. The relationships of
different parameters are given in Figure 2. The inducing
points {zm}Mm=1 and text features {xn}Nn=1 share the same
textual embedding space; the pseudo-textual embeddings
{um}Mm=1 and the structural embeddings {sn}nn=1 share the
same structural embedding space.

During the training, the textual embedding space is
continuously changed, because the text encoder gθ(t)
is updated by the gradient descent algorithm iterative.
Therefore, the inducing points in the textual embedding
space should also be updated correspondingly. To ob-
tain the optimal inducing points Z with corresponding
pseudo-structural embeddings U , we jointly train them
using gradient descent with weights in other layers. To
back-propagate through the stochastic posterior distribution
p(Si|X,Z,U) in equation (4), we propose the mean ap-
proximation strategy. We use the mean of p(Si|X,Z,U),

Ŝ = P ᵀ
∗ KXZ (KZZ + σIM)

−1
U , as unbiased estimation

of structural embeddings. Then gradients from S can be eas-
ily propagated to Z and U .

3.3 Analysis of the Structural Embedding

We analyze the kernel function in (2) and (3) to show how
the graph structure is used in the embedding layer. Denote
P j
nn′ in equation (1) as the transition probability from node

n to node n′ in j hops, then the correlation between node n
and n′ in (2) can be expanded as

cov(sni, sn′i) = α2
0k(xn,xn′) + α0

J∑

j=1

αj

N∑

r=1

P j
nrk(xn,xr)

+ α0

J∑

j=1

αj

N∑

r=1

P j
n′rk(xn′ ,xr) (5)

+
J∑

j=1

J∑

j′=1

N∑

r=1
r �=n,n

N∑

r′=1
r′ �=n,n′

αjαj′P
j
nrP

j′
n′r′k(xn′ ,xr′)

The covariance is the same for all indices i. The first term
in (5) measures the kernel function between xn and xn′ .
The next two terms show the relationship between xn and
the weighted multi-hop neighbors of xn′ and vice versa. α
controls how much different hops are used. The last term
is the pairwise-weighted higher order relationship between
any two nodes in the graph, except n and n′. The covariance
structure uses the whole graph and learns how to balance lo-
cal and global information. If node n has no edges, then it
will not be influenced by other nodes besides textual simi-
larity. In contrast, a node with dense edge connections will
be smoothed by its neighbors.

With the inducing points [z1, z2, . . . , zM], equation (5)
can be modified as cov(sni, umi) = α0k (xn, zm) +
∑J

j=1 αj

∑N
n′=1 P

j
nn′k (xn′ , zm) . The covariance between

node vn and the inducing points includes the local infor-
mation k (xn, zm), as well as the smoothed effect from
∑J

j=1 αj

∑N
n′=1 P

j
nn′k (xn′ , zm). This can also be viewed

as feature smoothing over neighbors. Since inducing points
do not contain links to other inducing points, there is no
smoothing function for them. Each inducing point can be
viewed as a node that already includes global graph infor-
mation.

3.4 Algorithm Outline

The structural embedding sn and the textual embedding xn

are concatenated to form the final node embedding hn =
[xn; sn]. If desired, hn can then pass through several ad-
ditional fully connected layers; for simplicity, we consider
this the final embedding form. To learn the embeddings in
the unsupervised framework, most existing works adopt the
technique of negative sampling (Zhang et al. 2018a; 2018b;
Tu et al. 2017), that tries to maximize the conditional proba-
bility of one node’s embedding given its one- and multi-hop
neighbors, while maintaining a low conditional probability
for non-neighbors. In the proposed framework, this loss is

7565

given for a single hop,

L = − 1
|E|

∑
(vn,vn′)∈E log (σ(h

ᵀ
nhn′))

− 1
Ns

∑
(vn,vn′) �∈E log [1− σ(hᵀ

nhn′)] . (6)

Ns is a weighting constant and can be set as Ns =
#{(vn, vn′) �∈ E}. In practice, using all nodes is infeasible,
so a subset of neighbors and non-neighbors will be sampled.
Equation (6) maximizes the inner product among neighbors
in the graph while minimizing the similarity among non-
neighbors. Our model is trained end-to-end by taking gra-
dients of loss L with respect to θ, Z and U . The inducing
points are initialized as the k-means centers of the encoded
text features. Then, Z and the text encoder are trained jointly
to minimize the loss function. Note that our model can also
take a mini-batch of nodes as in GraphSage (Hamilton, Ying,
and Leskovec 2017). Adam (Kingma and Ba 2015) is used
to optimize the parameters.

For a new node vnew with text tnew, the transition matrix
Pnew is first updated, and the embeddings can be applied di-
rectly without additional back-propagation. Specifically, we
first compute xnew = gθ(tnew) from the text encoder. Then
with [x,xnew], the structural embedding of all nodes can be
computed as [s, snew] =

∑J
j=0 αjP

j
newKxnewZ(KZZ +

σIM)−1U . During this process, the structural embeddings
of the original nodes also update due to the change in graph
structure.

4 Experiments

To demonstrate the effectiveness of our DetGP embeddings,
we conduct experiments first with static networks as in (Tu
et al. 2017; Zhang et al. 2018a; Shen et al. 2019), and then
on dynamic graphs. In the standard setup, learning textual
network embeddings requires that all nodes are available in
the graph. In contrast, we demonstrate in Section 4.3 that
our proposed model can infer embeddings efficiently after
training on newly added nodes. We evaluate the graph em-
beddings on link prediction and node classification on the
following real-world datasets:
• Cora is a paper citation network, with a total of 2,277

vertices and 5,214 edges in the graph, where only nodes
with text are kept. Each node has a text abstract about
machine learning and belongs to one of seven categories.

• DBLP is a paper citation network with 60,744 nodes and
52,890 edges. Each node represents one paper in com-
puter science in one of four categories: database, data
mining, artificial intelligence, and computer vision.

• HepTh (High Energy Physics Theory) (Leskovec, Klein-
berg, and Faloutsos 2007) is another paper citation net-
work. The original dataset contains 9,877 nodes and
25,998 edges. We only keep nodes with associated text,
so this is limited to 1,038 nodes and 1,990 edges.
For a fair comparison with previous work, we follow the

setup in (Tu et al. 2017; Zhang et al. 2018a; Shen et al.
2019), where the embedding for each node has dimension
200, a concatenation of a 100-dimensional textual embed-
ding and a 100-dimensional structural embedding. We eval-

uate our DetGP base on two text encoders: the word embed-
ding average (Wavg) encoder and the diffused word embed-
ding average (DWavg) encoder from Zhang et al. (2018a),
introduced in Section 3.1. The maximum number of hops J
in P ∗ is set to 3.

4.1 Link Prediction

The link prediction task seeks to infer if two nodes are con-
nected, based on the learned embeddings. This standard task
tests if the embedded node features contain graph connec-
tion information. For a given network, we randomly keep a
certain percentage (15%, 35%, 55%, 75%, 95%) of edges
and learn embeddings. At test time, we calculate the inner
product of pairwise node embedding. A large inner prod-
uct value indicates a potential edge between two nodes. The
AUC score (Hanley and McNeil 1982) is computed in this
setting to evaluate the performance. The results are shown
in Table 1 on Cora and HepTh. Since the DBLP dataset only
has 52,890 edges which is far too sparse compared with the
node number 60,744, we do not evaluate the AUC score on it
as a consequence of high variance from sampling edges. The
first four models only embed structural features, while the
remaining alternatives use both textual and structural em-
beddings. We also provide the DetGP results of with only
textual embeddings and only structure embeddings for abla-
tion study.

From Table 1, adding textual information in the embed-
ding can improve the link prediction result by a large mar-
gin. Even using only textual embeddings, DetGP gains sig-
nificant improvement compared with only structure-based
methods, and achieves competitive performance compared
with other text-based embedding methods. Using only struc-
tural information is slightly better than using only tex-
tual embeddings, since link prediction is a more structure-
dependent task, which also indicates that DetGP learns in-
ducing points Z that can effectively represent the network
structure. Compared with other textual network embedding
methods, DetGP has very competitive AUC scores, espe-
cially when only given a small percentage of edges. Not-
ing that for our methods the text encoders come from the
baselines Wavg and DWavg (Zhang et al. 2018a), the perfor-
mance gain should come from the proposed structural em-
bedding framework.

4.2 Node Classification

Node classification tasks aim to predict the category labels
of the nodes based on the network structure and the node
attributes. For textual networks, node classification requires
high-quality textual embeddings because structural embed-
dings alone do not accurately reflect node categories. There-
fore, we only compare to methods designed for textual net-
work embedding. After training converges, a linear SVM
classifier is learned on the trained node embeddings and
performance is estimated by a hold-out set. In Table 2, we
compare our methods (Wavg+DetGP, DWavg+DetGP) with
recent textual network embedding methods under different
proportions (10%, 30%, 50%, 70%) of given nodes in the
training set. Following the setup in Zhang et al. (2018a),
the evaluation metric is Macro-F1 score (Powers 2011). We

7566

Cora HepTh
%Training Edges 15% 35% 55% 75% 95% 15% 35% 55% 75% 95%

MMB (Airoldi et al. 2008) 54.7 59.5 64.9 71.1 75.9 54.6 57.3 66.2 73.6 80.3
node2vec (Grover and Leskovec 2016) 55.9 66.1 78.7 85.9 88.2 57.1 69.9 84.3 88.4 89.2

LINE (Tang et al. 2015) 55.0 66.4 77.6 85.6 89.3 53.7 66.5 78.5 87.5 87.6
DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) 56.0 70.2 80.1 85.3 90.3 55.2 70.0 81.3 87.6 88.0

TADW (Yang et al. 2015) 86.6 90.2 90.0 91.0 92.7 87.0 91.8 91.1 93.5 91.7
CANE (Tu et al. 2017) 86.8 92.2 94.6 95.6 97.7 90.0 92.0 94.2 95.4 96.3

DMATE (Zhang et al. 2018a) 91.3 93.7 96.0 97.4 98.8 NA NA NA NA NA
WANE (Shen et al. 2019) 91.7 94.1 96.2 97.5 99.1 92.3 95.7 97.5 97.7 98.7

DetGP (Wavg) only Text 83.4 89.1 89.9 90.9 92.3 86.5 89.6 90.2 91.5 92.6
DetGP (Wavg) only Struct 85.4 89.7 91.0 92.7 94.1 89.7 92.1 93.5 94.8 95.1

DetGP (Wavg) 92.8 94.8 95.5 96.2 97.5 93.2 95.1 97.0 97.3 97.9

DetGP (DWavg) 93.4 95.2 96.3 97.5 98.8 94.3 96.2 97.7 98.1 98.5

Table 1: AUC scores for link prediction on the Cora and HepTh dataset. The top four models only have structural embedding,
while the rest use text information.

Cora DBLP
%Training Nodes 10% 30% 50% 70% 10% 30% 50% 70%

LINE(Tang et al. 2015) 53.9 56.7 58.8 60.1 42.7 43.8 43.8 43.9
TADW (Yang et al. 2015) 71.0 71.4 75.9 77.2 67.6 68.9 69.2 69.5

CANE (Tu et al. 2017) 81.6 82.8 85.2 86.3 71.8 73.6 74.7 75.2
DMTE (Zhang et al. 2018a) 81.8 83.9 86.3 87.9 72.9 74.3 75.5 76.1

WANE (Shen et al. 2019) 81.9 83.9 86.4 88.1 NA NA NA NA

DetGP (Wavg) only Text 78.1 81.2 84.7 85.3 71.4 73.3 74.2 74.9
DetGP (Wavg) only Struct 70.9 79.7 81.5 82.3 70.0 71.4 72.6 73.3

DetGP (Wavg) 80.5 85.4 86.7 88.5 76.9 78.3 79.1 79.3

DetGP (DWavg) 83.1 87.2 88.2 89.8 78.0 79.3 79.6 79.8

Table 2: Test Macro-F1 scores for multi-label node classification on Cora and DBLP dataset.

test on the Cora and DBLP datasets, which have group la-
bel information, where DetGP yields the best performance
under all situations. This demonstrates that the proposed
model can learn both representative textual and structural
embeddings. The ablation study results (only textual em-
beddings vs. only structural embeddings) demonstrates that
textual attributes are more important than edge connections
in classification task. To describe the effect of learning the
weighting in the diffusion, for the experiment on Cora with
10% nodes given for training, the learned weights in α are
[0.58, 0.12, 0.24, 0.05]. Thus, local and second order transi-
tion features are more important.

4.3 Dynamic Network Embedding

One of the advantages of the proposed model is the ability
to quickly estimate embeddings on newly added nodes. To
test the effectiveness of our model, we split nodes into train-
ing and testing sets. The embedding model is learned only
from training nodes with corresponding edges. To evaluate,
we embed the testing nodes directly without updating the
model parameters. In this section we mainly focus on the
performance of dynamic structural embeddings. Therefore,
the text encoder is fixed as word embedding average (Wavg)
for simplicity.

Previous works (Tu et al. 2017; Zhang et al. 2018a;
Shen et al. 2019) on textual network embedding require the

overall connection information to train the structural em-
bedding, which cannot directly assign (without re-training)
structural embeddings to a new coming node with connec-
tion information unknown during training. Therefore, the
aforementioned methods cannot be applied to dynamic net-
works. To obtain comparable baselines to DetGP, we pro-
pose several strategies based on the idea of inductive graph
representation learning (GraphSAGE) (Hamilton, Ying, and
Leskovec 2017), which generates embedding for new nodes
by aggregating the neighbors’ embeddings. The two em-
bedding assigning strategies are: (a) Neighbor-Aggregate:
aggregating the structural embeddings from the neighbors
in the training set, as the structural embedding for the new
node; (b) GraphSAGE: aggregating the textual embeddings
from the neighbors, then passing through a fully-connected
layer to get the new node’s structural embedding. For neigh-
borhood information aggregating, we use the mean aggrega-
tor and the max-pooling aggregator as mentioned in (Hamil-
ton, Ying, and Leskovec 2017).

We evaluate the dynamic embeddings for test nodes on
link prediction and node classification tasks. For both tasks,
we split the nodes into training and testing sets with differ-
ent proportions (10%, 30%, 50%, 70%). When embedding
new testing nodes, only their textual attributes and connec-
tions with existing training nodes are provided. For the link
prediction task, we predict the edges between testing nodes

7567

Cora HepTh
%Training Nodes 10% 30% 50% 70% 10% 30% 50% 70%

Only Text (Wavg) 61.2 77.9 87.9 90.3 68.3 83.7 84.2 86.9
Neighbor-Aggregate (Max-Pooling) 54.6 69.1 78.7 87.3 59.6 78.3 79.9 80.7
Neighbor-Aggregate (Mean) 61.8 78.4 88.0 91.2 68.2 83.9 85.5 88.3
GraphSAGE (Max-Pooling) 62.1 78.6 88.6 92.4 68.4 85.8 88.1 91.2
GraphSAGE (Mean) 62.2 79.1 88.9 92.6 69.1 85.9 89.0 92.4
DetGP 62.9 81.1 90.9 93.0 70.7 86.6 90.7 93.3

Table 3: Test AUC scores for link prediction on Cora and HepTh datasets.

Cora DBLP
% Training Nodes 10% 30% 50% 70% 10% 30% 50% 70%

Only Text (Wavg) 60.2 76.3 83.5 84.8 56.7 67.9 70.4 73.5
Neighbor-Aggregate (Max-Pooling) 55.8 70.2 78.4 80.5 51.8 60.5 68.3 70.6
Neighbor-Aggregate (Mean) 60.1 77.2 84.1 85.0 56.8 68.2 71.3 74.7
GraphSAGE (Max-Pooling) 61.3 78.2 85.1 86.3 58.9 69.1 72.4 74.9
GraphSAGE (Mean) 61.4 78.4 85.5 86.6 59.0 69.3 72.7 75.1
DetGP 62.1 79.3 85.8 86.6 60.2 70.1 73.2 75.8

Table 4: Test Macro-F1 scores for multi-label node classification on Cora and DBLP dataset.

based on the inner product between their node embeddings;
for node classification, an SVM classifier is trained based
on embeddings of training nodes. When new nodes come,
we first embed the nodes using the trained model and then
use the previously learned SVM to predict the label.

The results of link prediction and node classification are
given in Tables 3 and 4, respectively. In both tasks, the
Neighbor-Aggregate strategy with mean aggregator shows
slight improvement to the baseline with only a text encoder.
However, it does not work well with the max-pooling aggre-
gator, implying that the unsupervised max-pooling on pre-
trained neighbor structural embeddings cannot learn a good
representation. The GraphSAGE strategies (with both mean
and pooling aggregator) show notable improvements com-
pared with Wavg and Neighbor-Aggregate. Unlike the un-
supervised pooling, the GraphSAGE pooling aggregator is
trained with a fully-connected layer on top, which shows
comparable result to the mean aggregator. The proposed
DetGP significantly outperforms other baselines, especially
when the proportion of training set is small. A reasonable ex-
planation is, when the training set is small, new nodes will
have few connections with the training nodes, which causes
high variance in the results of aggregating neighborhood em-
beddings. However, instead of aggregating, our DetGP in-
fers the structural embedding via a Gaussian process with
pre-learned inducing points, which is more robust than the
information passed by neighbor nodes.

4.4 Inducing Points

Figure 3 gives the t-SNE visualization of the learned DetGP
structural embeddings on the Cora citation dataset. The
model is learned using all edges and all of the nodes with
their textual information. We set the number of inducing
points to M = 20. To avoid the computational instabil-
ity caused by the inverse matrix K−1

ZZ , we update inducing

Figure 3: t-SNE visualization of learned network structural
embeddings of Cora. Unfilled circles are individual nodes
and inducing points are denoted as red dots.

points with a smaller learning rate, which is set to one-tenth
of the learning rate for the text encoder. The inducing points
z are visualized as red filled circles in Figure 3. Textual em-
beddings are plotted with 7 different colors, representing the
7 node classes. Note that the inducing points z fully cover
the space of the categories, implying that the learned induc-
ing points meaningfully cover the distribution of the textual
embeddings.

5 Conclusions

We propose a novel textual network embedding framework
that learns representative node embeddings for static textual
network, and also effectively adapts to dynamic graph
structures. This is achieved by introducing a GP network
structural embedding layer, that first maps each node to the
inducing points, and then embeds them by taking advantage
of the non-parametric representation. We also consider
multiple hops to weight local and global graph structures.
The graph structure is injected in the kernel matrix, where
the kernel between two nodes use the whole graph informa-
tion based on multiple hops. Our final embedding contains

7568

both structural and textual information. Empirical results
demonstrate the effectiveness of the proposed algorithm.

Acknowledgements: The research reported here was sup-
ported in part by DARPA, DOE, NIH, NSF and ONR.

References
Abu-El-Haija, S.; Perozzi, B.; Al-Rfou, R.; and Alemi, A. A. 2018.
Watch your step: Learning node embeddings via graph attention. In
NeurIPS, 9180–9190.
Airoldi, E. M.; Blei, D. M.; Fienberg, S. E.; and Xing, E. P. 2008.
Mixed membership stochastic blockmodels. JMLR 1981–2014.
Cer, D.; Yang, Y.; Kong, S.-y.; Hua, N.; Limtiaco, N.; John, R. S.;
Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; et al. 2018.
Universal sentence encoder. arXiv preprint arXiv:1803.11175.
Du, L.; Wang, Y.; Song, G.; Lu, Z.; and Wang, J. 2018. Dynamic
network embedding: An extended approach for skip-gram based
network embedding. In IJCAI, 2086–2092.
Fan, W.; Ma, Y.; Li, Q.; He, Y.; Zhao, E.; Tang, J.; and Yin, D.
2019. Graph neural networks for social recommendation. arXiv
preprint arXiv:1902.07243.
Goyal, P.; Kamra, N.; He, X.; and Liu, Y. 2018. Dyngem:
Deep embedding method for dynamic graphs. arXiv preprint
arXiv:1805.11273.
Grover, A., and Leskovec, J. 2016. node2vec: Scalable feature
learning for networks. In SIGKDD, 855–864. ACM.
Guo, J.; Xu, L.; and Chen, E. 2018. Spine: structural iden-
tity preserved inductive network embedding. arXiv preprint
arXiv:1802.03984.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive represen-
tation learning on large graphs. In Advances in Neural Information
Processing Systems, 1024–1034.
Hanley, J. A., and McNeil, B. J. 1982. The meaning and use of the
area under a receiver operating characteristic (roc) curve. Radiol-
ogy 143(1):29–36.
Kingma, D. P., and Ba, J. 2015. Adam: A method for stochastic
optimization. ICLR.
Kipf, T. N., and Welling, M. 2016. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classification
with graph convolutional networks. ICLR.
Leskovec, J.; Kleinberg, J.; and Faloutsos, C. 2007. Graph evolu-
tion: Densification and shrinking diameters. TKDD.
Li, J.; Dani, H.; Hu, X.; Tang, J.; Chang, Y.; and Liu, H. 2017.
Attributed network embedding for learning in a dynamic environ-
ment. In Proceedings of the 2017 ACM on Conference on Informa-
tion and Knowledge Management, 387–396. ACM.
Li, J.; Cheng, K.; Wu, L.; and Liu, H. 2018. Streaming link pre-
diction on dynamic attributed networks. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data
Mining, 369–377. ACM.
Lin, Z.; Feng, M.; Santos, C. N. d.; Yu, M.; Xiang, B.; Zhou, B.;
and Bengio, Y. 2017. A structured self-attentive sentence embed-
ding. ICLR.
Ma, J.; Cui, P.; and Zhu, W. 2018. Depthlgp: learning embeddings
of out-of-sample nodes in dynamic networks. In AAAI.
Melamud, O.; Goldberger, J.; and Dagan, I. 2016. context2vec:
Learning generic context embedding with bidirectional lstm. In
SIGNLL, 51–61.

Ng, Y. C.; Colombo, N.; and Silva, R. 2018. Bayesian semi-
supervised learning with graph gaussian processes. In NeurIPS.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk: Online
learning of social representations. In SIGKDD, 701–710. ACM.
Powers, D. M. 2011. Evaluation: from precision, recall and f-
measure to roc, informedness, markedness and correlation. Bioinfo
Publications.
Rasmussen, C. E. 2006. Gaussian processes for machine learning.
In Springer.
Seo, Y.; Defferrard, M.; Vandergheynst, P.; and Bresson, X. 2018.
Structured sequence modeling with graph convolutional recurrent
networks. In International Conference on Neural Information Pro-
cessing, 362–373. Springer.
Shen, D.; Zhang, X.; Henao, R.; and Carin, L. 2019. Improved
semantic-aware network embedding with fine-grained word align-
ment. EMNLP.
Snelson, E., and Ghahramani, Z. 2006. Sparse gaussian processes
using pseudo-inputs. In Advances in neural information processing
systems, 1257–1264.
Sun, X.; Guo, J.; Ding, X.; and Liu, T. 2016. A general frame-
work for content-enhanced network representation learning. arXiv
preprint arXiv:1610.02906.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q. 2015.
Line: Large-scale information network embedding. In Proceed-
ings of the 24th international conference on world wide web, 1067–
1077. International World Wide Web Conferences Steering Com-
mittee.
Titsias, M., and Lawrence, N. D. 2010. Bayesian gaussian process
latent variable model. In AISTATS, 844–851.
Titsias, M. 2009. Variational learning of inducing variables in
sparse gaussian processes. In AISTATS, 567–574.
Trivedi, R.; Dai, H.; Wang, Y.; and Song, L. 2017. Know-
evolve: Deep temporal reasoning for dynamic knowledge graphs.
In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, 3462–3471. JMLR. org.
Trivedi, R.; Farajtabar, M.; Biswal, P.; and Zha, H. 2018.
Representation learning over dynamic graphs. arXiv preprint
arXiv:1803.04051.
Tu, C.; Liu, H.; Liu, Z.; and Sun, M. 2017. Cane: Context-aware
network embedding for relation modeling. In ACL.
Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; and Chang, E. 2015. Net-
work representation learning with rich text information. In Twenty-
Fourth International Joint Conference on Artificial Intelligence.
Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W. L.;
and Leskovec, J. 2018. Graph convolutional neural networks for
web-scale recommender systems. In SIGKDD, 974–983. ACM.
Yu, K., and Chu, W. 2008. Gaussian process models for link anal-
ysis and transfer learning. In NIPS, 1657–1664.
Zhang, X.; Li, Y.; Shen, D.; and Carin, L. 2018a. Diffusion maps
for textual network embedding. In NeurIPS.
Zhang, Y.; Yao, Q.; Shao, Y.; and Chen, L. 2018b. Nscaching:
Simple and efficient negative sampling for knowledge graph em-
bedding. arXiv preprint arXiv:1812.06410.
Zhou, L.; Yang, Y.; Ren, X.; Wu, F.; and Zhuang, Y. 2018. Dynamic
network embedding by modeling triadic closure process. In Thirty-
Second AAAI Conference on Artificial Intelligence.
Zitnik, M., and Leskovec, J. 2017. Predicting multicellu-
lar function through multi-layer tissue networks. Bioinformatics
33(14):i190–i198.

7569

