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Abstract

With a lot of work about context-free question answering sys-
tems, there is an emerging trend of conversational question
answering models in the natural language processing field.
Thanks to the recently collected datasets, including QuAC
and CoQA, there has been more work on conversational ques-
tion answering, and recent work has achieved competitive
performance on both datasets. However, to best of our knowl-
edge, two important questions for conversational comprehen-
sion research have not been well studied: 1) How well can the
benchmark dataset reflect models’ content understanding? 2)
Do the models well utilize the conversation content when an-
swering questions? To investigate these questions, we design
different training settings, testing settings, as well as an at-
tack to verify the models’ capability of content understand-
ing on QuAC and CoQA. The experimental results indicate
some potential hazards in the benchmark datasets, QuAC and
CoQA, for conversational comprehension research. Our anal-
ysis also sheds light on both what models may learn and
how datasets may bias the models. With deep investigation
of the task, it is believed that this work can benefit the future
progress of conversation comprehension. The source code is
available at https://github.com/MiuLab/CQA-Study.

1 Introduction

Answering questions in the conversational manner has be-
come an important task for machine reading comprehension.
There are two benchmark conversational question answering
datasets, QuAC (Choi et al. 2018) and CoQA (Reddy, Chen,
and Manning 2019). Different from traditional machine
reading comprehension (Rajpurkar et al. 2016; Nguyen et al.
2016; Rajpurkar, Jia, and Liang 2018) whose questions are
context-free, questions and answers in QuAC and CoQA are
collected in a conversational manner. Same as original ma-
chine reading comprehension, questions related to a given
passage are asked. However, questions may be also related
to the given conversational history, and should be answered
accordingly. Such conversational setting is regarded as more
practical because people tend to seek for information in a
conversational way. QuAC and CoQA also feature many lin-
guistic phenomena unique to conversations, so they are be-
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lieved to be important materials for research about conver-
sational question answering.

This work focuses on investigating how well the perfor-
mance of a model on these two benchmark datasets reflects
its capability of comprehension. If higher performance on
these datasets does not necessarily imply better conversa-
tion comprehension, then further investigation must be done
when models claim their better understanding performance.
However, it has not been well investigated by any of the
prior work (Choi et al. 2018; Huang, Choi, and tau Yih 2019;
Zhu, Zeng, and Huang 2018; Yeh and Chen 2019).

In this paper, we further analyze whether the recent
models achieving competitive performance rely on content
comprehension. It is motivated by the fact that the posi-
tion of the answer to the previous question is widely uti-
lized in many of previous conversational question answer-
ing models, such as BiDAF-with-ctx (Seo et al. 2016) and
FlowQA (Huang, Choi, and tau Yih 2019). Those models
leverage the datasets’ property that answers or rationals can
always be found as a span of the given passage. Thus those
models can access the informative content provided by the
position information. Models are expected to learn to under-
stand the conversation based on its content. However, it is
not clear whether the models rely on the previous conversa-
tion content or merely the position information.

The goal of this paper is to investigate the above two
questions and to guide the future research on conversational
question answering. We focus on recent open-sourced mod-
els, including FlowQA (Huang, Choi, and tau Yih 2019),
BERT (Devlin et al. 2019), and SDNet (Zhu, Zeng, and
Huang 2018). Similar to Sankar et al. (2019), we design a
set of experiments consisting of different training settings
to address the first question and different testing settings
to address the second question. The results express some
concerns about conversational QA models: 1) Higher per-
formance on QuAC and CoQA does not necessarily imply
better content comprehension. 2) Models trained on QuAC
show the tendency of heavily relying on the previous an-
swers’ positions rather than their textual content. By point-
ing out these issues, some potential hazards may be avoided
in the future research. Furthermore, our presented experi-
ments can serve as an analysis tool for conversational ques-
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tion answering models in the future.

2 Related Work

Machine reading comprehension has attracted lots of in-
terests in recent years. Many datasets (Rajpurkar et al.
2016; Rajpurkar, Jia, and Liang 2018; Nguyen et al. 2016;
Trischler et al. 2017; Lai et al. 2017; Shao et al. 2018) have
been created, and there has been many models (Wang and
Jiang 2016; Weissenborn, Wiese, and Seiffe 2017; Hu et al.
2018; Xiong, Zhong, and Socher 2018; Shen et al. 2017;
Liu et al. 2018) crafted for advancing the tasks. The above
datasets and models are for context-free question answering.
Recently, with the trend of conversational interactions, peo-
ple started to focus on conversational understanding. There-
fore, datasets for conversational question answering were
built for promoting this research direction (Saha et al. 2018;
Choi et al. 2018; Reddy, Chen, and Manning 2019), and a
lot of models (Huang, Choi, and tau Yih 2019; Zhu, Zeng,
and Huang 2018) were proposed to tackle this challenge.

Most investigation on what machine comprehension mod-
els learn are for those context-free question answering sys-
tems. Jia and Liang (2017) proposed a method to generate
adversarial examples in order to test the model robustness.
Kaushik and Lipton (2018) conducted experiments to ver-
ify the reading required to answer questions in the dataset.
Weissenborn, Wiese, and Seiffe (2017) found a feature indi-
cating if a word appears in the question important, and sug-
gested that questions can be answered with some rules that
rely only on superficial features. Rondeau and Hazen (2018)
validated the suggestion by a series of systematic experi-
ments. However, the conversational question answering sys-
tems have been rarely explored. Although Yatskar (2019)
compared CoQA, SQuAD 2.0 and QuAC qualitatively, there
was no investigation on what conversational question an-
swering models capture.

The phenomenon that models does not utilize all use-
ful features is common in diverse areas. For example, Nie,
Wang, and Bansal (2019) showed that natural language
inference models with high accuracy relied much on the
lexical-level features but utilized little compositional seman-
tics. (Sankar et al. 2019) found that not whole conversation
history is used in neural dialogue generation systems. Simi-
lar phenomena happened in the computer vision area, where
Geirhos et al. (2019) indicated that CNN trained on Ima-
geNet relied much on textual information rather than shape
information, and Brendel and Bethge (2019) further showed
that only textual information can achieve very high accuracy
on ImageNet. Our work extends a similar idea to conversa-
tional question answering systems and demonstrates that po-
sitional information rather than semantic information can be
exploited to master some tasks.

3 Conversational Question Answering

There are two main datasets for conversational question an-
swering, QuAC (Choi et al. 2018) and CoQA (Reddy, Chen,
and Manning 2019). Questions and answers are collected in
a conversational manner, where each conversation includes
two participants: a student who asks question about a given
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Figure 1: The histogram of distance between answers to con-
secutive questions of a conversation in words. The bin size
is 5 words. The distance is counted as zero if the two answer
spans are overlapped, and is positive if the current is after
the previous answer, negative otherwise.
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Figure 2: Histogram of answer length distribution in QuAC
and CoQA. The bin size is 1 word.

passage, and a teacher who answers the question according
to the passage. The teacher in both sets may reply “no an-
swer” if the answer cannot be found in the given passage.
When evaluating the model for both tasks, the content as
well as the position of answers to the previous question is
available to the model. In the statistics of two datasets, an-
swers to the consecutive questions tend to be close to each
other depicted in Figure 1.

Even though both datasets are collected for conversational
question answering, they have several different properties.

• Answer format
Answers in QuAC are always the text spans in the given
passage, while answers in CoQA are free texts similar to
some spans in the passage. Answers in QuAC is generally
longer than answers in CoQA shown in Figure 2, where
the distribution implies that QuAC is more realistic than
CoQA. Answering “yes” or “no” is also allowed in CoQA.
Note that the evidence span (span in the passage that sup-
ports the answer) is provided in CoQA, so the previous
answers’ position information is still available.

• Dataset collection process
The Amazon mechanical turkers who generated the
CoQA dataset have full access to the passage. On the
other hand, turkers who generated questions in QuAC
cannot see the passages. The latter setting may be more
suitable for practical applications, because real users want
to seek for information using questions when not reading
passages.
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4 Models
We consider models including FlowQA, BERT, and SDNet,
as they are the only publicly available models till now. For
FlowQA and SDNet, we use the code released by the au-
thors. Some modifications are made for the following ex-
periments1. Each models of each setting are trained with 3
different random seeds, and the resulted mean and standard
deviation value are reported for reliability.

All models in the experiments are mainly based on those
designed for single-turn reading comprehension tasks, so
this section focuses on describing the modification for each
method in order to handle understanding in conversational
question answering. Below three models are detailed.

FlowQA

FlowQA (Huang, Choi, and tau Yih 2019) is the model
specifically designed for conversational question answering,
which contains a mechanism that can incorporate intermedi-
ate representations generated during the process of answer-
ing previous questions. This model significantly improved
conversational machine comprehension tasks for both QuAC
and CoQA data. In FlowQA, the main mechanism designed
for the conversational structure is the INTEGRATION-FLOW
layer. In the model, there is a question-aware context rep-
resentation Ci for each question Qi in the history, and the
INTEGRATION process simply applies BiLSTM to each Ci

independently. After that, the FLOW process applies BiL-
STM to the same word across different context representa-
tions in order to capture knowledge of previous questions.
Also, an one-bit feature is added to the input context word
representation indicating whether the word appears in previ-
ous answers. The rest of the reasoning procedure is almost
identical to FusionNet (Huang et al. 2018) that focuses on
single-turn machine comprehension.

BERT

In the current state-of-the-art question answering models,
most models leverage the benefits from BERT (Devlin et al.
2019) to advance the task. We apply BERT on QuAC by
converting the task into a single-turn machine reading com-
prehension task such as SQuAD (Rajpurkar et al. 2016). We
prepend previous N questions to the current question Qk,
so it becomes Q̂k = {Qk−N , . . . , Qk−1, Qk}. At the em-
bedding layer, beside the original word embedding, segment
embedding and position embedding, an additional embed-
ding is also added to represent whether the word appears
in previous answer spans. Then we follow the procedure of
applying BERT to SQuAD that concatenates the extended
and the context to form the input and uses the context output
representations from BERT to predict the start and the end
of the answer span (Devlin et al. 2019).

SDNet

To incorporate the information from dialogue history, SD-
Net prepends not only previous questions but also pre-
vious answers to the current question Qk, i.e., Q̂k =

1For reproducibility, we will release all code, script, and exper-
iment settings.

{Qk−N , Ak−N , . . . , Qk−1, Ak−1, Qk}, and no more addi-
tional effort is put to deal with the conversational structure.
For the input representation for both context and question
words, they used BERT as contextualized embeddings along
with GloVe. The rest of the model architecture for reasoning
is highly inspired by FusionNet (Huang et al. 2018).

5 How Well the Performance Reflects

Content Comprehension?

This section attempts at investigating how well the perfor-
mance reflects the capability of comprehension on QuAC
and CoQA? Both datasets claim rich linguistic phenomena
unique to conversations, where QuAC claims to have 61%
of questions including coreference referring to entities in
the given passage, 44% of coreference referring to entities
in previous history, and 11% of questions that ask for more
information in the conversation. Also, CoQA claims to have
49.7% of questions with explicit coreference to conversa-
tions, and 19.8% with implicit ones. Given such high ra-
tio of questions related to conversations, it is natural to ex-
pect that higher performance implies better understanding
in conversational question answering. Especially, the under-
standing should be based on the content of the conversation,
in which those special linguistic phenomena is embodied. To
inspect the expectation, we design experiments based on the
premise: If comprehension on the content of conversation is
reflected well by the performance, then model trained with-
out the access to conversation content should not achieve
high performance.

Experimental Settings

We compare models trained and tested with three different
settings:
• Original: The model has free access to the previous con-

versation history, as the setting proposed by the models.
• - text: The model has no access to the content of the an-

swer to the previous question, but has access to their po-
sition in the provided context. The previous questions are
not used either.

• - conversation: The model has no any access to the pre-
vious conversation history.
In the - text setting, the answer span in the passage is

masked with zeros. As questions are to seek for information,
the answer content should be highly informative. There-
fore, the information loss by answer masking cannot be eas-
ily compensated by the surrounding words. Especially, for
QuAC, since answer spans are typically as long as sentences,
masked language models like BERT can in no way recover
the masked part. Thus, in this setting, the only information
about previous answers is their positions in the passage.

Discussion

We compare the results of models in Table 1. For both QuAC
and CoQA, models trained without access to conversation
content can achieve performance significantly better than
models trained without access to any conversation history.
Especially for QuAC, - text models consistently outperform
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Dataset Model F1 (stdev)

QuAC

FlowQA 64.4 (.30)
BERT 63.6 (.16)

FlowQA - text 62.4 (.20)
BERT - text 62.2 (.48)

FlowQA - conversation 54.1 (.13)
BERT - conversation 55.3 (.03)

CoQA

FlowQA 76.9 (.22)
SDNet + position 76.4 (.31)

FlowQA - text 71.5 (.24)
SDNet + position - text 74.0 (.19)

FlowQA - conversation 63.4 (.11)
SDNet - conversation 68.3 (.45)

Table 1: Model performance on the validation set of QuAC
and CoQA. Note that the original SDNet model does not
utilize the position information, so SDNet + position - text
is a modified SDNet with additional one dimension feature
indicating the previous answer as the input.

- conversation models by up to absolute 7% F1 score. As
for CoQA, though not as consistently, but similar compari-
son can also be observed.

The above results indicate that better understanding in the
dataset is not well reflected by the performance on these
two datasets. Undoubtedly, better comprehension should be
based on semantic understanding specific to the textual con-
tent. However, even no content is provided to - text models, -
text models can still achieve performance higher than - con-
versation models. It indicates that higher performance does
not necessarily imply better content understanding. There-
fore, future models may need to further verify whether they
indeed focus on semantic understanding instead of utilizing
the position information only.

6 Do Models Understand Conversation

Content?

The results in §5 do not answer the question that if the full
models understand content of conversations well. As shown
in §5, the full models can achieve better performance than
models use only the answers’ position information. How-
ever, §5 also shows the usefulness of the previous posi-
tion information. Since the full model has access to both
the position and content of the previous answers, it is not
clear whether the better performance is contributed by un-
derstanding conversation content. To answer this question,
we analyze the trained models by a series of testing settings.

Repeat Attack

We propose repeat attack that increases the distance be-
tween answers in the context. To do so, a text span is re-
peated between the answer spans in the passage. For QuAC,
as most answers are sentences, we repeat the answer sen-
tence for each answer spans in the passage. For CoQA, since

Repeat Attack Example in QuAC

Passage: In 2004, Oldman returned to prominence when
he landed a significant role in the Harry Potter film se-
ries, playing Harry Potter’s godfather Sirius Black.ans1 In
2004, Old man returned to prominence when he landed a sig-
nificant role in the Harry Potter film series, playing Harry Pot-
ter’s godfather Sirius Black. The following year, he starred
as James Gordon in Christopher Nolan’s commercially and
critically successful Batman Begins,ans2 starred as James Gor-
don in Christopher Nolan’s commercially and critically success-
ful Batman Begins, ...

Question 1: What was his resurgence or comeback role?
Answer 1: In 2004, Oldman returned to prominence when he
landed a significant role in the Harry Potter film series, playing
Harry Potter’s godfather Sirius Black.
Question 2: Are there any other interesting aspects about this
article?
Answer 2: The following year, he starred as James Gordon
in Christopher Nolan’s commercially and critically successful
Batman Begins,

Origin FlowQA prediction: (F1 0.83) The following year, he
starred as James Gordon in Christopher Nolan’s commercially
and critically successful Batman Begins,
Origin BERT prediction: (F1 0.83) The following year, he
starred as James Gordon in Christopher Nolan’s commercially
and critically successful Batman Begins

Attacked FlowQA prediction: (F1 0.20) In 2004, Oldman re-
turned to prominence when he landed a significant role in the
Harry Potter film series, playing Harry Potter’s godfather Sirius
Black.
Attacked BERT prediction: (F1 0.21) In 2004, Oldman re-
turned to prominence when he landed a significant role in the
Harry Potter film series, playing Harry Potter’s godfather Sirius

Figure 3: An example of repeat attack on QuAC and the
model results. The red italic text is the inserted attack.

Repeat Attack Example in CoQA

Passage: Once upon a time, in a barnans2 near a farm house,
there lived a little whiteans1 kitten named Cotton. Once upon
a time, in a barn near a farm house, there lived a little white
kitten named Cotton. Cotton lived high up in a nice warm place
above the barn where all of the farmer’s horses slept. But Cot-
ton wasn’t aloneans3 in her little home above the barn, oh no.
...

Question 1: What color was Cotton?
Answer 1: white
Question 2: Where did she live?
Answer 2: in a barn
Question 3: Did she live alone?
Answer 3: Cotton wasn’t alone

Figure 4: An example of repeat attack on CoQA. The red
italic text is the inserted attack. In this example, the attack
increases the distance between answer 2 and 3.

its answer span is generally much shorter than QuAC, we
repeat sentences that contain the answer span. The attack
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Figure 5: Histogram of distance between answers to consec-
utive questions in words after the attack. The bin size is 5.

examples for both datasets are shown in Table 3 and Table
4. By repeating part of the passage, the meaning delivered
should remain the same. When evaluating the models, the
previous answer positions provided to models contain only
the text as in original answer. Due to the repeated text, the
distance between consecutive answer spans is lengthen by
this attack. The distribution of the distance is visualized in
Figure 5, which is much smoother than the one before the
attack (Figure 1).

We use repeat attack to investigate models’ understand-
ing of conversation content. It is motivated by the high ratio
of answers close to answers to the previous questions (as
shown in Figure 1). It is possible that positions of previous
answers leak the position information of the current answer.
The model may thus learn to take as the answer candidates
the sentences close to the previous answer span. On the other
hand, if a model does answer the question by understanding
answer content, then the model should be robust to this at-
tack. Therefore, by using the attacked data to test models
that are trained on the normal data, the models’ capability of
understanding can be well investigated.

For QuAC, the results shown in Table 2 indicates that both
FlowQA and BERT are sensitive to the distance between
consecutive answers. Their performance drops significantly
when applying the repeat attack. The F1 score under attack
is roughly the F1 score of models trained without any con-
versational information. Furthermore, we conduct the same
experiments on FlowQA and BERT trained without using
position information of the previous answers, and find that
although they perform much worse than the full models, they
are more robust against the attack.

To better investigate how the answer position is related to
the model robustness, we plot the relation between F1 scores
before/after attack in terms of the distance to previous an-
swer in Figure 6. We find that both BERT and FlowQA pre-
dict answers more accurately when the current answer has
short distance to the previous answer (green and red lines).
Also, our attack is more effective when the distance is short
(yellow line). These findings imply that models trained on
QuAC with the position information may rely less on the
answer content but rely too much on the answer position.
In addition, models trained without the position information
may rely more on the semantic information in the conversa-
tions.

We also investigate the performance affected by the at-

Dataset Model Repeat Attack
w/o w/

QuAC

FlowQA 64.4 (0.30) 53.3 (0.75)
BERT 63.6 (0.16) 55.3 (0.74)
FlowQA - position 59.3 (0.37) 56.9 (0.37)
BERT - position 58.0 (0.18) 56.5 (0.22)

CoQA

FlowQA 76.9 (0.22) 72.0 (0.20)
SDNet 76.4 (0.31) 71.8 (0.48)
FlowQA - position 76.8 (0.42) 72.4 (0.24)
SDNet - position 75.7 (0.76) 70.9 (0.10)

Table 2: F1 score on the validation of QuAC and CoQA with
or without attack. ”- position” indicates training without the
position information of answers to previous questions.

tack based on if the question is a followup of the previous
question, which is annotated in QuAC dataset. The followup
questions are questions more likely to depend on the previ-
ous question, and therefore are expected to require under-
standing of conversation content. However, results shown in
table 3 indicate that they are more vulnerable to our attack.

QuAC models’ reliance on position information can be
further shown by the qualitative error analysis on the at-
tacked validation set. We inspect the questions that the mod-
els originally predict the answer with a high F1 score, but
predict the answer with a low F1 scores when applying at-
tack. One sample is shown in Table 3, where two models
under attack directly predict the sentence after the previous
answer span regardless of the content. On other cases, we
find FlowQA under attack makes mistakes by selecting the
next span more consistently. In contrast, BERT under attack
is prone to predict a much implausible answer or reply “no
answer”. The reason may be that BERT is specialized to
search answers in the region near the previous answer, so
consequently, when the next sentence after the previous an-
swer is incorrect, it will fail to answer the question correctly.

On the other hand, it is less clear if the drop of perfor-
mances on CoQA dataset is due to insufficient of conver-
sation content understanding. Unlike on QuAC, - position
models are not more robust than the original models as ob-
viously as on QuAC. By plotting figures for CoQA in the
same setting, we find that questions in CoQA seem to be
susceptible to the attack equally regardless of the distance
to previous answers. Conversation content understanding of
the models trained on CoQA may require further investiga-
tion.

Predict without Previous Answer Text

To investigate if the content of previous answers is used by
the models trained with position information, we measure
the performance on the validation set predicted without the
content of previous answers. To remove the content infor-
mation of previous answers, we mask the previous answer
spans with zeros. Different to previous - text settings, mod-
els here has access to previous questions. Particularly, for
FlowQA, the content information of the previous answer
may be flowed along with the flow structure, and the RNN
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Figure 6: F1 change between before and after repeat attack in terms of the answer’s distance to its previous answers on QuAC
(left: FlowQA; right: BERT). The x-coordinate is the answer’s distance to the previous answer in words, and the meaning of
zero, positive and negative is same as in Figure 1. The y-coordinate is the average F1 score. “no answer” sample are ignored
here. The dotted line is the average F1 score of all samples.

Model Followup No Followup

FlowQA
no attack 64.0 (0.59) 64.8 (0.11)

attack 49.5 (0.59) 57.6 (0.94)
Δ 14.6 (1.17) 7.2 (1.00)

BERT
no attack 63.4 (0.32) 64.0 (0.57)

attack 52.4 (1.37) 58.5 (0.18)
Δ 11.0 (1.12) 5.5 (0.41)

Table 3: Impact on F1 score by the attack.

memory of the previous answer spans is also reset to zeros.
The more performance drops when masking previous an-

swers implies that the model relies more on the content in-
formation of those answers. According to the results in Ta-
ble 4, it seems that all models more or less rely on the text
of previous answers. Meanwhile, as expected, the models
except SDNet - position trained without the position in-
formation almost drop to the performance of ones trained
without any conversation history information. SDNet - po-
sition is an exception because answers to previous questions
are prepended to the question when training and testing, so
masking answers in the passage does not remove all the
content of previous answers. However, it is surprising that
FlowQA on QuAC can still keep the performance up to 60%
F1, implying that FlowQA may rely on position information
much more than the semantic information.

Predict without Previous Answer Position

To directly test to what extent the models rely on position in-
formation of previous answers, we conduct the experiments
of predicting answers without position information. The re-
sults are shown in Table 5, where both results of FlowQA
and BERT on QuAC drop significantly if not using posi-
tion information. Among them, FlowQA drops even more,
regardless of the flow structure that models the dialog flow.
The performance is even lower than the models trained with-

Dataset Model Ans. Mask
w/o w/

QuAC

FlowQA 64.4 (0.30) 60.5 (0.54)
BERT 63.6 (0.16) 52.6 (1.76)
FlowQA - position 59.3 (0.37) 55.0 (1.80)
BERT - position 58.0 (0.18) 50.1 (0.45)

CoQA

FlowQA 76.9 (0.22) 71.2 (0.41)
SDNet 76.4 (0.31) 73.5 (0.51)
FlowQA - position 76.8 (0.42) 68.2 (0.28)
SDNet - position 75.7 (0.76) 75.6 (0.69)

Table 4: F1 results on the validation sets of QuAC and
CoQA. Models are infered without/with applying masks on
the previous answers. Models without suffix are trained with
full access to conversation, while “- position” indicates that
the models are trained without the previous answer position
information. Note that in both training settings, masks are
not applied.

out using any conversation history. It indicates that although
the models on QuAC may rely on the semantics of previous
answers, the position information is indeed exploited. On
the other hand, it is interesting to see that FlowQA trained
on CoQA rely little position information of the previous an-
swers.

Implication of Above Experiments

Our results show that the models trained on QuAC have high
tendency to rely heavily on the position of previous answers.
The proposed attack and experiment settings can serve as a
diagnosis tool in the future.

7 Dataset and Model Analysis

To further investigate the difference between models trained
on QuAC and CoQA, two questions are focused here.
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Dataset Model Position Info.
w/ w/o

QuAC FlowQA 64.4 (0.30) 48.1 (0.72)
BERT 63.6 (0.16) 54.9 (0.08)

CoQA FlowQA 76.9 (0.22) 76.7 (0.36)
SDNet 76.4 (0.31) 73.7 (0.18)

Table 5: F1 score on the validation sets of QuAC and CoQA.
Models are inferred with/without access to position informa-
tion, but trained with access to position information.

Dataset Model Shuffle
w/o w/

CoQA FlowQA - position 76.8 (0.42) 71.7 (0.25)
SDNet - position 75.7 (0.76) 70.1 (0.59)

Table 6: F1 score of models on shuffled validation set of
CoQA. Models here do not use the position information of
the previous answers.

Why do CoQA models rely less on position information?
It is unclear why the models trained on CoQA rely less on
the position information of the previous answer as shown in
the previous sections. Figure 2 shows that answers in CoQA
are much shorter than in QuAC, so if we normalize the dis-
tance to the previous answer related to the length of the an-
swers, the average distance to the previous answer in CoQA
would be much longer than QuAC. Furthermore, short an-
swers also imply that an answer can be identified as the
sentence containing the answer. To verify the above claim,
we randomly shuffle the sentences in the passage for each
CoQA example, so that the cross-sentence information and
the sentence order are removed from the passage. Then we
use CoQA models trained without position information for
answer prediction. In Table 6, roughly speaking, up to 70%
questions can still be answer correctly. It thus supports our
claim and partly explains why models trained on CoQA rely
less on the position information.

Why do QuAC models rely more position information?
We describe the potentail reason why the models trained
on QuAC rely much on the position information. Accord-
ing to the analysis on QuAC (Choi et al. 2018), 11% of the
questions is of the type “Anything else?”. It is common in
the general article where the information of the same type
is written in near contexts. Because the question “Anything
else?” is asked to seek for more information similar to the
previous answer, it is very likely that the position of the pre-
vious answer provides a strong hint for the current answer.
Though there is a high percentage of the questions contain-
ing pronouns in QuAC, they do not necessarily force the
model to learn coreference resolution either. For the pro-
nouns in questions, they often refer to entities in the pre-
vious answer. Because entities in consecutive sentences sel-
dom change much, simply looking for the answer near the
previous answer location may be sufficient to answer the

question. Especially, we find personal pronouns in QuAC
questions of a conversation often refer to only one same per-
son. Also, the referred person is often the main role in the
passage. This further removes the necessity to understand
the conversation history.

8 Conclusion

This paper investigates content understanding of different
models learned from different datasets. The experiments
shows concerns: 1) Performance on QuAC and CoQA does
not well reflect the model’s comprehension on conversation
content. 2) The model trained on QuAC does not necessar-
ily learn conversation comprehension. 3) In CoQA, cross-
sentence information is not that important for the current
model. By pointing out these concerns, we suggest future
directions in both aspects of data collection and model de-
velopment.

In terms of data collection, more realistic collection strate-
gies should be adopted. In the collection process of QuAC,
for example, workers are encouraged to create long conver-
sations with few unanswerable questions, causing the worker
to ask questions conservatively and passively ask questions
very likely answerable. That may consequently result in the
shorter distance between consecutive answers. In addition, it
is unknown that if such setting is realistic. Is such informa-
tion seeking pattern practical in real scenarios? Therefore,
inventing a more realistic data collection process may be an
important future direction.

In terms of model development, conversational ques-
tion answering systems should address more about seman-
tic comprehension. As we have shown, better performance
does not necessarily imply better content comprehension,
so proving the model’s conversational understanding still re-
mains challenging. It is also unclear how to design a model
that learns conversation comprehension naturally. The future
work could focus more studies on those directions, including
generalization and robustness to diverse scenarios.
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