
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Translucent Answer Predictions in Multi-Hop Reading Comprehension

G P Shrivatsa Bhargav,2* Michael Glass,1* Dinesh Garg,1 Shirish Shevade,2

Saswati Dana,1 Dinesh Khandelwal,1 L Venkata Subramaniam,1 Alfio Gliozzo1

*Equal contribution
1IBM Research AI, 2Dept. of CSA, IISc, Bangalore

{mrglass, gliozzo}@us.ibm.com, {bhargavs, shirish}@iisc.ac.in, {garg.dinesh, sadana04, dikhand1, lvsubram}@in.ibm.com

Abstract

Research on the task of Reading Comprehension style Ques-
tion Answering (RCQA) has gained momentum in recent
years due to the emergence of human annotated datasets
and associated leaderboards, for example CoQA, HotpotQA,
SQuAD, TriviaQA, etc. While state-of-the-art has advanced
considerably, there is still ample opportunity to advance it fur-
ther on some important variants of the RCQA task. In this pa-
per, we propose a novel deep neural architecture, called TAP
(Translucent Answer Prediction), to identify answers and ev-
idence (in the form of supporting facts) in an RCQA task
requiring multi-hop reasoning. TAP comprises two loosely
coupled networks – Local and Global Interaction eXtractor
(LoGIX) and Answer Predictor (AP). LoGIX predicts sup-
porting facts, whereas AP consumes these predicted sup-
porting facts to predict the answer span. The novel design
of LoGIX is inspired by two key design desiderata – local
context and global interaction– that we identified by ana-
lyzing examples of multi-hop RCQA task. The loose cou-
pling between LoGIX and the AP reveals the set of sen-
tences used by the AP in predicting an answer. Therefore,
answer predictions of TAP can be interpreted in a translu-
cent manner. TAP offers state-of-the-art performance on the
HotpotQA (Yang et al. 2018) dataset – an apt dataset for
multi-hop RCQA task – as it occupies Rank-1 on its leader-
board (https://hotpotqa.github.io/) at the time
of submission.

1 Introduction
Natural language understanding has been one of the key
drivers responsible for advancing the field of AI. To this
end, automated Question Answering (QA) has served as an
effective way of measuring the language understanding ca-
pabilities of AI systems. The field of QA is vast and can
be classified along many different dimensions, including (i)
knowledge based (Unger et al. 2014) vs. text based (read-
ing comprehension) (Joshi et al. 2017), (ii) extractive (Ra-
jpurkar et al. 2016) vs. abstractive (Lai et al. 2017), (iii)
short (Rajpurkar et al. 2016) vs. long answers (Kwiatkowski
et al. 2019), (iv) single-hop (Rajpurkar et al. 2016) vs. multi-
hop reasoning (Yang et al. 2018), etc. Our focus in this pa-
per is on Reading Comprehension style Question Answering

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Question: Brown State Fishing Lake is in a county that has a
population of how many inhabitants ?
Context:
Passage 1: “Fishing Lake”

Fishing Lake is a lake in the Canadian province . . .
...
Passage 3: “Brown State Fishing Lake”

Brown State Fishing Lake (sometimes also known as Brown

State Fishing Lake And Wildlife Area) is a protected area in

Brown County, Kansas in the United States.

The lake is 62 acres in area and up to 13 feet deep. The area

was formerly known as Brown County State Park, and is 8

miles (13 km) east of Hiawatha, Kansas .
...
Passage 10: “Brown County, Kansas”

Brown County (county code BR) is a county located in

the northeast portion of the U.S. state of Kansas .

As of the 2010 census, the county population was 9,984 .

Its county seat and most populous city is Hiawatha . . .

Answer: 9,984

Figure 1: Output of the TAP model on a test example from
HotpotQA, demonstrating its effectiveness in capturing lo-
cal context as well as global interaction among sentences
so as to identify supporting facts. The intensity of the high-
light is proportional to the probability (predicted by our
model) of the sentence being a supporting fact.

(RCQA) task. Reading comprehension is the ability to an-
swer questions over the supplied natural language passages,
where a passage comprises one or more paragraphs. Specif-
ically, we focus on complex questions that require multi-hop
reasoning over facts spread across multiple passages.

Recently, there has been a surge in the research activ-
ities surrounding RCQA task, primarily due to the emer-
gence of large-scale public datasets such as CoQA (Reddy,
Chen, and Manning 2019), HotpotQA (Yang et al. 2018),
SQuAD (Rajpurkar et al. 2016), TriviaQA (Joshi et al.

7700

2017), etc. Most of these datasets require a system to pick
a short answer span from within the given context passage.
For single-hop RCQA datasets (for example, SQuAD), ma-
jority of the proposed solutions are based on massively pre-
trained Transformer-style models such as BERT (Devlin et
al. 2019), XLNet (Yang et al. 2019), and RoBERTa (Liu
et al. 2019). Some of these solutions have exhibited hu-
man level performance. Similar solutions have been pro-
posed for the multi-hop RCQA datasets also and they have
also improved the state-of-the-art. However, we believe that
the core challenges involved in the multi-hop RCQA task
have not been addressed effectively by existing solutions and
hence there is an opportunity to advance the state-of-the-art.

Figure 1 illustrates, by example, the key challenges in-
volved in solving the multi-hop RCQA task. First, we ob-
serve that only a small subset of sentences, S , from the given
passage set (context) is needed to answer the question. The
sentences in such a subset are typically called Supporting
Facts (SF) (Yang et al. 2018). Furthermore, we observe that
whether a given sentence 〈s〉 is a supporting fact or not de-
pends on two factors: (i) how much the information present
in the sentence 〈s〉 is relevant to the given question 〈q〉, (ii)
the presence of other sentences 〈s′〉 in the context related
to the sentence 〈s〉; and whether these related sentences 〈s′〉
are supporting facts or not. The first aspect is relatively eas-
ier to handle but the second can be quite intimidating when
it comes to designing the right solution approach. For exam-
ple, in Figure 1, the second sentence of passage 10 seems
irrelevant to the question when it is examined in isolation.
But, in the presence of the first sentences of passages 3 and
10, it becomes extremely relevant.

1.1 Design Desiderata

In light of the challenges discussed above, we believe any
effective solution for the multi-hop RCQA task needs to
address the following two design desiderata.

(1) Local Context: Each sentence should be understood
in the context of its neighboring sentences and the question.

(2) Global Interaction: A global (aka long-range or
inter-passage) interaction among sentences must be identi-
fied and used in predicting the set S of supporting facts.

To meet these design desiderata, we propose a deep neural
architecture, called TAP (Translucent Answer Prediction).
TAP comprises two loosely coupled networks – Local and
Global Interaction eXtractor (LoGIX) and Answer Predic-
tor (AP). LoGIX predicts a set of supporting facts, say Ŝ ,
whereas AP takes these predicted supporting facts as input
and predicts the answer span. This two stage pipeline re-
veals the subset of sentences Ŝ that were used to predict the
answer and therefore, allows us to interpret the predictions
made by TAP in a translucent manner1. LoGIX comprises
a novel 2-level hierarchical architecture to address the de-
sign desiderata identified before. The first layer, called the
Local Layer, captures the local context whereas, the second

1The reason behind calling our model TAP.

layer, called the Global Layer, captures the global interac-
tion among sentences.

Key contributions of this paper are follows – (1) We pro-
pose an architecture called TAP to solve multi-hop RCQA
task. (2) LoGIX of TAP is a novel hierarchical architecture
that effectively captures the local context and the global in-
teractions between the sentences. (3) The proposed solution
achieves state-of-the-art performance on the HotpotQA
dataset. Our submission, called TAP 2 (ensemble) and TAP 2
(single model), achieved Rank-1 and Rank-2, respectively,
on the leaderboard of HotpotQA at the time of submission.

2 Related work

Datasets: In recent years, many high-quality large scale
public datasets have emerged. Datasets like SQuAD (Ra-
jpurkar et al. 2016) provide single passage as the context to
each question whereas, datasets like MS MARCO (Bajaj et
al. 2017) and TriviaQA (Joshi et al. 2017) provide multiple
large documents as the context. A question in these datasets
can usually be answered using a single passage. A more
challenging setting, popularly known as multi-hop RCQA,
is one where the information required to answer the ques-
tion is spread over multiple, disconnected passages. The
HotpotQA (Yang et al. 2018) dataset is designed precisely
for the multi-hop RCQA task. Similarly, in the QAngaroo
(Welbl, Stenetorp, and Riedel 2018) dataset, the questions
are such that multiple documents are required to answer the
questions. We evaluate our model on HotpotQA because it
is the only one that has annotations for supporting facts.

Pre-trained Transformers: Transformer based
models such as BERT (Devlin et al. 2019), XLNet
(Yang et al. 2019), GPT-2 (Radford et al. 2019) and
RoBERTa (Liu et al. 2019) have dominated vari-
ous RCQA task leaderboards (Rajpurkar et al. 2016;
Wang et al. 2019), especially where the context size is
relatively small.

Cascade Models: When the context size becomes larger
than what can be taken as input by many of these Trans-
former based models, a well known alternative approach is
to use cascade style models. For end-to-end question an-
swering, Chen et al. (2017), Wang et al. (2018a), Lin et
al. (2018), Yan et al. (2019), Clark and Gardner (2018)
use an IR technique to first shortlist N documents. Next,
one or more steps of passage selection is performed to se-
lect K passages. Then a neural model is used to predict
an answer candidate from each of these K passages inde-
pendently. The final answer is selected from these candi-
date answers. Wang et al. (2018b) propose a method to rank
the answer candidates according to the evidence support-
ing them. Swayamdipta, Parikh, and Kwiatkowski (2018)
present a cascade model consisting of light-weight sub-
modules which can be trivially parallelized to speed up train-
ing and inference. These models encode passages indepen-
dently. As a consequence, any dependencies that exist be-
tween sentences of different passages is not captured.

7701

Choi et al. (2017) encode the context into a single vector
by using hard attention over the sentence representations.
Hewlett et al. (2017) summarize the context document
into a single vector by using hierarchical attention over the
passage representations. This vector is used by a sequence
model to generate the answer. While Choi et al. (2017)
ignores inter-sentence dependencies, the design of Hewlett
et al. (2017) can capture long and short term dependencies
in theory. In our work, we prioritize facilitating this. At
a macro level, the cascade model which is most similar
to ours is described in Min et al. (2018). Like TAP, they
too have a sentence selector and an answer predictor. The
key difference lies in the sentence selector. They encode
each sentence in isolation and predict whether the sentence
is a supporting fact. While this strategy was shown to be
effective for some factoid questions, it is not sufficient for
multi-hop reading comprehension. The intuition behind this
was described in the introduction and an ablation study
(Table 3) supports it.

Multi-hop Reasoning: Graph based approaches are
widely used for the purpose of multi-hop reasoning. DFGN
(Qiu et al. 2019) constructs a graph out of the information
given in the context and employs a combination of reason-
ing over the graph and text to answer the question. Cognitive
Graph QA (Ding et al. 2019) is built for end-to-end question
answering. It consists of a reader and a reasoner which itera-
tively fetch and read new information and reason over them
until the answer is found.

Talmor and Berant (2018) and Min et al. (2019) follow the
approach of decomposing a complex question into multiple
single-hop questions. The final answer is composed from the
answers to these simple questions.

Nishida et al. (2019), Qiu et al. (2019), and Feldman and
El-Yaniv (2019) follow a multi-task learning approach to
simultaneously extract the supporting facts and answer the
question. There is no guarantee that any of the predicted
supporting facts are even used by the model to arrive at the
answer. In TAP we create a hard dependency between the
predicted supporting facts and answer prediction.

3 Problem Statement

Suppose we are given a set of training data {Qi, Ci, Ai}ni=1,
where Qi is a question (in natural language text), Ci is a set
of possibly relevant passages called the context, and Ai is
the answer span within Ci. The answer span Ai is typically
expressed via start and end indexes < starti, endi >.

Each context Ci is composed of multiple passages de-
noted by 〈Pi1, Pi2, . . .〉. Each of these passages Pij is a se-
quence of sentences Sijk, each of which may or may not ex-
press a supporting fact indicated by a binary label Fijk. For
training data, we assume the labels Fijk are made available.

Our goal is to train a deep-net model that can predict sup-
porting facts (i.e. labels Ftest,jk of individual sentences) as
well as (start, end) indexes 〈starttest, endtest〉 of the an-
swer Atest for a test example {Qtest, Ctest}.

�������	
����
Brown State Fishing Lake is in a county that has a
population of how many inhabitants ?

�	����
����
Paragraph 1: “Fishing Lake”
Fishing Lake is a lake in the Canadian province . . �
������
...
Paragraph 3: “Brown State Fishing Lake”
Brown State Fishing Lake (sometimes also known as ������
Brown State Fishing Lake And Wildlife Area) is a protected
area in Brown County, Kansas in the United States . The
lake is 62 acres in area and up to 13 feet deep
Paragraph 10: “Brown County, Kansas”
Brown County (county code BR) is a county located in the
northeast portion of the U.S. state of Kansas. ����	��
As of the 2010 census, the county population was 9,984 .
Its county seat and most populous city is Hiawatha . . .

�	���� �
��
9,984

LoGIX

� �� ���

Answer Predictor

�
� ���

(�����

� ��� �� ���

�
�� �����

���

����

Figure 2: A high level architecture of the TAP network

4 Solution Approach

The idea behind our solution approach is shown in Figure 2
which depicts the architecture of the proposed TAP network
at a high level. TAP system is composed of two networks:
Local and Global Interaction eXtractor (LoGIX), and An-
swer Predictor (AP). Input to LoGIX is a pair (Qi, Ci) of
question and context and the output of LoGIX comprises,
for each sentence Sijk, a score p(Fijk = 1) denoting the
probability of it being a supporting fact. The input to the AP
is a pseudo-passage formed by concatenating the support-
ing facts selected by a threshold on LoGIX’s output. The
output of the AP is a predicted answer Ai (given by indexes
〈start, end〉) or one of the special answer types: yes or no.

4.1 Achieving Translucency via Loose Coupling

In the proposed model, it is guaranteed that the prediction
of the answer is influenced only by the supporting facts that
LoGIX predicts. Therefore, we can easily understand the ac-
curate (and inaccurate) predictions made by the AP. Specif-
ically, we can argue whether the prediction was correct be-
cause the supplied supporting facts were having high preci-
sion and recall or because of some spurious correlation that
the model has learned during training. Studies like Jia and
Liang (2017) have shown that neural reading comprehen-
sion models often exploit spurious correlations in the data to
predict the answer. By predicting the supporting facts as the
first step, our approach limits the possibility of such correla-
tions. It also becomes easier to detect spurious correlations
during model development time since the Answer Predictor
is fed only a few sentences rather than the entire context.

5 Architecture and Training of TAP

Figure 3 captures the finer details of the Answer Predictor
and LoGIX in the TAP network.

5.1 LoGIX

LoGIX has three key layers – (1) Local Layer: Responsible
for capturing the local context (intra-passage sentence de-
pendencies). It is replicated over k super-passages (defined

7702

Local Layer (BERT)

Global Layer

Local Layer (BERT)

Sentence Representation Extractor
True Labels for

Supporting Facts

Linear Layer followed by Softmax

0 0 0 1

0 1 0 0

BERT

True Labels for Start/ End Indexes

Linear Layer followed
by 3-way Softmax

True Labels for
Answer Type

CLS Question SEP Supporting Facts

Selecting Only Supporting Facts

Thresholding

Context

LoGIX

Answer
Predictor

Super-Passage 1Question SEPCLS Super-Passage jQuestion SEPCLS

Figure 3: Detailed architecture of the proposed TAP network

later), (2) Global Layer: Responsible for capturing global
interactions (inter-passage or long range dependencies be-
tween sentences), (3) Supporting Facts Prediction Layer:
Responsible for extracting sentence representations and pre-
dicting the probability that a sentence is a supporting fact.

Relative to capturing only local context, the Global Layer
provides an important performance boost as we demonstrate
in the Experiments section. Relative to using only the Global
Layer, splitting the context into m1 super-passages enables
a wider and deeper transformer architecture since its time
complexity is quadratic in the length of the input sequence.

Input Data Shaping For training LoGIX, we are required
to process the given training data {Qi, Ci}ni=1 and shape
them into a suitable form. The available GPU memory size
becomes a key determining factor while shaping these in-
puts. The limited position embeddings of BERT (Ep ∈
R

p×d, p = 512) also factors into the shape of the input, as
well as the computational cost of applying large transformer
networks on long sequences.

For each training instance {Qi, Ci}, the question Qi is
first tokenized. The set of passages in the context Ci is split
on passage boundaries into m1 = 4 disjoint pieces such that
the length of each piece is equal to m0 = p − |Qi| (pad or
trim if necessary). Each such piece is called a super-passage.

The super-passages are constructed to fit the context into
minimal number of copies of the Local Layer and they cap-
ture a bit of cross-passage interactions wherever possible.
The super-passages can be thought of as bins with a fixed ca-
pacity (512 tokens) and the passages are selected such that
each bin is filled to maximum capacity and no passage is
split across super-passages. Each of these super-passages is
prefixed with the special [CLS] token, followed by the ques-
tion sequence, and the special token [SEP] (as shown in
Figure 3) so as to obtain a sequence φij (of length p = 512),
where j = 1 → m1. This {φij}m1

j=1 is the input to the LoGIX
for the training instance {Qi, Ci}.

Local Layer The Local Layer of LoGIX is composed of a
Transformer (Vaswani et al. 2017) that is capable of gener-
ating the vector representations of the input token sequence
φij by capturing semantics across the sequence. In our spe-
cific model, we used BERT. That is, each φij constructed
previously is passed through a pre-trained BERT (Devlin et
al. 2019) to obtain a sequence of token vectors each of d
dimensions. By using the self attention mechanism, BERT
captures the intra-passage dependencies among context sen-
tences as well as the question. Because these super-passages
typically contain multiple passages, this phase also captures
some inter-passages dependencies. Out of this sequence of
token vectors, we take the trailing sub-sequence correspond-
ing to only the passage tokens (ignoring the question and
special [CLS], [SEP] tokens). This sub-sequence of vec-
tors is denoted by {rq}m0

q=1.

Global Layer The sequence of vectors {rq}m0
q=1 ob-

tained from encoding each φij are concatenated to obtain
{rq}m0×m1

q=1 . This sequence is fed to the Global Layer, com-
posed of � layers of Transformers (Vaswani et al. 2017) to
obtain another sequence of vectors {uq}m0×m1

q=1 , where �
is a hyperparameter. Since the entire context is visible to
the transformer at once, the self-attention mechanism in the
transformer captures inter-passage dependencies between
the sentences.

Supporting Facts Prediction Layer The vectors
{uq}m0×m1

q=1 are fed to a module called the Sentence
Representation Extractor (SRE). From the input sequence
{uq}m0×m1

q=1 , SRE picks the vectors corresponding to the
first token 〈start〉ik and the last token 〈end〉ik of each
sentence Sik in the input context. SRE uses these vectors to
predict the probability that the sentence is a supporting fact.
The probability of a sentence being a supporting fact is given
by p(Fik = 1) = sigmoid(w�[u〈start〉ik ;u〈end〉ik] + b),
where [· ; ·] denotes the concatenation operation and
w ∈ R

2d, b ∈ R are trainable parameters.
LoGIX is trained using the binary cross entropy loss be-

tween the true supporting fact labels Fik and the predicted
p(Fik = 1) as LBCE(ik) = Fik · p(Fik=1) + (1 − Fik) ·
(1 − p(Fik = 1)) for each sentence Sik. The total loss for
LoGIX is Lsf =

∑
Sik

LBCE(ik).

5.2 Answer Predictor

The role of the Answer Predictor (AP) is to answer the ques-
tion by reasoning over the facts received from LoGIX. For

7703

this purpose, we train the AP on a subset of the context
which is known to contain all the gold supporting facts.

Input Data Shaping For the ith training instance, we first
prepare a pseudo-passage P ′

i by concatenating all the sup-
porting facts in the context. Each of these pseudo-passage
P ′
i is prefixed with the special [CLS] token, followed by the

question sequence, and the special token [SEP] (see Figure
3) to obtain a sequence φ′

i (padded to length p).

Context Encoding The sequence φ′
i is fed to another in-

stance of pre-trained BERT to obtain a sequence {vq}pq=1 of
d dimensional vectors.

Answer Type Predictor One part of the Answer Predic-
tor (yellow colored part in Figure 3) deals with identify-
ing the answer type for the input question. It classifies the
given input question into one of the three classes, namely
c = {yes, no, span}, depending on the nature of its an-
swer. For each input data instance (Qi, P

′
i), it uses the

vector vCLS in {vq}pq=1 corresponding to the [CLS] to-
ken to assign the probability p(ci|Qi, P

′
i) for each of the

three classes using a single linear-layer followed by 3-way
softmax. That is p(ci|Qi, P

′
i) = softmax(W�

CLSvCLS),
where WCLS ∈ R

3×d is a learnable parameter. The pre-
dicted probability vector p(ci|Qi, P

′
i) and true answer type

of the input question are used to compute a Cross-Entropy
loss Lat for answer type.

Answer Span Predictor The sequence {vq}pq=1 is passed
into two separate softmax functions each inducing a proba-
bility distribution across these tokens. One of these distribu-
tions, p(startq), corresponds to the start index probability
and the other, p(endq), corresponds to the end index prob-
ability. At training time, using the true start and end index
labels supplied by the input training example, we compute
the cross entropy loss separately for both indexes and sum
them to get the total cross entropy loss for the answer span.

5.3 Pre-training

We use two types of pre-training for the Local Layer of
LoGIX and the transformer in the AP. First, we use the pre-
trained models distributed by Devlin et al. (2019) which are
trained using the Masked Language Model and Next Sen-
tence prediction tasks. We extend the pre-training of these
models with the Span Selection Pre-Training (SSPT) task
developed by Glass et al. (2019).

5.4 Joint Training

We experimented with three styles of training for the An-
swer Predictor. First and most simply, the Answer Predic-
tor can be trained independently of LoGIX, using the pro-
vided gold standard supporting facts. Alternatively, the An-
swer Predictor can be trained with the predicted supporting
facts from LoGIX. This requires first training five folds of
LoGIX, each trained on 80% of the training data. Then sup-
porting fact predictions are made over the training set, with
each model making predictions for the instances absent in its
training set. The Answer Predictor is then trained to identify
answers from these predicted supporting facts. We call this

second style of training Joint Training. In the third style, the
predicted supporting fact training set can be concatenated
with the gold standard training set. We found the Joint Train-
ing to be the most effective. Training LoGIX took approx-
imately 24 hours on 8 P100 GPUs. In the joint setting this
training was done for each of the five folds. The Answer
Predictor takes under 10 hours to train on 4 P100 GPUs.

5.5 Ensemble

We ensemble the best performing variations of our models
for LoGIX and the Answer Predictor. In LoGIX, the ensem-
ble’s confidence for supporting facts is an average of the
confidences predicted by each LoGIX model. In the Answer
Predictor ensemble, each constituent model first ranks its an-
swers, then each distinct answer is scored by the sum of the
inverse of the rank each model assigns it. The ensemble pre-
dicts the answer with the highest sum-inverse-rank.

The models in the LoGIX ensembles are those derived by
using only the pre-trained BERT models and the BERT mod-
els with pre-training extended by span selection. For the An-
swer Predictor ensemble, the models trained with the three
variations of joint training are used.

5.6 Evaluation

For any given test example (Qtest, Ctest), LoGIX predicts
the probabilities p(Fik) at the sentence level. By using an
appropriate threshold τ , LoGIX converts these probabilities
into binary labels for the sentences. The sentences with pos-
itive predicted labels are used by the AP.

The question is concatenated with the predicted support-
ing facts and fed to the AP. The AP first predicts the answer
type by selecting the answer type class having maximum
p(ci|Qi, P

′
i). If the predicted answer type is yes or no then

the answer is simply the class name itself. Otherwise, the
AP predicts the answer span as follows. For all spans [qs, qe]
of the input token sequence, the corresponding answer span
probability is log(p(startqs))+log(p(endqt)). The AP out-
puts the span for which this probability is maximum.

6 Experiments

HotpotQA is a large scale QA dataset focusing on explain-
ability and multi-hop reasoning. This dataset comes with hu-
man annotated sentence level binary labels indicating which
sentences are supporting facts for answering a given ques-
tion. The distractor setting of HotpotQA provides ten pas-
sages as context for each question. Out of these ten, two pas-
sages have facts relevant to the question. However, to ensure
the generality of our model, TAP does not exploit this fact.
The remaining eight passages are included to distract the
model. Table 1 shows some statistics on the training and de-
velopment sets. The accuracy of the predicted answers and
the supporting facts are measured using Exact Match (EM)
and F1 scores. The metrics Joint EM and Joint F1 are used to
jointly evaluate the performance on answers and supporting
facts. We evaluate TAP on the hidden test set for the dis-
tractor setting of HotpotQA by submitting our system for
evaluation. We also use the publicly available development
set to explore the impact of decisions in our architecture.

7704

Statistic Training set Dev. Set
Number of questions 90447 7405
Avg. question length (words) 17.81 15.72
Avg. answer length (words) 2.22 2.46
Avg. context length (words) 886.23 896.96
Avg. number of sentences 40.94 41.38
Avg. number of sup. facts 2.38 2.43

Table 1: HotpotQA dataset statistics

6.1 Experimental Setup

We use pre-trained BERTLARGE models. In the Global
Layer of LoGIX, there are two transformer layers. For both
networks we use the ADAM (Kingma and Ba 2015) opti-
mizer with a maximum learning rate of 3 × 10−5 and a tri-
angular learning schedule, warming up over the first 10%
of training instances. Questions are truncated to 35 tokens
and passages are truncated to 512 tokens. The total length
of the passage set is limited to 2048 tokens, with the longest
passages truncated to fit. We trained LoGIX for 4 epochs
with a batch size of 8 and the Answer Predictor also for
4 epochs with a batch size of 16. PyTorch was used to
develop TAP. The TAP code repository can be found at
https://github.com/IBM/translucent-answer-prediction.

6.2 Results and Model Behavior Analysis

Method ANSWER SUP. FACTS JOINT

EM F1 EM F1 EM F1

TAP 2
ensemble

66.64 79.82 57.21 86.69 41.21 70.65

TAP 2
single model

64.99 78.59 55.47 85.57 39.77 69.12

EPS+
BERT

63.29 76.36 58.25 85.60 41.39 67.92

P-BERT 61.18 74.16 51.38 82.76 35.42 63.79
...
DFGN 56.31 69.69 51.50 81.62 33.62 59.82

Table 2: Performance of TAP (ours) in comparison with the
next closest and closest published models on the HotpotQA
leader board. The results of the unpublished models have
been borrowed from the HotpotQA leader board.

Main results In Table 2 we compare the results of our
model TAP with other top models from the HotpotQA
leaderboard. We perform the best on four of the six metrics.

Effect of Context Encoder in LoGIX We experimented
with different architectures for the context encoder2 of the
LoGIX (Figure 3) in order to study its effect on selecting
supporting facts. For this study, we used the pre-trained
BERTBASE . Each architecture captured intra and inter-
passage sentence dependencies to different extents. As a
starting point, we used just the Local Layer and supplied

2All the layers of LoGIX before the sigmoid layer.

Context Encoding SUP. FACTS

EM F1
LoGIX 53.11 83.62
Passage Level BERT 44.07 79.95
Sentence Level BERT 27.70 70.75

Table 3: Impact of different context encoding schemes on
supporting fact prediction. All evaluations are on develop-
ment set with BERTBASE .

Figure 4: Variation in Precision, Recall, F1, and EM scores
of the predicted supporting facts as a function of threshold

only the (question, sentence) pairs to it. The sentence repre-
sentations, obtained from BERT, were used to predict if the
sentence was a supporting fact. This is referred to as Sen-
tence Level BERT in Table 3. A similar experiment was car-
ried out for (question, passage) pairs and is referred to as
Passage Level BERT in Table 3.

Compared to the Sentence Level BERT, Passage Level
BERT is better equipped to capture the intra-passage sen-
tences dependencies, providing a better encoding of the lo-
cal context. Finally, we evaluated LoGIX as shown in Figure
3. From Table 3, it is evident that LoGIX used in TAP out-
performs the other approaches due to its ability to capture
both local and global dependencies between sentences.

Effect of the Threshold τ An important hyperparameter
in TAP is the threshold τ used by LoGIX to assign {0, 1}
labels to the facts. If a sentence has predicted probability
p(Fik) ≥ τ , it will be a predicted as supporting fact. Figure
4 shows how the supporting fact metrics of LoGIX vary as
threshold τ is increased from 0.1 to 0.9. Since these facts
will be used by the Answer Predictor, omitting a support-
ing fact will be costlier than including a non-supporting fact
because it will make the question un-answerable.

Table 4 shows the effect of threshold τ on the accuracy
of answers given by the Answer Predictor. The second col-
umn of this table shows the percentage of questions in the
development set for which LoGIX predicts the supporting
facts with 100% recall. We call such questions as answer-
able question. It is evident that as the threshold τ increases,

7705

the number of answerable questions decreases and hence the
accuracy of the Answer Predictor also drops.

Threshold Relative size of Dr=1 ANSWER

EM F1
0.1 87.95% 65.01 78.57
0.2 82.26% 64.61 78.24
0.3 77.50% 64.47 78.05
0.4 73.18% 64.32 77.73

Table 4: D denotes the development set and is divided into
two parts D = Dr=1 ∪Dr<1, where Dr=1 denotes that part
of the development set for which the predicted supporting
facts have full recall. The set Dr=1 is called answerable set.

EM(Ans)
= 1 < 1

Recall(SF) = 1 60.55% 27.40%
Recall(SF) < 1 5.90% 6.14%

Table 5: Error analysis of the AP where entire development
set is classified into four categories. Rows(columns) corre-
spond to recall of supporting facts (exact match of answers).

Figure 5: Behavior of the Answer Predictor

Answer Analysis The translucent nature of TAP makes it
possible for us to obtain a set of context sentences such that
TAP considered nothing other than these sentences to arrive
at the answer. This allows us to analyze the performance
of the Answer Predictor as function of the performance of
LoGIX. We assigned each question in the evaluation set into
one of four categories as shown in Table 5. The entries in
each cell denote the percentage of the questions in the eval-
uation set falling in that category. Ideally, we would like all
the questions to fall in the Recall(SF)=1, EM(Ans)=1 cat-
egory. The category Recall(SF)<1, EM(Ans)=1 shows that

Yes No Span
Yes 199 26 0
No 42 191 0
Span 6 6 6935

Table 6: Confusion matrix for the answer type classifier. The
rows (columns) indicate the true (predicted) labels.

in only 5.90% of the questions, the model has guessed the
right answer even though not all the supporting facts were
available. A high number in this category would indicate that
the model is less trustworthy as it frequently guesses the an-
swers rather than reasoning over the facts. Furthermore, in
Figure 5, we have also plotted the average F1 scores of the
predicted answers against F1 scores of the predicted sup-
porting facts across questions in the evaluation set.

Answer Type Classification Table 6 shows the confusion
matrix for the answer type classifier. The answer type classi-
fier almost never confuses between yes/no type answers and
span type answers. It has an accuracy of 98.92%.

LoGIX AP
F1 EM F1 EM

TAP (single model) 86.17 57.57 79.39 65.87
-SSPT 85.27 55.99 75.48 61.62

-BERTLARGE 85.13 56.58 77.25 63.31
-Joint Training Not applicable 78.63 65.16

Table 7: Ablation analysis.

Ablation Analysis We examine the impact of model size
and span selection pre-training (SSPT) with an ablation
analysis. Table 7 shows the impact of model size and
pre-training style on the development set. In LoGIX the
gains for both span selection pre-training and moving from
BERTBASE to BERTLARGE are approximately one per-
cent absolute. In the Answer Predictor we find the largest
gains coming from span selection pre-training (4%), while
increased model size has half the impact (2%). The gain
from using joint training is less than one percent absolute.

7 Conclusions

TAP is a novel architecture for the multi-hop reasoning
based RCQA task. Core to this system is LoGIX, a new ap-
proach that effectively addresses the challenges of local con-
text and global interactions present in multi-passage, multi-
hop QA. We have shown that TAP advances the state-of-the-
art on HotpotQA dataset, reaching Rank-1 and Rank-2 in
its ensemble and single model variants at the time of submis-
sion. Finally, by restricting the input of the AP to LoGIX’s
selected supporting facts, TAP admits interpretability that
can be used to debug the model for performance enhance-
ment purposes prior to its deployment.

7706

References
Bajaj, P.; Campos, D.; Craswell, N.; Deng, L.; Gao, J.; Liu, X.; Ma-
jumder, R.; McNamara, A.; Mitra, B.; Nguyen, T.; Rosenberg, M.;
Song, X.; Stoica, A.; Tiwary, S.; and Wang, T. 2017. MS MARCO:
A human generated machine reading comprehension dataset. In
Proceedings of ICLR.
Chen, D.; Fisch, A.; Weston, J.; and Bordes, A. 2017. Reading
Wikipedia to answer open-domain questions. In Proceedings of
ACL, 1870–1879.
Choi, E.; Hewlett, D.; Uszkoreit, J.; Polosukhin, I.; Lacoste, A.;
and Berant, J. 2017. Coarse-to-fine question answering for long
documents. In Proceedings of ACL, 209–220.
Clark, C., and Gardner, M. 2018. Simple and effective multi-
paragraph reading comprehension. In Proceedings of ACL, 845–
855.
Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019. BERT:
Pre-training of deep bidirectional transformers for language under-
standing. In Proceedings of NAACL, 4171–4186.
Ding, M.; Zhou, C.; Chen, Q.; Yang, H.; and Tang, J. 2019. Cog-
nitive graph for multi-hop reading comprehension at scale. In Pro-
ceedings of ACL, 2694–2703.
Feldman, Y., and El-Yaniv, R. 2019. Multi-hop paragraph re-
trieval for open-domain question answering. In Proceedings of
ACL, 2296–2309.
Glass, M.; Gliozzo, A.; Chakravarti, R.; Ferritto, A.; Pan, L.; Bhar-
gav, G. P. S.; Garg, D.; and Sil, A. 2019. Span selection pre-training
for question answering. arXiv preprint.
Hewlett, D.; Jones, L.; Lacoste, A.; and Gur, I. 2017. Accurate su-
pervised and semi-supervised machine reading for long documents.
In Proceedings of EMNLP, 2011–2020.
Jia, R., and Liang, P. 2017. Adversarial examples for evaluating
reading comprehension systems. In Proceedings of EMNLP, 2021–
2031.
Joshi, M.; Choi, E.; Weld, D.; and Zettlemoyer, L. 2017. Trivi-
aQA: A large scale distantly supervised challenge dataset for read-
ing comprehension. In Proceedings of ACL, 1601–1611.
Kingma, D. P., and Ba, J. 2015. Adam: A method for stochastic
optimization. In Proceedings of ICLR.
Kwiatkowski, T.; Palomaki, J.; Redfield, O.; Collins, M.; Parikh,
A.; Alberti, C.; Epstein, D.; Polosukhin, I.; Kelcey, M.; Devlin,
J.; Lee, K.; Toutanova, K. N.; Jones, L.; Chang, M.-W.; Dai, A.;
Uszkoreit, J.; Le, Q.; and Petrov, S. 2019. Natural Questions: A
benchmark for question answering research. TACL.
Lai, G.; Xie, Q.; Liu, H.; Yang, Y.; and Hovy, E. 2017. RACE:
Large-scale reading comprehension dataset from examinations. In
Proceedings of EMNLP, 785–794.
Lin, Y.; Ji, H.; Liu, Z.; and Sun, M. 2018. Denoising distantly
supervised open-domain question answering. In Proceedings of
ACL, 1736–1745.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.;
Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019. RoBERTa: A
robustly optimized bert pretraining approach. arXiv preprint.
Min, S.; Zhong, V.; Socher, R.; and Xiong, C. 2018. Efficient and
robust question answering from minimal context over documents.
In Proceedings of ACL, 1725–1735.
Min, S.; Zhong, V.; Zettlemoyer, L.; and Hajishirzi, H. 2019.
Multi-hop reading comprehension through question decomposition
and rescoring. In Proceedings of ACL, 6097–6109.
Nishida, K.; Nishida, K.; Nagata, M.; Otsuka, A.; Saito, I.; Asano,
H.; and Tomita, J. 2019. Answering while summarizing: Multi-task

learning for multi-hop QA with evidence extraction. In Proceed-
ings of ACL, 2335–2345.
Qiu, L.; Xiao, Y.; Qu, Y.; Zhou, H.; Li, L.; Zhang, W.; and Yu, Y.
2019. Dynamically fused graph network for multi-hop reasoning.
In Proceedings of ACL, 6140–6150.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised multitask
learners. arXiv preprint.
Rajpurkar, P.; Zhang, J.; Lopyrev, K.; and Liang, P. 2016. SQuAD:
100,000+ questions for machine comprehension of text. In Pro-
ceedings of EMNLP, 2383–2392.
Reddy, S.; Chen, D.; and Manning, C. D. 2019. CoQA: A conver-
sational question answering challenge. TACL 7:249–266.
Swayamdipta, S.; Parikh, A. P.; and Kwiatkowski, T. 2018. Multi-
mention learning for reading comprehension with neural cascades.
In Proceedings of ICLR.
Talmor, A., and Berant, J. 2018. The web as a knowledge-base for
answering complex questions. In Proceedings of NAACL, 641–651.
Unger, C.; Forascu, C.; López, V.; Ngomo, A. C. N.; Cabrio, E.;
Cimiano, P.; and Walter, S. 2014. Question answering over linked
data QALD-4. In Proceedings of CLEF.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention is
all you need. In Proceedings of NIPS, 5998–6008.
Wang, S.; Yu, M.; Guo, X.; Wang, Z.; Klinger, T.; Zhang, W.;
Chang, S.; Tesauro, G.; Zhou, B.; and Jiang, J. 2018a. R3: Re-
inforced ranker-reader for open-domain question answering. In
Proceedings of AAAI.
Wang, S.; Yu, M.; Jiang, J.; Zhang, W.; Guo, X.; Chang, S.; Wang,
Z.; Klinger, T.; Tesauro, G.; and Campbell, M. 2018b. Evidence ag-
gregation for answer re-ranking in open-domain question answer-
ing. In Proceedings of ICLR.
Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.; Michael, J.;
Hill, F.; Levy, O.; and Bowman, S. R. 2019. SuperGLUE: A stick-
ier benchmark for general-purpose language understanding sys-
tems. arXiv preprint 1905.00537.
Welbl, J.; Stenetorp, P.; and Riedel, S. 2018. Constructing datasets
for multi-hop reading comprehension across documents. TACL
6:287–302.
Yan, M.; Xia, J.; Wu, C.; Bi, B.; Zhao, Z.; Zhang, J.; Si, L.; Wang,
R.; Wang, W.; and Chen, H. 2019. A deep cascade model for
multi-document reading comprehension. In Proceedings of AAAI,
7354–7361.
Yang, Z.; Qi, P.; Zhang, S.; Bengio, Y.; Cohen, W. W.; Salakhut-
dinov, R.; and Manning, C. D. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering. In Proceedings
of EMNLP, 2369–2380.
Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; and
Le, Q. V. 2019. XLNet: Generalized autoregressive pretraining for
language understanding. arXiv preprint.

7707

